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Abstract

In this paper, energy trading for the distributed smart grid architecture is pro-
jected as an incomplete information game — a viewpoint that contrasts from all
the existing pieces of literature available on the broader issue of energy manage-
ment in smart grid. The incomplete information is considered as the real-time
demand and price to grid and customers, respectively, due to the packet loss
in the communication network. Therefore, the paper addresses a realistic sce-
nario, in which real-time information to the destination may not be guaranteed
to be received adequately, due to the packet loss. In the proposed scheme, we
introduce two types of intelligent agents — customer-agents and grid-agent.
The customer-agents are deployed at the customers’ end, and are capable of
estimating adequately the real-time price decided by the grid. On the contrary,
the grid-agent is deployed at the service provider’s end, and are also capable
of estimating adequate real-time energy demand from the customers. There-
fore, one of the key advantage of the proposed agent-based scheme is that the
customers and the grid are not involved in complex calculations in order to
take real-time decisions for cost-effective energy management, while there is in-
formation loss in the communication networks. In the proposed game model,
the grid-agent and the customers agents are the players, and estimate real-time
demand and price based on the probability of belief to each other. We show
the existence of Bayesian Nash Equilibrium in the proposed model, where the
utility of the players is maximized. We compare the real-time price with and
without packet loss as the price with incomplete and complete information, re-
spectively. We observe that the proposed model is beneficial for the grid, as its
utility is maximized. The simulation results show that the utility of the grid
increases approximately 40% over that of the existing ones under the scenario
of information incompleteness.
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1. Introduction

A smart grid is conceptualized as an integration of overlay communication
networks with underlay electrical networks. To develop cost-effective energy
supply systems, the overlay communication network plays a crucial role for en-
ergy management [1], [2]. Smart meters are implemented at the customers’ end
in order to communicate with the grid1 for real-time price [3], [4]. Consequently,
the customers optimize their energy consumption profile according to the price
information received from the grid. Similarly, the grid receives real-time energy
demand from the customers with the help of bi-directional communication fa-
cility. Thus, the grid estimates the real-time demand. Accordingly, energy is
supplied by the grid (generators) to the customers in order to fulfill their re-
quirements, and so as to maintain supply-demand curve. Therefore, an efficient
energy management scheme takes effect in a smart grid architecture. However,
this energy management scheme is solely based on the real-time complete infor-
mation from both ends — grid, and customers.

The deployment of wireless sensor networks (WSNs) in the smart grid is
expected to be a promising approach to monitor, predict, and manage real-
time energy usage in a cost-effective and efficient manner [3], [5], [6]. Erol-
Kantarci et al. [7] proposed the energy management scheme for residential
customers based on the real-time information generated from wireless sensor
networks. However, the sensor network-based communication septems are prone
to increased packet loss due to the harsh environments, resource constraints
(such as energy, memory, and processing), and selfish nodes [8, 9, 10]. Therefore,
the implementation of WSN for residential energy management is challenging in
the smart grid. Additionally, resource over-run of any of the factors mentioned
earlier may lead to packet loss in the smart grid communication networks. The
selfish behavior of the sensor nodes may lead to complete information not being
sent to the control center as well as to the end-users for taking adequate actions
in real-time. Additionally, communication delay is also an important factor that
may affect decisions taken in a time period. If the delay is greater than a certain
threshold, the control center takes decisions without considering the delayed
information [11]. Therefore, the delayed information is treated as lost packets.
Therefore, in the communication network, the occurrence of packet loss, and
information propagation delay is imminent. Consequently, the grid may not
have the adequate real-time information about the customers’ energy demands,
and the customers may not have adequate real-time price information decided
by the grid due to the packet loss in the communication network. According
to Niyato et al. [12], the real-time price increases almost exponentially with an
increase in packet loss in the communication networks. Thus, proper estimation

1In general, a service provider acts as an intermediary agent between the generators and
customers. However, in this work, generator, grid, and service provider are considered as the
same entity. Therefore, there is no difference among generator, grid, and service provider.
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of real-time demand from customers in the presence of packet loss in the overlay
communication network in the smart grid is a research challenge.

1.1. Motivation

While estimating the real-time demand and price from the customers and
the grid, respectively, there is relatively a very few works which addressed the
demand prediction in real-time [13]. Typical approaches for estimating real-
time demand and corresponding price are based solely on the received demand
and price information to the grid and customers, respectively. Consequently,
relying solely on the received information may lead to mismatch between the
generation capacity and the customers’ requirements, while there is a packet
loss in the communication networks. As a result, the grid may has to buy
extra energy from the wholesale electricity market2 at a higher price to fulfill
the customers’ demands, which in turn increases the real-time price of energy.
Hence, the real-time price increases with an increase in the packet loss rate.
Therefore, the grid serves the customers in an unreliable and cost-expensive
way instead of the reliable and cost-effective ones. Similarly, the customers also
fail to optimize their energy consumption cost. To the best of our knowledge,
there is no such work which considers the real-time energy management problem
with incomplete information, i.e., with the concentration on the packet loss in
the communication networks. Therefore, the users (customers and grid) need to
perform complex tasks in order to optimize the real-time energy management,
while there is packet loss in the communication networks. Consequently, an
adequate strategy needs to be designed which can address the issue related to
packet loss in the smart grid communication networks, in order to have reliable
and efficient energy supply to the customers.

1.2. Contribution

In order to address the energy management problem in the presence of packet
loss in the communication networks, we introduce two types of agents in the
smart grid architecture — customer-agent, and grid-agent. The customer-agent
is deployed at the customer’s end, which is autonomously capable of predict-
ing adequate real-time price decided by the grid. On the other hand, the grid
agent is deployed at the service provider’s end, and predicts the real-time de-
mand from the customers in adequate manner. One of the key advantage of
using the agent-based approach is that the customers and grid do not need
to bother about the packet loss in the communication networks. The agents
act intelligently in order to handle the incompleteness of real-time information.

2In a smart grid, typically, the micro-grids distribute electricity to the customers as a
combination of renewable and non-renewable energy. Additionally, the micro-grids have self-
generated energy sources. Therefore, firstly, the micro-grids provide services to their customers
with the self-generated energy, and secondly, the rest of the required energy to fulfill the
customers’ demands, can be bought from the main grid which is known as wholesale electricity
market. Therefore, the wholesale electricity market is a common platform for all the service
providers from they are allowed to buy electricity through the bidding process.
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Furthermore, the customer-agents have the ability to predict the adequate real-
time price information, and take optimal decisions depending on their owners’
preferences. Similarly, grid-agent also has the capability to predict the adequate
energy demand from the customers, and decides real-time price for maximizing
the profit. Therefore, both the agents act autonomously in order to maintain
the energy supply-demand curve.

With this, in this paper, we propose a real-time energy management scheme
in smart grid with incomplete information, named as ENTICE — Energy Trad-
ing with Incomplete Information — specifically, in the presence of packet loss
due to the communication constraints mentioned earlier. We design the real-
time energy management scheme with incomplete information as a Bayesian
game. In such a game model, the grid-agent acts as one player, and the
customer-agents act as other players. The customer-agent take real-time de-
cision on energy consumption depending on the belief strategy for the grid. On
the other hand, the grid-agent decides real-time price depending on the belief
strategy of the received demand from the customers. We show that Bayesian
Nash Equilibrium exists in the proposed game model, where the utility of cus-
tomers and grid is maximized, and the proposed model is well-enough to predict
the real-time demand and price to the grid and the customers, respectively. In
brief, our contributions in this work are as follows.

• We model energy trading in smart grid as an incomplete information game,
due to the presence of packet loss in the associated communication net-
work. In such a game model, two types of agents — customer-agent and
grid-agent — are used which can intelligently estimate the real-time price
and demand, respectively. The customer-agents are deployed at the cus-
tomers’ end, and the grid-agent is deployed at the service provider’s end.
Therefore, the customers and grid are not involved in the complex calcu-
lations, while there is a packet loss in the communication networks.

• We propose a real-time energy management policy, which is based on
the probability of belief strategy for the customers’ demands to the grid-
agent, to counter the information incompleteness. On the other hand,
the customer-agents take optimal decisions for cost-effective energy con-
sumption based on belief strategy of the real-time price decided by the
grid.

• Consequently, we present algorithms for the grid-agent and the customer-
agents by following Bayesian Nash Equilibrium for maximizing the utility
for both ends — grid, and customers.

• We evaluate the proposed scheme and show that the agent-based energy
management scheme outperforms than the existing ones, while there is
packet loss in the communication networks. The simulation results show
that the customers’ utility increases on an average 40% than the existing
ones by considering the incompleteness of the real-time information.
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1.3. Organization

The rest of the paper is organized as follows. In Section 2, we briefly present
the literature review for energy management based on information. Section 3
describes the system model related to the problem. We propose the solution of
the problem in Section 4. For the solution of the problem, a Bayesian game with
incomplete information is formulated. In Section 5, we present the results of
performance evaluation of the proposed solution approach. Finally, in Section
6, we summarize our proposed approach with some future extensions.

2. Related Works

Several issues related to communication-based energy management in smart
grid are addressed in the current state-of-the-art of the smart grid systems
[14], [15], [16], [7], [12], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27],
[28], [29], [30], [22], [31], [32]. Some of the existing literature are discussed
in this Section. Niyato et al. [12] described the impacts of packet loss in
smart grid communication architecture. They showed that with an increase in
packet loss rate, the real-time price increases proportionately. To establish the
communication architecture, they used data aggregator unit (DAU), and meter
data management systems (MDMS). A DAU sends real-time data generated
from smart meter to the MDMS for energy management, and accordingly, the
service provider takes necessary decision. They used a queuing model to quantify
packet loss due to congestion at the DAU.

Misra et al. [31] studied the impact of self-generated energy at the cus-
tomers’ end, and showed that the customers can significantly reduce the energy
consumption cost. Rad et al. [16] discussed a distributed energy management
scheme as a scheduling game for autonomous demand side management. In
such a game model, the authors assumed that the customers can adopt ade-
quate pricing tariffs, and accordingly, they consume energy in timely manner to
reduce the electricity bill. However, due to the incomplete information to the
customers, they may not be able to adopt adequate pricing tariffs. Similar to
this, Liang et al. [18] also studied a power scheduling scheme based on quality
of energy (QoE) in the smart grid to reduce the consumption cost. On the
other hand, wireless sensor networks are used for real-time energy management
for cost-effective energy supply [7]. The sensors are deployed at the customers’
end to communicate with the smart meters, and according to real-time price
information, the appliances are scheduled automatically.

In [19], the authors discussed the communication architecture required to
support smart grid. They introduced a mesh network architecture, referred to
as local wireless mesh network (LWMN), with the combination of home area net-
works (HAN), neighborhood area networks (NAN), and local electrical equip-
ment. They used smart relay systems to send data from smart meter to the
service provider. The authors claimed that this relay device is selected opti-
mally to send real-time data. In [20], the authors also introduced a scheme for
cooperative transmission of meter data to the utility provider. After receiving
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the data from DAU, the MDMS estimates the supply-demand curve, and opti-
mizes the real-time price to maximize grid’s utility. In their proposed approach,
they formulated a non-cooperative game model to analyze the relay transmission
from the smart meter, and also established the Nash Equilibrium strategy. The
authors claimed that their proposed approach is useful in establishing reliable
wireless network for the smart grid architecture.

Soliman et al. [27] proposed an optimal power management scheme for
residential customers in the smart grid. The authors discussed the process of
minimizing the electricity cost to the customers with real-time price informa-
tion. They showed that energy storage and local distributed generation can
facilitate cost effective energy supply to the customers. However, the scheme
is fully dependent on the real-time information (such as demand and price) to
the grid and customers. Therefore, the implementation of storage devices and
local generation may not be fruitful without adequate real-time information.
The feasibility of smart grid communication architecture was studied in [17].
The requirements to establish the architecture was also studied by the authors.
They proposed two types of prioritized events operation — high, and low. The
information treated as high priority correspond to emergency events to be sent
to the control center. The low priority information is for asset management
tasks. They also proposed a three-layer architecture to have reliable smart grid
communication. The first layer architecture is a cluster of wireless sensor nodes
and master nodes. The second and third layers are for communication between
the master nodes and the adjacent clusters, and between the master nodes and
the control center, respectively.

In [15], the authors proposed time of use (TOU) aware energy management
system. For example, as during peak-hours of a day, the price is high, they sug-
gested energy consumption during non-peak hours. However, without proper
communication mechanism, this method may not work well. In [14], the au-
thors proposed an OFDMA-based communication model for smart grid energy
management. In this model, the smart meters are connected to the central
communication model, and the control center can access the smart meter data
simultaneously. A game theoretic coalition formation approach is presented by
Wei et al. [22] to reduce power loss in the electrical network. Micro-grids can
expand and shrink their service region depending on the supply and demand to
the grid. Micro-grids exchange energy with one another, rather than transmit-
ting to the macro-station. In such a scenario, the coalition formation among
the micro-grids depend on the real-time information available to them. There-
fore, the communication network plays an important role to establish reliable
and cost-effective energy supply to the customers. A real-time digital system for
condition monitoring in smart grid is proposed in [25]. The digital system based
on hybrid network architecture (HNA) with the integration of wired, wireless,
power line communication, and controller area network (CAN). The perfor-
mance of the proposed scenario is evaluated in underground electric substation.
The proposed network architecture facilitates the smart grid for cost-effective
energy supply.

Although different technologies are proposed to facilitate the smart grid
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requirements, the analysis of the existing literature reveals that energy man-
agement decisions in smart grid in the presence of packet loss are unreliable.
Specifically, packet loss in communication systems makes it difficult to estimate
proper demands from the end users. Therefore, in this paper, we propose an
approach for energy trading in smart grid in the presence of packet loss, i.e.,
with incomplete information from both sides — grid, and customers.

3. System Model

Figure 1 shows the communication architecture and energy consumption
process of the customers in a smart grid. Let there be N customers, where
N ∈ N. The smart meters, which are deployed at the customers’ end, are
connected with customer-agents for estimating real-time price decided by the
grid. I a similar way, the customer-agents communicate with the service provider
with the help of DAUs for the required energy, xi,t, for customer i ∈ [1, N ], at
time t ∈ T , where T is the set of different time periods of a day. Therefore, the
customer-agents act as a middleman between the smart meters and the DAUs
in order to provide adequate real-time price to the smart meters. The DAU
sends the customers’ data to the meter data management system (MDMS) in
order to have total demand from the customers, Xt at the time t. Similar to
the customer-agents, the grid-agent is deployed at the service provider’s end to
estimate the adequate real-time energy demand. After estimating the adequate
demand, the grid-agent sends the real-time demand to the service provider.
Eventually, the service provider also communicates with the generation unit
(which may be renewable or non-renewable) to estimate the real-time supply,
Wt, at the same time for reliable energy services to the customers. According
to the received information about the real-time supply, Wt, and the demand,
Xt, the grid decides the real-time price, pt, and sends the price to the customers
for cost-effective energy supply.

3.1. Role of Customer and Grid Agents

In a smart grid architecture, we consider that a single grid provides energy
to multiple customers. In such a scenario, two types of agents are consid-
ered — customer-agents and grid-agent. The customer-agents deployed at the
customers’ end are responsible for providing cost-effective energy consumption
using different mechanisms such as demand scheduling [33]. On the other hand,
the grid-agent deployed at service provider’s end is responsible for maintaining
balance between real-time energy supply and demand in order to provide reli-
able energy service to the customers. Therefore, in brief, the customer-agents
and grid-agent are two different entities in terms of architecture, capabilities,
resource requirements, and efficiency, which are discussed above.

As discussed in Section 1, due to the packet loss in the smart grid communi-
cation networks, real-time energy price and demand received by the customer-
agents and the grid-agent, respectively, are not the actual ones. Therefore,
in addition to the above mentioned responsibilities, the customer-agents and
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Figure 1: A distributed communication architecture in a smart grid

grid-agent need to estimate real-time energy price and demand, respectively.
Consequently, in this paper, we propose an energy management scheme in the
presence of customer-agents and grid-agent, while there is a packet loss in the
smart grid communication networks (refer to Section 4).

3.2. Energy Consumption Profile

The set of customers is represented as a set N = {1, 2, ..., N}. The customers
consume energy according to their requirements. Therefore, let the demand for
each customer in a day be denoted as xi,req, where i ∈ [1, N ]3. So, the energy
demand for a customer, i, during a time period, t, can be expressed in vec-
tor form as follows: xi,t = {x1,t, x2,t, ..., xN,t} where i ∈ [1, N ]. Therefore, the
grid-agent receives real-time total energy demand, Xt, from the customers for
the tth time period, while there is no information loss in the communication
networks. On the other hand, due to the information loss in the communica-
tion network, the grid receives real-time total energy demand, X ∗t , from the
customers. Therefore, the received demand to the grid with and without packet

3In a practical scenario, different customers may have different energy requirements. There-
fore, though the energy requirements for different customers are different, the grid estimates
the real-time demand depending on the total demand received from the customers in a partic-
ular time-slot. Therefore, in the proposed scheme, we consider different energy requirement
for each customer, and we estimate the real-time demand depending on the total demand
received from the customers as the grid needs to deal with total energy demand and supply.
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loss is represented mathematically as follows:

Xt =

N∑
i=1

xi,t and X ∗t =

N∑
i=1

x∗i,t (1)

In the smart grid architecture, the grid always takes decisions based on the total
demand from the customers instead of the individual ones [34]. Therefore, in
general, the grid-agent is unable to distinguish the different received demand
information from the customers. Consequently, in the proposed scheme, the
grid-agent takes decisions based on the total received demand from the cus-
tomers.

3.3. Pricing Policy Based on Information

The objective of the grid is to maximize its utility while considering cus-
tomers’ participation. Therefore, the grid decides the real-time price as pt
to maximize its utility, while considering that the energy supply cost is time-
invariant. On the other hand, the customers consume energy based on the
real-time price. Therefore, the corresponding optimization problem with the
supply and demand attributes is as follows.

Maximize

T∑
t=1

Xtpt −
( k∑
r=1

Wr,tcr,t +

m∑
r̃=1

Wr̃,tcr̃,t

)
subject to

N∑
i=1

xi,t ≤
( k∑
r=1

Wr,t +

m∑
r̃=1

Wr̃,t

)
, (2)

Xt ≥ 0 (3)

where k and m are the number of renewable and non-renewable energy sources,
respectively. cr,t and cr̃,t denote the cost for renewable and non-renewable
energy supply, and pt is considered as a quadratic cost function with the total
energy demand, i.e., pt = αX 2

t + βXt + γ, where α, β, and γ are predefined
constants. Equation (2) ensures that the total demand, Xt, should be always
less than or equal to the total supply,Wt, to maintain the supply-demand curve,
in order to have reliable energy supply to the customers in every time periods.
Wt is considered as a combination of renewable,Wr,t, and non-renewable,Wr̃,t,
energy supply. The total demand is always positive and real, and is denoted in
Equation (3).

Similarly, customers also try to optimize the energy consumption based on
the real-time price to minimize the energy consumption cost. The optimization
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problem for a customer can be represented as follows.

Minimize

T∑
t=1

xi,tpt, where i ∈ [1, N ]

subject to

xi,req ≤
T∑
t=1

xi,t, where i ∈ [1, N ] (4)

where xi,req is the required energy of customer i in a day. Equation (4) repre-

sents that the total energy expenses,
∑T
t=1 xi,t, during a day must be greater

than or equal to the required energy, xi,req, for the day of the customer i ∈ [1, N ].

3.4. Impact of Packet Loss

Due to packet loss in the communication system, real-time energy demand
estimation is challenging to the grid, and, thus, inefficient energy supply may
take place. In this situation, the cost of energy increases almost exponentially
with an increase in the packet loss rate (than that of without packet loss). Let
the energy demand from a customer be bounded by [0,Dmax], where Dmax is
the maximum demand of a customer. The probability of real-time demand of a
customer, i, i ∈ [1, N ], with packet loss, can be represented as follows [12].

π̃ω,i =

 πω,i + Li(
∑

ω′∈Ω\{0}
πω′ ,i) if ω = 0;

(1− Li)πω,i if ω > 0.
(5)

where, πω,i denotes the probability of scenario ω of the customer i, i ∈ N ,
which is estimated without packet loss. The scenario space Ω is defined as:
Ω = {0, 1, ...,Dmax}. Li denotes the packet loss rate of customer i. Interested
readers can find further insight of this in [12].

3.5. Use of Bayesian Game Theory

In a real-life scenario, a player (decision maker) has partial information about
other players. Therefore, assuming that a player has complete information about
other players is a strong assumption, particularly in the presence of any informa-
tion loss. In Bayesian game theory [35], one player can estimate the probability
of belief strategies about other players. Consequently, after estimating the prob-
ability of belief strategy about a player, we can have a scenario with complete
information, in the presence of information loss in the system. Bayesian game
based approach where one player has incomplete information about other play-
ers. In contrast to the Bayesian game, other game theories can be used while
all the players have complete information about other players.

In the proposed scheme, we have two players — customer-agents and grid-
agent. The customer-agents control the energy consumption at the customers’
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end. On the other hand, the grid-agent controls the balance between real-
time energy supply and demand. However, due to the packet loss in the smart
grid communication network, the received information is incomplete at the
customers’ side and as well as the grid side. Therefore, the customer-agents
and grid-agent need to estimate real-time price and demand for cost-effective
and reliable energy service, respectively, when there is packet loss in the smart
grid communication networks. Consequently, real-time energy demand can be
treated as incomplete information for the grid. As a result, the energy manage-
ment scheme in a smart grid architecture is to be considered as an optimization
model with incomplete information. As discussed above, the Bayesian game can
be used to deal with such incomplete information in the smart grid. Therefore,
we use Bayesian game theory framework, which is suitable for addressing the
incompleteness of the real-time information [35], where single utility provider
services multiple customers. In Section 4, we discuss the energy management
scheme with incomplete information as a Bayesian game.

4. Solution Approach

4.1. Game Formulation

To study energy management under incomplete information in a smart grid,
we use the static Bayesian game with incomplete information [35]. In the pro-
posed scheme, the grid-agent acts as one player, and customer-agents act as
other players of the game. According to the Section 3, there are N customer-
agents who consume energy from the grid, and there be M players as a combi-
nation of grid-agent and customer-agents. Therefore, M = N + 1, as only one
grid-agent is considered in this work. The static Bayesian game, G, with finite
number of players, is defined in the strategic form as:

G =
{
M, T ,Ag,Ac, {θi}i∈M, {pi}i∈M, {Ui}i∈M

}
The components of the game with incomplete information are as follows:

• A set of players: M = {g, c1, c2, ..., cN}, where g denotes the grid-agent
which acts as Player 1, and the customer-agents are denoted as c1, c2, ..., cN ,
which act as Players 2.

• The set of states of nature: T = {t1, t2, t3}, where t1 denotes on-peak
hour, and t2, t3 denote mid-peak and off-peak hour, respectively.

• The set of actions for the grid-agent is Ag, where Ag ∈ {ph, pm, pl}. ph, pm
and pl denote the high, mid or low nature of real-time price, respectively.
The set of actions of a customer-agents is represented as Ac, where Ac ∈
{Ec, Ēc}, where Ec denotes that the customer consumes energy, and Ēc
denotes that the customer does not do so.

• A set of types of the player, i: θi, where i ∈ {g, c}. The type set for
Player 1 (i.e. grid-agent) is denoted as θg = {Dh,Dm,Dl}, where Dh
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denotes that the demand is high, and Dm and Dl denote that the demand
is moderate and low, respectively. The type set for Player 2 (i.e. customer-
agents) is denoted as θc = {dc}, where dc denotes the energy demand of
the customer. All the types of players are denoted as set Θ, i.e., θi ∈ Θ.

• A probability function, pi : θi → ∆(θ−i) for player i (g or c), specifying
the belief about the type of player −i (c or g).

• A payoff function for the players. We denote the utility for grid (evaluated
by grid-agent) as Ug : Ag × θg → R, and utility for customer (evaluated
by customer-agent) as Uc : Ac × θc → R,

The types for each player may be randomly fluctuating in different time
instants, as demand from the customers is different at different instants. Hence,
we assume that the type, θ, is randomly distributed according to a distribution
function Fi(θi), where the density function fi(θ) is positive in the whole interval
[θ−i, θi]. In practical network scenario, the exact realization of the game for grid
is typically known only to it. Similarly, the type of customer is typically known
only to the customer [36]. Thus, the types, θi, for a player, i, are private
information of the grid ( or the customer) to the customer-agents (or the grid-
agent).

Let the set of possible strategies for the players be S. Then Player 1, i.e.,
grid-agent’s set of possible strategies, Sg, is the set of all possible functions
with domain θg, and action Ag. In other words, Sg is a collection of functions
Sg : θg → Ag. Similarly, Player 2, i.e., customer-agents’ possible strategies,
Sc, is a collection of functions Sc : θc → Ac. In such a strategic condition, all
the players know their utility function. Equivalently, it can be said that they
know their own types, θg (or θc). Now, Player 1 (or 2) may be uncertain about
Player 2′s (or 1′s) utility function. Thus, pg(θc|θg) denotes the probability of
Player 1′s belief about Player 2′s type being θc. According to the Bayes rule,
probability of the belief strategy for Player 1 can be expressed as follows:

pg(θc|θg) =
p(θg, θc)

p(θg)
=

p(θc, θg)∑
θg∈Θ

p(θc, θg)
(6)

4.2. Real-time Pricing with Complete Information
In the complete information game, the grid-agent and the customer-agents

know all the types of each other. The type can be represented in a vector
form as θ = {θg, θc}, and is known to the grid-agent and the customer-agents.
Then, the distribution function in Section 4.1 is either 1 or 0, i.e., Fi(x) = 0
for x < θi, and Fi(x) = 1 for x ≥ θi, where θi is the realization of the player’s
type, and i ∈ {g, c}. In the game with complete information, general Nash
Equilibrium exists [37], and, thus, we limit our discussion in the game with
complete information.

Definition 1. The Nash Equilibrium in a complete information game is a
strategy profile with each player’s best response to the strategies of other players
[37].
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4.3. Real-time Pricing with Incomplete Information

In the game with incomplete information, the grid-agent cannot observe the
type, θc, of the customer-agents. Hence, the aim of the grid is to maximize
its own revenue, while taking customers’ participation into account. In this
situation, energy transfer depends on the types of the players. We consider that
the cost function is quadratic with real-time demand, as mentioned in Section
3.3. So, the price, pt, per unit energy depends on the type, θi, of the players.
Let σi , p−1

t be the inverse function of pt such that θi = σi(pt(θi)). We also
assume that the distribution function, fi(θi), is positive-valued over (θg, θc), as
discussed earlier.

In the game with incomplete information, if we design the outcome of the
game, G, as xg(vg) for the grid-agent, and the cost function as Cg(θi, vg), i ∈ g,
then the utility function for the grid can be expressed as follows:

Ug(vg) = vgxg(vg)− Cg(θi, vg), where vg ∈ {pt} (7)

and
xg(vg) = Pr[xg(vg) = 1|vg]

= E[xg(v)|vg]

Cg(θi, vg) = E[Cg(θ, v)|vg]
The grid-agent estimates the demand depending on the belief strategy for

customer-agents (pθc|θg ). Thus, the real-time demand is estimated as follows:

ξd =

N∑
i=1

x∗i,t +

N∑
i=1

x∗i,t

(
1−

(
pθc|θg

))

=

N∑
i=1

x∗i,t +

N∑
i=1

x∗i,t

{
1− p(θc, θg)∑

θc∈Θ

p(θc, θg)

}
(8)

Lemma 1. The demand without packet loss is always greater than or equal to
the demand with packet loss, i.e.,

Xt ≥ X ∗t

Proof 1. From the general rules, due to packet loss, the receive demand de-
creases with the packet loss rate (ρ). Thus,

xi,req − ρ
xi,t
100

= x∗i,t

Let, if possible, Xt ≤ X ∗t . Therefore,

ρ
xi,t
100

= xi,t − x∗i,t

This implies that ρ < 0, when xi,t < x∗i,t. However, ρ cannot be negative-valued.
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Thus, ∀ρ ≥ 0,
∑
i

∑
t xi,t ≥

∑
i

∑
t x
∗
i,t or Xt ≥ X ∗t .

The real-time price is calculated according to the estimated demand by the grid,

pt = αξ2
d + βξd + γ (9)

where α, β, γ are the predefined constants. Thus, according to Equation (7),
the utility for grid is expressed as follows:

Ug(θg,S(Sg : Ag → θg)) =

T∑
t=1

ξdpt −
( m∑
r=1

Ercr +

k∑
r̃=1

Er̃cr̃

)
(10)

and, the utility for customer is as follows:

Uc(θc,S(Sc : Ac → θc)) =

T∑
t=1

xipt −
T∑
t=1

Sc
(
xipt

)
, ∀i ∈ [1, N ] (11)

Definition 2. A socially optimal allocation is the allocation of real-time price,
in which total energy cost for the customers is minimized.

Lemma 2. In the real-time pricing game with incomplete information, if the

marginal cost function Cg(θi, vg) =
∂C(θi,vg)
∂vg

is concave in vg and C(maxi∈N
θi, vg) < ∞, then the cost boundary function Φ(θ) is represented as Φ(θ) ≤ N ,
where N is the number of customer-agents in the game, with equality, if and
only if C(θi, vg) is linear in vg, and the customer-agents’ types (θi), i ∈ [1, N ],
are all the same.

Proof 2. Let (v∗i )Ni=1 = (ϕivi)
N
i=1 be the socially optimal allocation of real-time

price for a given type realization θ, and
∑N
i=1 ϕi = 1 and ϕi ≥ 0, ∀ i ∈ [1, N ].

Thus, the optimal cost for the customers is represented as follows:

C∗ =

N∑
i=1

∫ ϕivg

0

C(θi, vi)dvi (12)

Since the cost function C(θi, vi) is strictly convex in vi, the marginal cost C(θi, vi)
is positive for all vi > 0. On the contrary, since C(θi, vi) is concave in vi, it can
be shown that

∫ ϕivg
0

C(θi, vi)dvi ≥ ϕ2
i

∫ vg
0
C(θi, vi)dvi, where the equality holds if

and only if C(θi, vi) is linear in vi. Thus, we have

C∗ ≥
N∑
i=1

ϕ2
i

∫ vg

0

C(θi, vg)dvi (13)

Therefore,

Φ(θ) =

∫ vg
0
C(maxi∈N θi, vi)dvi∑N

i=1

∫ ϕivg
0

C(θi, vi)dvi

14



≤
∫ vg

0
C(maxi∈N θi, vi)dvi∑N

i=1 ϕ
2
i

∫ vg
0
C(θi, vi)dvi

≤
∫ vg

0
C(maxi∈N θi, vi)dvi∑N

i=1 ϕ
2
i

∫ vg
0
C(maxi∈N θi, vi)dvi

≤ 1∑N
i=1 ϕ

2
i

≤ N

4.4. Bayesian Nash Equilibrium

We now evaluate the Bayesian Nash Equilibrium in the game model accord-
ing to the formal equilibrium condition.

Definition 3. Bayesian Nash Equilibrium of the game is a set of strategies, S,
where S = {s1, s2, ..., sM}, satisfying two conditions as follows:

• For grid-agent, in every feasible strategy (Sg : Ãg → θg), the equilibrium
condition is given as:

Eθc{Ug(θg, g(Sg(θg),Sc(θc)))} ≥ Eθc{Ug(θg, g(S̃g(θg),Sc(θc)))} (14)

where E is the expected value.

• The equilibrium condition for customer-agents can be represented with the
possible strategies (Sc : Ãc → θc), as follows:

Eθg{Uc(θc, g(Sc(θc),Sg(θg)))} ≥ Eθg{Uc(θc, g(S̃c(θc),Sg(θg)))} (15)

Theorem 1. For Bayesian Nash Equilibrium, only mixed strategy is considered,
i.e., Player 1’s action is completely determined by his/her belief strategy about
the other players, where the belief strategy depends on the probability distribution
function Fi(θi).

Proof 3. Let us consider that there exists an equilibrium point in the Bayesian
game following pure strategy. Therefore, the equilibrium condition presented in
Equations (14) and (15) can be represented as follows:

Eθc{Ug(θg, g(Sg(θg),Sc(θc)))} > Eθc{Ug(θg, g(S̃g(θg),Sc(θc)))}

Eθg{Uc(θc, g(Sc(θc),Sg(θg)))} > Eθg{Uc(θc, g(S̃c(θc),Sg(θg)))}

However, an equilibrium point does not exist in pure strategy [35] in the Bayesian
game with incomplete information. Consequently, we consider mixed strategy of
the incomplete information game to have an equilibrium point of the game, and
is presented in Equations (14) and (15).
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Theorem 2. For the given strategy, S, and the distribution function, F , in the
incomplete information game, G, the Bayesian Nash Equilibrium exists iff for
all players, i,

Ci(θi, vi) = vixi(vi)−
∫ vi

0

xi(z)dz + Ci(θi, 0)

where, i ∈ {g, c} and vi ∈ {pt, ps}. ps is satisfactory price of the customers.

Proof 4. First, we fix vi, and recall from Equation (7) that Ui(vi, z) = vixi(z)−
Ci(θi, z). Let U ′i (vi, z) be the partial derivative of Ui(vi, z) with respect to z, i.e.,

U
′

i (vi, z) =
∂Ui(vi, z)

∂z

Thus, U ′i (vi, z) = vix
′

i(vi)−C
′

i(θi, vi), where x
′

i and C′i are the derivative of xi(·)
and Ci(·), respectively. The game implies that Ui(vi, z) is maximized at z = vi.
Thus, it follows that

U
′

i (vi, z) = vix
′

i(vi)− C
′

i(θi, vi) = 0

This formula must hold for all values of vi. By substituting z = vi, we get
zx
′

i(z) = C′i(θi, z) = 0. Solving for C′i(θi, z), and then integrating both sides of

the equality from 0 to vi, we have C′i(θi, z) = zx
′

i(z). Therefore,
∫ vi

0
C′i(θi, z)dz =∫ vi

0
zx
′

i(z)dz, which implies:

Ci(θi, vi)− Ci(θi, 0) = zxi(z)|vi0 −
∫ vi

0

xi(z)dz

= vixi(vi)−
∫ vi

0

xi(z)dz (16)

Adding Ci(θi, 0) on both sides of the equality, we conclude that the equilibrium
must hold.

4.5. ENTICE: The Proposed Scheme

In this section, we describe the algorithms comprising the proposed scheme,
ENTICE. We describe the algorithm for the grid-agent and the customer-agents
in Sections 1, and 2, respectively.

4.5.1. Algorithm for Grid-Agent

We show how the real-time price is decided by the grid in the presence of
packet loss in Algorithm 1. The grid-agent decides the real-time price (pt) to
maximize its utility, while taking the customers’ participation into account.
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Algorithm 1: Algorithm for grid-agent

Input: Total supply, Wt = (Wr,t +Wr̃,t), Total received demand, X ∗t ,
and cost for supply, {Wr,tcr,t +Wr̃,tcr̃,t}

Output: Real-time price, pt
Observe the state of the nature, i.e., whether it is on-peak hour, off-peak1

hour, or mid-peak hour;
Estimate the type of the demand, θg, where θg ∈ {Dh,Dm,Dl};2

Calculate the probability, pg, from Equation (6);3

Estimate the real-time demand, ξd, from Equation (8) according to pg;4

Take the action, Ag, according to the probability, pg, of the belief;5

Calculate real-time price, pt = αξ2
d + βξd + γ;6

Calculate the overall utility, Ug, according to Equation (10);7

4.5.2. Algorithm for Customer-Agent

The algorithm for customer-agent to consume the required energy is shown in
Algorithm 2. The customer consumes energy depending on the customer-agents
action, demanded energy (xi,t), and real-time price (pt).

Algorithm 2: Algorithm for customer-agent

Input: Required energy, xi,t, at time t
Output: Consume energy to fulfill the requirement, and maximize utility
Customer requests energy to the grid, xi,t, at time t;1

Receive the real-time price (pt) from the grid;2

Calculate the satisfactory price, ps, based on the real-time price, pt;3

if (pt ≤ ps) then4

Consume energy to maximize the pay-off;5

else6

Consume energy only for non-shiftable appliances;7

Wait with an waiting time, τ , until pt ≤ ps for shiftable appliances to8

minimize energy consumption cost;
Consume energy after the waiting time;9

Calculate the utility, Uc, according to Equation (11).10

5. Performance Evaluation

We simulated the proposed scheme in NS-3 (http://www.nsnam.org). In
Table 1, we show the different parameters used for simulation. We set the value
for predefined constants in Equation (9) as: α ≥ 0, β = 0, γ = 0. In this
work, the supply cost is considered as a constant value. However, the energy
supply cost can also be considered as an quadratic cost function similar to the
demand-cost with different values for the predefined constants α, β, and γ.
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Table 1: Simulation Parameters

Parameter Value
Number of grid 1
Number of customers 50, 100, 150, 200
Simulation area 2 km × 2 km
Demand of a customer 10-30 kWh
Energy supply 10-40 mWh
Packet loss rate 5-30 %
Cost for supply 5 Cents/kWh

5.1. Reasons for Selecting Simulation Parameters’ Values

As discussed in Section 3, we consider that a single grid provides energy
services to multiple customers. Additionally, different number of customers are
also used to show impact on the proposed scheme, ENTICE. For simplicity,
the simulation area is considered to be 2 km × 2 km. The demand of the
customers is chosen between 10 kWh to 30 kWh, according to U.S. Energy
Information Administration4. In [12], the authors considered the packet loss
rate from 0 to 20%. Similarly, we consider the packet loss rate from 5% to 30%.
We take the packet loss rate up to 30% to show the further effects on the energy
management in smart grid. The average cost for energy supply from different
sources is considered as 5 Cents/kWh (according to US DOE and the National
Renewable Energy Laboratory5).

5.2. Performance Metrics

1. Real-time Demand: The actual and estimated demand are calculated with-
out and with packet loss, respectively. The actual demand from all the
customers is represented as follows: Xt =

∑N
i=1 xi,t. The estimated de-

mand is calculated according to Equation (8). The demand with packet

loss is as follows: X ∗t =
∑N
i=1 x

∗
i,t.

2. Reliability of Energy Supply: The reliability of energy supply depends
on the estimated demand and actual demand from the customers. The
reliability of energy supply to the customers is represented as: Π =

X∗t
Xt
×

100%, where X ∗t and Xt denote the estimated and actual demand to the
grid, respectively.

3. Real-time Price: The grid calculates the real-time price, depending on the
received demand from all the customers, using Equation (9).

4. Utility of Grid: The utility of the grid is evaluated using Equation (10).
The utility of the grid is calculated with actual demand, received demand,
and estimated demand.

4http://www.eia.gov/electricity/sales_revenue_price/xls/table5_a.xls
5OpenEI Transparent Cost Database (http://en.openei.org/apps/TCDB/)
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5.3. Benchmark
The performance of ENTICE is evaluated by comparing it with other schemes

where the available information (with packet loss) is treated as complete infor-
mation. On the other hand, ENTICE evaluates real-time price based on the
probability of belief strategy of grid for the customers to counter the incomplete-
ness of the available information. The assumption of availability of complete
information for energy trading was made by the most of the previous authors
in [16], [7]. In [16], a game theoretic energy consumption scheduling scheme is
proposed. In the game model, customers’ schedule their appliances based on
the real-time information. A WSN-based home energy management scheme is
studied in [7]. In such an energy management scheme, sensors are deployed at
the customers’ end, and communicate with the smart meters. We take these
two literature as a benchmark to compare the proposed scheme, ENTICE, as
both of them discussed distributed energy management scheme using real-time
information. However, as mentioned before, both the literature deal with energy
management while ignoring packet loss in the communication network.

5.4. Results and Discussion
5.4.1. Real-time Demand

Figure 2 depicts the real-time energy demand of the customers to the grid for
three different cases — actual demand, received demand, and estimated demand.
We notice that using the proposed scheme, the estimated energy demand by
the grid closely matches the actual demand of the customers in the case of 10%
packet loss rate, as shown in the Figure. Figure 2 also shows that when the
packet loss rate increases to 20%, the difference between the actual demand and
the estimated demand increases. However, the estimation is better than that of
the received energy demand with packet loss in the communication network.
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Figure 2: Real-time demand of the customers

In another experiment, we varied the number of customers from 50-200 with
packet loss rate (ρ) of 10%, and the results are shown in Figure 3. ENTICE
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shows better performance than the schemes that do not consider information
loss.
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Figure 3: Demand with different customers (ρ = 10%)

5.4.2. Real-time Price

We evaluate the real-time price provided by the grid according to the energy
demand presented in Figure 2. For the packet loss rates of 10% and 20%, the
corresponding real-time price is shown in Figure 4. We see that the difference
between the actual price and the estimated price increases with an increase in
the packet loss rate. However, the rate of change of this difference is moderate.
On the other hand, we varied the number of customers from 50 − 200 with
packet loss rate (ρ) of 10%. The results for the corresponding real-time price
are shown in Figure 5.

5.4.3. Effect of Packet Loss

The total demand from the customers is evaluated with different packet
loss rates, and is shown in Figure 6. We observe that the proposed scheme
exhibits significant results for estimating demand with packet loss rate up to
15%. However, when the packet loss rate exceeds 15%, the estimation of demand
decreases in a moderate rate with an increase in the packet loss rate. In case of
the real-time price, the estimated price has similarities with the actual price for
packet loss rate up to 15%, as shown in Figure 7. Beyond this point, the value
of the estimated price decreases in a reasonable manner.

5.4.4. Reliability of Energy Supply

Due to the packet loss in the communication network, grid cannot estimate
adequate demand from the customers without considering the packet loss, as
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Figure 4: Real-time price decided by the grid
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shown in Figure 2. On the other hand, the proposed approach, ENTICE, esti-
mates adequate demand from the customers. Therefore, we show the reliability
of energy supply to the customers in Figure 8. We see that ENTICE increases
the reliability of energy supply to the customers than the other schemes, which
do not consider the packet loss in the communication network.

5.4.5. Utility of the Grid

We compute the utility of the grid for the proposed scheme with the actual
demand to the grid. Figure 9 shows that with high packet loss rates, such as 25%
and 30%, the utility of the grid is insignificant with the general communication-
based schemes for smart grid. In the proposed approach, the utility of the grid
remains high, and also it closely follows the actual energy demand with low
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packet loss rate. This implies that the grid maintains its profits by following
the proposed scheme. Additionally, we see that the utility of the grid increases
approximately 40% than that of the existing ones without considering the in-
complete information scenario.

6. Conclusion

In this paper, we proposed an intelligent agent-based approach for energy
trading in smart grid with incomplete information. The performance of a smart
grid is affected due to packet loss in the communication network. Therefore,
we analyzed the energy trading problem in smart grid as an incomplete infor-
mation game between the grid and the customers. We introduced grid-agent
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and customer-agents which are deployed at the service provider’s end and the
customers’ end, respectively, in order to take optimal decisions for cost-effective
energy management in the smart grid architecture in presence of information loss
in the communication networks. The grid-agent estimates the real-time energy
demand, depending on the probability of the belief strategy for the customers.
The simulation results illustrate that our proposed scheme has significant po-
tential to maximize the grid’s revenue, while ensuring customers’ participation.
On an average, the utility of the grid increases approximately 40% with the
estimated demand than that of the received demand with packet loss.

The future extension of this work includes the improvement of demand es-
timation, and designing an optimal network with this incomplete information
scheme, where the packet loss rate can be minimized to have cost-effective and
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reliable energy service in the smart grid.

References

[1] S. Meiling, T. Steinbach, T. C. Schmidt, M. Wahlisch, A scalable com-
munication infrastructure for smart grid applications using multicast over
public networks, in: Proceedings of the 28th Annual ACM Symposium on
Applied Computing, 2013, pp. 690–694.

[2] L. Zhou, J. J. P. C. Rodrigues, Service-oriented middleware for smart grid:
Principle, infrastructure, and application, IEEE Communications Magazine
51 (1) (2013) 84–89.

[3] V. C. Gungor, B. Lu, G. P. Hancke, Opportunities and Challenges of Wire-
less Sensor Networks in Smart Grid, IEEE Transactions on Industrial Elec-
tronics 57 (10) (2010) 3557–3564.

[4] S. Karnouskos, P. G. D. Silva, D. Ilic, Assessment of high-performance
smart metering for the web service enabled smart grid, in: Proceedings of
the 2nd ACM/SPEC International Conference on Performance engineering,
2011, pp. 133–144.

[5] O. Asad, M. Erol-Kantarci, H. T. Mouftah, A Survey of Sensor Web Ser-
vices for the Smart Grid, Journal of Sensor and Actuator Networks 2 (1)
(2013) 98–108.

[6] J. Lloret, M. Gilg, M. Garcia, P. Lorenz, A Group-Based Protocol for
Improving Energy Distribution in Smart Grids, in: Proceedings of IEEE
International Conference on Communication, 2011, pp. 1–6.

[7] M. Erol-Kantarci, H. T. Mouftah, Wireless Sensor Networks for Cost-
Efficient Residential Energy Management in the Smart Grid, IEEE Trans-
actions on Smart Grid 2 (2) (2011) 314–325.

[8] A. Baadache, A. Belmehdi, Fighting against packet dropping misbehavior
in multi-hop wireless ad hoc networks, Journal of Network and Computer
Applications 35 (3) (2012) 1130–1139.

[9] S. Zare, A. G. Rahbar, An FEC scheme combined with weighted scheduling
to reduce multicast packet loss in IPTV over PON, Journal of Network and
Computer Applications 35 (1) (2012) 459–468.

[10] H. B. Salameh, O. S. Badarneh, Opportunistic medium access control for
maximizing packet delivery rate in dynamic access networks, Journal of
Network and Computer Applications 36 (1) (2013) 523–532.

[11] J.-C. Bolot, End-to-end packet delay and loss behavior in the internet, in:
Proceedings of ACM SIGCOMM, Vol. 23, 1993, pp. 289–298.

24



[12] D. Niyato, P. Wang, Z. Han, E. Hossain, Impact of packet loss on power
demand estimation and power supply cost in smart grid, in: Proceedings
of IEEE Wireless Communications and Networking Conference (WCNC),
Cancun, 2011, pp. 2024–2029.

[13] H. Rose, A. Rogers, E. H. Gerding, A scoring rule-based mechanism for
aggregate demand prediction in the smart grid, in: Proc. of the 11th In-
ternational Conference on Autonomous Agents and Multiagent Systems,
Vol. 2, Richland, SC, 2012, pp. 661–668.

[14] G. Srinivasa Prasanna, A. Lakshmi, S. Sumanth, V. Simha, J. Bapat,
G. Koomullil, Data communication over the smart grid, in: Proceedings
of IEEE International Symposium on Power Line Communications and Its
Applications (ISPLC), Dresden, 2009, pp. 273–279.

[15] M. Erol-Kantarci, H. T. Mouftah, TOU-Aware Energy Management and
Wireless Sensor Networks for Reducing Peak Load in Smart Grids, in:
Proceedings of IEEE 72nd Conference on Vehicular Technology (VTC 2010
- Fall), Ottawa, ON, 2010, pp. 1–5.

[16] A.-H. Mohsenian-Rad, V. Wong, J. Jatskevich, R. Schober, A. Leon-Garcia,
Autonomous Demand-Side Management Based on Game-Theoretic Energy
Consumption Scheduling for the Future Smart Grid, IEEE Transactions on
Smart Grid 1 (3) (2010) 320–331.

[17] V. Aravinthan, B. Karimi, V. Namboodiri, W. Jewell, Wireless commu-
nication for smart grid applications at distribution level Feasibility and
requirements, in: Proceedings of IEEE Power and Energy Society General
Meeting, San Diego, CA, 2011, pp. 1–8.

[18] L. Zhou, J. J. P. C. Rodrigues, L. M. L. Oliveira, QoE-driven power schedul-
ing in smart grid: architecture, strategy, and methodology, IEEE Commu-
nications Magazine 50 (5) (2012) 136–141.

[19] M. H. U. Ahmed, M. G. R. Alam, R. Kamal, C. S. Hong, S. Lee, Smart Grid
Cooperative Communication with Smart Relay, Journal of Communication
and Networks 14 (6) (2012) 640–652.

[20] D. Niyato, P. Wang, Cooperative transmission for meter data collection in
smart grid, IEEE Communications Magazine 50 (4) (2012) 90–97.

[21] S. Misra, A. Mondal, S. Banik, M. Khatua, S. Bera, M. S. Obaidat, Residen-
tial Energy Management in Smart Grid: A Markov Decision Process-Based
Approach, in: Proceedings of IEEE Internet of Things (iThings/CPSCom),
Beijing, 2013, pp. 1152–1157.

[22] C. Wei, Z. Fadlullah, N. Kato, A. Takeuchi, GT-CFS: A Game Theoretic
Coalition Formulation Strategy for Reducing Power Loss in Micro Grids,
IEEE Transactions on Parallel and Distributed Systems 25 (9) (2014) 2307–
2317. doi:10.1109/TPDS.2013.178.

25

http://dx.doi.org/10.1109/TPDS.2013.178


[23] E. Ancillotti, R. Bruno, M. Conti, The role of communication systems
in smart grids: Architectures, technical solutions and research challenges,
Computer Communications 36 (17–18) (2013) 1665–1697.

[24] M. Ahat, S. B. Amor, M. Bui, Agent based model of smart grids for ecodis-
tricts, in: Proceedings of the 4th Symposium on Information and Commu-
nication Technology, 2013, pp. 45–52.

[25] F. Salvadori, C. S. Gehrke, A. C. De Oliveira, M. De Campos, P. S. Sausen,
Smart Grid Infrastructure Using a Hybrid Network Architecture, IEEE
Transactions on Smart Grid 4 (3) (2013) 1630–1639.

[26] K. Katsaros, W. Chai, N. Wang, G. Pavlou, H. Bontius, M. Paolone,
Information-centric networking for machine-to-machine data delivery: a
case study in smart grid applications, IEEE Network 28 (3) (2014) 58–64.

[27] H. M. Soliman, A. Leon-Garcia, Game-Theoretic Demand-Side Manage-
ment With Storage Devices for the Future Smart Grid, IEEE Transactions
on Smart Grid 5 (3) (2014) 1475–1485.

[28] S. Misra, P. V. Krishna, V. Saritha, H. Agarwal, A. Ahuja, Learning
automata-based multi-constrained fault-tolerance approach for effective en-
ergy management in smart grid communication network, Journal of Net-
work and Computer Applications 44 (2014) 212–219.

[29] L. Zhuo, W. Wang, C. Wang, Camouflage Traffic: Minimizing Message
Delay for Smart Grid Applications under Jamming, IEEE Transactions on
Dependable and Secure Computing 12 (1) (2014) 31–44.

[30] S. Bera, S. Misra, M. S. Obaidat, Energy-efficient smart metering for green
smart grid communication, in: IEEE GLOBECOM, Austin, TX, 2014, pp.
2466–2471.

[31] S. Misra, S. Bera, M. S. Obaidat, Economics of customer’s decisions in
smart grid, IET Networks 4 (1) (2015) 37–43.

[32] S. Misra, S. Bera, T. Ojha, D2P: Distributed Dynamic Pricing Policy in
Smart Grid for PHEVs Management, IEEE Transactions on Parallel and
Distributed Systems 26 (3) (2015) 702–712.

[33] S. Bera, P. Gupta, S. Misra, D2S: Dynamic Demand Scheduling in Smart
Grid Using Optimal Portfolio Selection Strategy, IEEE Transactions on
Smart Grid.

[34] M. Parvania, M. Fotuhi-Firuzabad, M. Shahidehpour, Optimal Demand
Response Aggregation in Wholesale Electricity Markets, IEEE Transac-
tions on Smart Grid 4 (4) (2013) 1957–1965.

[35] J. C. Harsanyi, Games with Incomplete Information Played by ”Bayesian”
Players, I-III. Part I. The Basic Model, Journal on Management Science,
Theory Series 14 (3) (1967) 159–182.

26



[36] S. Zeadally, A.-S. K. Pathan, C. Alcaraz, M. Badra, Towards Privacy Pro-
tection in Smart Grid, Wireless Personal Communication 73 (1) (2013)
23–50.

[37] Z. Han, D. Niyato, W. Saad, T. Basar, A. Hjrungnes, Game Theory for
Wireless Communications and Networking, Cambridge University Press,
2012, ISBN-13: 978-0521196963.

27


	Introduction
	Motivation
	Contribution
	Organization

	Related Works
	System Model
	Role of Customer and Grid Agents
	Energy Consumption Profile
	Pricing Policy Based on Information
	Impact of Packet Loss
	Use of Bayesian Game Theory

	Solution Approach
	Game Formulation
	Real-time Pricing with Complete Information
	Real-time Pricing with Incomplete Information
	Bayesian Nash Equilibrium
	ENTICE: The Proposed Scheme
	Algorithm for Grid-Agent
	Algorithm for Customer-Agent


	Performance Evaluation
	Reasons for Selecting Simulation Parameters' Values
	Performance Metrics
	Benchmark
	Results and Discussion
	Real-time Demand
	Real-time Price
	Effect of Packet Loss
	Reliability of Energy Supply
	Utility of the Grid


	Conclusion

