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Abstract

This work addresses the problem of Quality of Service (QoS) aware sensor
allocation for target tracking in a sensor-cloud environment. In a sensor-
cloud environment, whenever a target enters within a sensor deployed zone,
physical sensor nodes are dynamically scheduled and allocated for the corre-
sponding target. In this work, specifically, we address the issue of selection
of an optimal set of sensors to track a particular target. However, in sensor-
cloud the underlying physical sensor nodes are heterogeneous with respect
to their owner, their sensing ability, transmission range, and the unit cost
of usability. Considering the heterogeneity of the nodes, we propose the
QoS-aware Sensor Allocation Algorithm (Q-SAA) that takes into account an
assortment of parameters that determine QoS. Thereafter, using an auction-
based mechanism we find the optimal solution for allocation of a subset of
available sensors to achieve efficient target tracking. Experimental results on
implementation of our solution show that in comparison with the considered
benchmark, the proposed scheme schedules approximately 20-30 % less num-
ber of sensors for target tracking applications and still achieves the desired
QoS while tracking the target.

Keywords:
Wireless Sensor Network (WSN), Cloud Computing, Target tracking,
Quality of Service, Auction theory

Preprint submitted to Ad Hoc Networks April 17, 2015

ayan
For Personal Use Only



1. Introduction

Recent research has perceived sensor-cloud infrastructure as a potential
substitute of the traditional Wireless Sensor Networks (WSNs) [5, 17, 28].
Although sensor-cloud has been conceptualized and envisioned to mitigate
the limitations of conventional WSNs, there is still a scarcity of research to
support it from an implementation point of view. This work addresses an
application specific issue within sensor-cloud.

The emergence of WSN has spawned huge enhancement in the field of
research. However, such WSNs are single-user centric, and end-users who do
not own sensors are unable to have access to any WSN-specific application.
Also, the sensor nodes are constrained by many issues and challenges with
respect to computation power, memory, and communication range. To mit-
igate the aforesaid issues, sensor-cloud infrastructure has been perceived as
a potential replacement of the traditional WSNs [5, 17, 28]. As defined by
MicroStrains, who is considered to be one of the pioneers in sensor-cloud,
sensor-cloud infrastructure can be introduced as “A unique sensor data stor-
age, visualization and remote management platform that leverages powerful
cloud computing technologies to provide excellent data scalability, rapid vi-
sualization, and user programmable analysis” [5]. Sensor-cloud thrives on
the principle of virtualization of physical sensor nodes and rendering them
as an on-demand easily obtainable service, Sensors-as-a-Service (Se-aaS ).
To obtain Se-aaS, end-users are required to send their application demand to
sensor-cloud, which in turn, schedules and allocates a set of physical sensor
nodes to serve the application [28].

In this work, we focus on an application specific scheduling and allocation
of physical sensor nodes to serve a target tracking application within sensor-
cloud infrastructure [10]. The requirement of sensors in a target tracking
application depends on the movement of the target. In such a scenario, there
exists a cloud service provider having a number of sensors owned by differ-
ent sensor owners [9]. Services of these sensors are managed by cloud con-
troller/administrator to meet the dynamic demands of the end users. Conse-
quently, the end-users can dynamically demand and obtain Se-aaS. Different
allocated sets of sensors forming a virtual sensor group within the cloud are
used by the users for their disparate application. In such a framework, the
end-users are unaware of the exact physical location of the sensors.
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1.1. Motivation

In a conventional target tracking application, every user-organization that
wants to track a target has to deploy its own WSN. Consequently, for tracking
within the same zone, multiple users need to deploy separate WSNs on behalf
of one another. Also, there is no sharing of data leading to duplicity of effort
and resources. Sensors of a WSN are entirely application-specific. Users
of a WSN are always concerned about the issues connected with network
deployment, and the actual physical location of the sensors. Moreover, as
sensor nodes are highly resource-constrained, users of a WSN have to survive
with different network overheads on their own. Further, WSN services are
not accessible to end-users who do not own the deployed sensors.

In target tracking within sensor-cloud, the sensors are reused for the sens-
ing ability, whereas the tracking applications are executed at the used end.
Based on application demand, physical sensor nodes are allocated to serve a
particular tracking application. In such a scenario, it is to be taken into con-
sideration at the cloud end that an end-user is provisioned with an optimal
set of sensor nodes that ensure the Quality of Service (QoS) at a reasonably
payable cost.

1.2. Contribution

This work focuses to address the problem of QoS-aware sensor allocation
for target tracking in a sensor-cloud platform. The contributions of the work
are multifold and are discussed as follows.

• Initially, the work models few parameters in terms of availability of
sensor nodes, accuracy of sensor nodes, dwelling time of a target within
a sensor coverage, and the detection probability of a particular set of
sensors, that are explicit to a target tracking application.

• The QoS-aware Sensor Allocation Algorithm (Q-SAA) is proposed, in
which the “best” suited sensors are allocated to a target, based on
certain parameters that quantify QoS in regards availability, accuracy,
dwelling time, detection probability. The sensors are abstracted as a
virtual group and data from them are delivered to the end-user through
the sensor-cloud infrastructure.

• As sensor-cloud follows a pay-per-use model, in which an end-user pays
only for the resources consumed by him, the cost incurred due to avail-
ing a set of physical sensor nodes is mathematically formulated. The
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incurred cost is modeled by the provisioned QoS of the particular sensor
set.

• The work formulates a direct revelation based auction mechanism in
which the members of the maximal set of sensor nodes place a bid
based on the provisioned QoS. The end-user acts as an auctioneer and
chooses the subset of sensors that optimizes his/her cost and ensures a
threshold QoS, simultaneously.

Apart from the the design issues of Q-SAA, the work also analyses the
real-time computing ability of the algorithm, thereby inferring to implement
Q-SAA in areal-world application scenario.

1.2.1. Contribution of Auction Theory

As mentioned earlier, the proposed algorithm Q-SAA is based on the
direct revelation mechanism of auction theory. The basic motivation be-
hind implementation of auction theory in this work is that an end-user of
sensor-cloud may not be aware of the potential price that s/he has to pay
for obtaining Se-aaS. The end-user expects to enjoy a threshold QoS at a
reasonable price. In this work, the theory of auction enables the end-user
to play the dominant role of the auctioneer. This allows the end-user to se-
lect an optimal subset of sensors that provision Se-aaS with QoS within the
payable limits.

As the sensor nodes behave as the bidders of the system, every node
tends to be within the selected subset in order to obtain an incentive (in
terms of money that the end-user has to pay to the cloud service provider)
on behalf of the sensor-owner. The overall scenario is conceptualized as an
incomplete-information game which has a point of equilibrium, or in other
words, can be stated as the revelation principle of auction theory. The control
and negotiation of the pricing of the allocated physical sensors is explicitly
managed through the auction mechanism.

1.3. Organization of the paper

Our work is organized as follows. In Section 2, we briefly elaborate the
related work on sensor-cloud. Section 3 describes the problem statement and
mathematical model of the system. In Section 4 we formulate an auction-
based mechanism for the selection of an optimal set of sensors. Section 5
presents the results of simulation, and highlights the economics behind using
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a sensor-cloud platform vis-a-vis a privately owned WSN for target tracking.
Section 6 concludes the work with directions for future work.

2. Related Work

The ideology and dogma of sensor-cloud was proposed by Yuriyama and
Kushida [28] in which the virtualization of physical sensors was proposed.
Yuriyama et al. also propounded the model of sensor-cloud for accelerating
the service innovation [29]. The work was further extended by Madria et
al. [17] in which the different mapping configurations for virtualization was
proposed. While most of these works focused on the conceptualization of
sensor-cloud, very few work addressed the technical challenges from the im-
plementation point of view. Misra et al. [19] theoretically characterized the
aspects of virtualization and justified for a paradigm shift from conventional
WSNs through their experimental results. In a very recent work, Chatter-
jee and Misra [10] explored the issues of target tracking within sensor-cloud
and conceptualized the architecture for the virtualization of sensors serving
a target tracking application.

Target tracking in WSNs are quite common and explored. A good num-
ber of research works [12, 8] have thoroughly investigated target tracking
and the performance issues associated with it. Some of the works focused
on target localization policies. In [24], Wang et al. addressed the problem of
posterior target location distribution from the knowledge of the sensor net-
work, thereby maintaining the accuracy in estimation. In [23], the authors
have employed a general state evolution model to define the dynamics of the
target. The work obtains a reduction in the consumption of resources as well
as the precision in localization. Few works [13, 3] have focused on the is-
sues of energy efficiency within sensor networks. A good number of research
works also focuses on the aspect of sensor scheduling. Maheswararajah et
al. [18] proposed a sensor scheduling algorithm (for tracking targets) that
minimizes measurement error and sensor usage. In another work, Huber [14]
propounded a pruning based sensor scheduling. However, the work schedules
a single sensor node at a particular time to reduce the measurement error.
The mentioned works on sensor scheduling find their applicability within
traditional WSNs. However, the proposed work focuses on a sensor-cloud
environment in which the underlying sensor network is subjected to dynamic
allocation policies following the Service Level Agreement (SLA). In some
cloud-based works [16, 11], the authors proposed a scheduling within WSNs
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to optimize the tracking accuracy with the sensor usage. Few works [31, 30]
have addressed the implementation of blind scheduling algorithms for mul-
timedia cloud service providers. The works are independent of the demand
of the cloud service providers. In [30], the authors focused on scheduling
appropriate service providers, whereas our work focuses on the selection of
physical sensor nodes. The former is based on a post packet-transmission
scenario, whereas the our work concerns the relevant tracking issues (avail-
ability of sensors, detection probability of sensors, accuracy of detection,
and dwelling time of a target within a sensors coverage) that arises while
tracking a mobile target. However, from the perspective of physical sensor
scheduling for moving targets, it is necessary to have the knowledge of the
availability, accuracy, and the coordinates of the underlying sensors. In [31],
the authors of this work have proposed a Blind Online Multimedia Schedul-
ing algorithm (BOSA). The architecture proposed in this work focuses on
task division and virtualization aspects within the cloud environment. How-
ever, our architecture considers the communication between physical sensor
networks and sensor-cloud. In such environment, as targets enter within a
sensor deployed zone, multiple sensor nodes in the vicinity of the target are
allocated to serve the target. The data from the set of allocated sensors are
reported to the cloud end, which in turn, transmit the data to the end-users.
The proposed architecture focuses on a QoS aware sensor allocation while
tracking a target in a sensor-cloud environment.

In this work, we propose a sensor scheduling and allocation algorithm to
be executed within the sensor-cloud environment for serving a mobile tar-
get. The work ensures to provide a threshold QoS by scheduling an optimal
number of physical sensors. However, for an optimal allocation of nodes, the
proposed algorithm Q-SAA, utilizes the benefits of auction theory. There
exists lot of literature on application of auction theory for the selection of
required resources keeping in mind the usefulness and limitations of certain
parameters and finding an optimal solution to the addressed problem [20],
[27], [6]. After successful allocation of sensor nodes to targets, the work
considers the execution of a standard tracking algorithm, Probability-based
Target Prediction and Sleep Scheduling Protocol (PPSS ) [15]. It is to be
noted here that, the work explicitly focuses of sensor scheduling and alloca-
tion prior to tracking a target. The results of Q-SAA are fed to PPSS for
comparison and analysis.
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3. System Model

In this work, we consider a scenario where a number of sensors from dif-
ferent sensor service providers are available in a given area. These sensors
are used to provide services to the end users through the sensor-cloud infras-
tructure. We consider that the service of target tracking is being provided
by the sensor-cloud and a user wants to track a target using this sensor cloud
infrastructure. The overall layered architecture is shown in Fig. 1(a) and for
the sake of convenience the notational details are illustrated through Table
1. In this case, we consider the problem of selection of an optimal set of sen-
sors from the available set in the sensor-cloud infrastructure for tracking a
single target moving in a two-dimensional field covered by sensors deployed
by different owners and form part of sensor-cloud, as shown in Fig. 1(b).
When the target moves through the monitored area, it is under the coverage
of multiple sensors. The cloud service provider allocates an optimal number
of sensors from the set of sensors covering that target. While doing so, we
aim to meet the QoS requirements of the user who wants to run his target
tracking application through the sensor-cloud. For allocation of the sensors,
we consider the following QoS parameters:

• Availability of the sensors

• Detection probability of the sensors

• Accuracy of detected location

• Dwelling time of a target in a sensor’s sensing range

The QoS parameters chosen relate very closely to the target tracking
application. The availability of sensors is required for any application and
sensors should sustain for the time it is required to provide service. The
accuracy in locating a target’s position and the probability of detection form
crucial factors for achieving higher efficiency in target tracking. The more
time a sensor is available for tracking a target, the more beneficial it is to
employ that sensor for the application. Each sensor tries to get selected by
the cloud service provider to provide the service of tracking so that it can
maximize its payoffs.

Initially, the target is required to be detected by ni sensors (where ni ≥ 3)
at time t. The position of the target can be determined by finding the point
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Table 1: Table of Notation

Parameters Values

(x, y) Coordinates of target
(xi, yi) Coordinates of sensor node si
ri Distance of target from si
Nt Maximal subset of N sensor nodes of a particular target
nt Optimal subset of sensor nodes of a particular target
Psp Probability of detection
Pn Cumulative probability of detection by n sensors
P (λj|(x, y)) Conditional probability of noise, given (x, y)
Pacc Probability of accuracy in detection
τk Dwelling time of sk
β Available time for a sensor
bi Bid of si
wij Weight associated with jth QoS parameter of si
kij Price associated with jth QoS parameter of si
hi Value estimate by si
pi() Probability of servicing a target by si
Ui() Utility of si
U0() Utility of auctioneer
Qthreshold Measure of QoS to be provided to the end-user

(a) Layered view (b) Network view

Figure 1: Application specific architecture for target tracking in sensor cloud

of intersection of at least three circles formed by taking the distance between
the sensors and target as the radius with center at the sensor location.

(x− x1)2 + (y − y1)2 = r21 (1)

(x− x2)2 + (y − y2)2 = r22 (2)
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(x− x3)2 + (y − y3)2 = r23 (3)

In Equations (1), (2), and (3), (x1, y1), (x2, y2) and (x3, y3) denote the co-
ordinates of the sensors s1, s2, and s3, respectively, and r1, r2, and r3 are
the distances of the target from the sensors s1, s2, and s3, respectively. On
solving these equations, we get the coordinates (x, y) of the detected target
position at time t, as given below:

x =
(y1 − y2)Xx − (y1 − y3)Xy

2((x1 − x3)(y1 − y2)− (x1 − x2)(y1 − y3))
(4)

y =
(x1 − x2)Xx − (x1 − x3)Xy

2((x1 − x2)(y1 − y3)− (x1 − x3)(y1 − y2))
(5)

where, Xx = (x21−x23)+(y21−y23)+(r23− r21) and Xy = (x21−x22)+(y21−y22)+
(r22 − r21). After the target is detected, it is needed to find a set of sensors
Nt, at time t, such that,

(x− xj)2 + (y − yj)2 < R2
maxj

(6)

where (x, y) and (xj, yj) are the coordinates of the detected target position
and the known location of the jth sensor respectively, and Rmaxi is the max-
imum sensing radius of the jth sensor. Thus, we have, Nt = {s1, s2......sN}.

Once the target is detected, it is required to find the next predicted loca-
tion, so that Nt+1 can be determined at time instant t+1. it is assumed that
the present and past positions of the target are known. Let the present loca-
tion of the target be denoted by (xi, yi) at a given time ti, and the previous
location of the target be represented by (xi−1, yi−1) at a given time ti−1. let
the next actual location of the target be represented by (xi+1, yi+1) at time
t+ 1. The speed v of the target is computed as:

v =

√
(xi − xi−1)2 + (yi − yi−1)2

ti − ti−1
(7)

The direction of motion θ is computed as:

θ = cos−1
xi − xi−1√

(xi − xi−1)2 + (yi − yi−1)2
(8)

Therefore, the predicted location of the target at point (x′i+1, y
′
i+1) is given

as follows:

x′i+1 = xi + vt cos θ

y′i+1 = yi + vt sin θ
(9)
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It is assumed that the prediction of the next location (x′i+1, y
′
i+1) obeys a

two-dimensional standard Gaussian distribution [7] with 0 mean and unit
standard deviation. The deviation of the actual trajectory of the target from
its predicted path also needs to be considered. Therefore, Equation (9) be-
comes:

x′i+1 = xi + vt cos θ ±4x
y′i+1 = yi + vt sin θ ±4y

(10)

It can be clarified that to ensure accuracy in the process of prediction, we
follow a two-dimensional standard Gaussian distribution. The authors of the
work [7] have clearly discussed how a two-dimensional standard Gaussian
distribution helps to preserve the accuracy in prediction. This motivated us
to incorporate such a distribution while predicting the next location of the
target.

At this predicted location (x′i+1, y
′
i+1), it is necessary to determine the Nt

sensors, which are part of sensor-cloud, and can form virtual sensor group for
target tracking. After identification of Nt, the proposed algorithm, Q-SAA,
endeavors to identify an optimal set of sensors nt, where nt ⊆ Nt, which can
be utilized to execute the task of target tracking efficiently. This optimal set
of sensors nt is identified on the basis of the metrics listed in the following
subsections.

3.1. Probability of Detection

An important parameter for determining the QoS of a sensor in a target
tracking application is the probability of detection. Probability of detection
is modeled by Aitsaadi et al. in [4]. Once a target is in a sensor node’s sensing
radius, it must be detected by it for efficient tracking. We consider a prob-
abilistic detection model, in which we assume that the detection ability of
the sensor increases with the reduction in its distance from the target. There
are two sensing ranges defined, R1 is the range within which the detection
probability is considered to be maximum (or equal to 1), and thereafter, it
starts decreasing. Finally, it becomes zero after reaching the maximum sens-
ing range Rmax. The detection probability depends on the distance between
the sensor location and the target.

Definition 3.1. If sp is the Euclidean distance between a sensor point s and
a predicted target location p, and a and b are the constants related to sensor
characteristics, then the probability of detection, Psp, for a particular s and
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p is defined is a function of the Euclidean distance between the point s and
p [4]. Thus,

Psp =


1 0 ≤ sp ≤ R1

a
spb

R1 < sp ≤ Rmax

0 Rmax < sp

(11)

where R1 is the range of the sensor in which the detection probability is 1.
Beyond range Rmax, the detection probability drops to zero.

When an area is sensed by a number of sensors, it is required to calculate
the cumulative effect of those sensors for the detection of target. Therefore,
the overall detection probability of all the sensor nodes that form part of Nt

is defined as:

Pn = 1−
Nt∏
j=0

(1− Psjp) (12)

3.2. Accuracy

Each sensor, on sensing the target, has some amount of error in observa-
tion. An error measurement model for WSN is given in [25]. Most Extended
Kalman Filter (EKF) algorithms consider additive noise only, thereby lead-
ing to unstable tracking performances. Such filters are applicable generally to
static targets served by a fixed set of sensor nodes. However, in our work we
have considered a mobile target and a sensor-cloud environment the target is
served by a set of sensors that are dynamically scheduled and allocated. In
[25], the problem of non-linearity has been addressed and the work considers
both additive and multiplicative noise. The actual distance between sensor
j and the target is given as rj, where:

rj =
√

(x− xj)2 + (y − yj)2 (13)

In Equation (13), (xj, yj) are the coordinates of the location of the jth sensor,
and (x, y) are the coordinates of the actual position of the target. Let λj be
the distance actually measured by the jth sensor at time t. The measurement
model uses additive and multiplicative noises, and is represented as given
below [25].

λj = (1 + κj)rj + πj = rj + uj (14)
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where πj and κj are the additive and multiplicative Gaussian noises of sensor
j. The conditional probability density function for λj, given (x, y), is given
as follows

p(λj|(x, y)) =
1√

2πσ2
j

e
−

(λj−rj−µj)
2

2σ2
j =

1√
2πσ2

j

e
−

(rj−(λj−µj))
2

2σ2
j (15)

The above equation can be utilized to find the probability of error in the
process of sensing by sensor node j.

Definition 3.2. The probability of accuracy of a sensor sj is denoted by
Pacc and is defined as the probability that there is no sensing error in esti-
mating the distance of the target positioned at (x, y). Pacc is mathematically
expressed as follows:

Pacc = 1− p(λj|(x, y)) (16)

3.3. Dwelling Time

The parameter, dwelling time measures the time a target is likely to
remain in an area covered by the sensing range of the node. This parameter
enables the prediction of the time a sensor node has to serve the target after
it is selected.

Definition 3.3. The dwelling time τk for a target at a predicted position
(x′i+1, y

′
i+1) with respect to a sensor sk at position (xk, yk) is defined as the

time the target takes to traverse a path formed by extending a straight
line joining the present location (xi, yi) and the next predicted position
(x′i+1, y

′
i+1) to the point where it intersects the sensing circle of sensor sk

in the direction of motion.

Theorem 3.1. The dwelling time τk with respect to a sensor sk is given by:

τk =

√
(x′i+1 − x)2 + (y′i+1 − y)2

v
(17)

Proof. Fig. 2 shows the next predicted position (x′i+1, y
′
i+1) found with the

help of the present position (xi, yi) and previous positions (xi−1, yi−1). We
assume a straight line motion for the target on the line connecting the co-
ordinates (xi, yi) and (x′i+1, y

′
i+1) and extended to intersect the periphery of
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Figure 2: Calculation of dwelling time

the sensing circle at point (x, y). The line joining (x′i+1, y
′
i+1) and (x, y) gives

the distance a target covers in the sensing area of sensor sk. The equation of
the sensing circle of the kth sensor is given by:

(x− xk)2 + (y − yk)2 = r2k (18)

The equation of the line joining the present (x, y) and predicted locations
(x′i+1, y

′
i+1) are given by:

y − y′i+1

x− x′i+1

=
vt cos θ +4x
vt sin θ +4y

(19)

Solving the above, we get,

y = (x− x′i+1)
vt cos θ +4x
vt sin θ +4y

+ yi+1 (20)

x = (y − y′i+1)
vt sin θ +4y
vt cos θ +4x

+ xi+1 (21)

Putting the value of y in Equation (21) to Equation (18), we get

(1 +4p2)x2 − 2x(xk + x′i+14p2 +4pyk)+
x2k + y2k + x

′2
i+14p2 + 2x′x+1yk4p− r2 = 0

(22)
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where 4p = vt cos θ+4x
vt sin θ+4y + y′i+1. The above equation is of the quadratic form

and can be solved to get the value of coordinates x where the predicted path
intersects with the circle on x−axis.Similarly we get the values of y where the
predicted path intersects with the circle on y−axis. Therefore, the distance
d the target travels on the predicted path with the sensing circle of sensor sk
is given by:

d =
√

(x′i+1 − x)2 + (y′i+1 − y)2 (23)

Hence, the dwelling time τk for a target in the sensing range of sensor sk is
formulated as given below

τk =

√
(x′i+1 − x)2 + (y′i+1 − y)2

v
(24)

This concludes the proof.

3.4. Availability of Sensor

The availability of the sensor is calculated on the basis of the residual
energy in the sensor.

Definition 3.4. If ψ is the battery consumption rate for transmitting, re-
ceiving, and sensing combined together, a sensor sk is said to be available
to sense a target at the next predicted position (x′i+1, y

′
i+1), if it has residual

energy Er, which is sufficient to sense the target without interruption for the
dwelling time τk.

β =
Er
ψ

(25)

where β is the time for which the sensor is available, and Er is the residual
energy of the sensor node.

Therefore, for a sensor sk to be available for sensing the target through-
out the time it is in its sensing area, the condition βk > τk must be satisfied.
The sensor nodes which do not meet this criteria are eliminated from the
previously selected set of sensors Nt. It can be clarified that from the im-
plementation perspective, before the execution of Q-SAA, we assume every
node to possess 100% battery level. For each operation (sensing, communi-
cation, or computation), the node is assumed to consume variable amount
of energy which are considered to be the standard values for sensing (10
nJ/event), communication (20 nJ/bit), or computation (7 nJ/bit). Based on
the battery consumption rate, the availability of a sensor is calculated.
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4. Auction-based selection of sensors

We formulate an auction-based mechanism for allocation of sensors, i.e.,
allocating nt sensors such that nt ⊂ Nt, using the QoS parameters discussed
in Section III. The aim for this auction is to ensure a balance between achiev-
able or desired QoS and the cost incurred by the user. An auction is based
on buying and selling of products on the basis of bids proposed by potential
bidders. This work is based on the direct revelation auction mechanism [20].

In the auction mechanism, user C is the auctioneer and there are Nt =
{1, 2, 3, ....n} sensors as the bidders in the auction. Nt sensors place their
bids, bi, on the basis of the evaluation of cost they would incur for providing
the service, as follows:

bi = wi1ki1Pspi + wi2ki2Pacci + wi3ki3τi (26)

where wij and kij are the weights and prices associated with every QoS pa-
rameter, respectively. Pspi , Pacci and τi are the values of probability of detec-
tion, probability of accuracy and the dwelling time of a sensor i, respectively.
Let hi be the value estimate of the bidder i, which he/she is going to reveal
to all the other bidders. A continuous probability distribution over a finite
interval gives the users an estimate of bidder i. Let φi represent the possible
range of values which i might assign to the object. φ for a particular bidder
can be estimated by knowing the previous value ranges in the previous auc-
tions. Let the set of all possible combinations of bidders values estimates be
denoted by H. We have

H = [φ1]× [φ2]× ...× [φn] (27)

To find all possible assessment values by all the bidders except i, we remove
the ith estimate from H to get H−i.

H−i = [φ1]× [φ2]× ...[φi−1]× [φi+1]× ...× [φn] (28)

The joint density function on H for the vector h = (h1, ..., hn) of individual
value estimates is:

f(h) =
1√

2πσ2
j

e
−

(h−µj)
2

2σ2
j (29)

Bidder i’s his value estimate is a known quantity. Both the user and the bid-
der i assess the joint density function on Hi for the vector h−i = (h1, ., hi−1,
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hi+1, ..., hn) of values for all bidders other than i to be as follows:

f−i(h−i) =
1√

2πσ2
j

e
−

(h−i−µj)
2

2σ2
j (30)

All the value estimates are made available to the bidders. On revelation of
these estimated values for providing a service to the user, bidder i compares
his/her evaluation with the others. Therefore, bidder i may reassess his/her
own evaluation and change the own value of providing service by a factor
Ki(hj − hi), where Ki is an experimental constant. Thus, if bidder i has the
value estimates initially held by the n bidders h = (h1, ..., hn) available to
him, then i revises his/her own evaluation of providing the service to:

vi(h) = hi +
∑
j∈Nt

Ki(hj − hi) where j 6= i (31)

Similarly, user may also reassess his estimated value on the basis of bidders
evaluation, as follows:

v0(h) = h0 +
∑
j∈Nt

Ki(hj − h0) (32)

The probability that a user may get a chance to provide the service to
a target can be derived, on the basis of the dwelling time of the target in a
sensors coverage area, and can be described as:

pi(h) =
ετi
N∑
i=1

ξτi

(33)

where ε and ξ are constants.
In the direct revelation auction mechanism, the bidders declare their value

estimates to the auctioneer secretively and concurrently. Based on these
evaluations submitted by the bidders the auctioneer decides which bidder
wins the auction and what he/she has to pay. Thus, the utility of a direct
revelation auction mechanism is given by two outcome functions (p, b) such
that, if h is the vector of value estimates declared by the bidders, pi(h) is the
probability that i services the target, and bi(h) is the expected cost which
bidder i incurs in providing this service to the user. Thus, the expected

16

ayan
For Personal Use Only



utility from direct revelation auction mechanism, as given in [20], described
by (p, b) for bidder i is given by:

Ui(p, b, hi) =

∫
H−i

(vi(h)pi(h)− bi(h))f−i(h−i)dh−i (34)

where dh−i = dh1, ...., dhi−1, dhi+1, ..., dhn.
Similarly, the expected utility for the auctioneer from this auction mechanism
is:

U0(p, b) =

∫
H

(v0(h)(1−
∑
j∈Nt

pj(h)) +
∑
j∈Nt

bj(h))f(h)dh (35)

where dh = dh1, ..., dhn.

Algorithm 1 QoS-Aware Sensor Allocation Algorithm (Q-SAA)

Input:

• Present location of target (xi, yi) at time ti.

• Past location of the target (xi−1, yi−1) at time ti−1.

Output: Selected subset of sensors nt at time t.

Step 1: Compute the next predicted target position (x′i+1, y
′
i+1)

Step 2: Select Nt sensors
Step 3: Compute β, τ, Psp, Pacc for all nt ∈ Nt

Step 4: Compute Ui for all nt ∈ Nt

Step 5: Arrange Nt in the ascending order of their Ui
Step 6: Select nt ⊂ Nt|(Qn ≥ Qthreshold) ∨ (nt ≥ χ ·Nt)
Step 7: ti=ti+1

Step 8: xi−1 = xi, yi−1 = yi
Step 9: xi = xi+1, yi = yi+1

Step 10: Goto Step 1

In this case, it is needed to select multiple bidders as winners in the
ascending order of their utilities Ui such that it meets the desired QoS criteria
of accuracy and detection of the user. With the help of this negotiation, the
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user gets the desired QoS, and at the same time has to pay the least possible
cost. The aim of the bidder i is to acquire the opportunity to serve the user
so as to make profit from the cost of usage and also to provide the desired
QoS to the user.

Qthreshold is the measure of QoS required to be delivered to the user.
Therefore, the task is to select nt sensors (where nt ⊂ Nt) so that we may
get the desired quality of service.

Definition 4.1. The threshold QoS, Qthreshold, is defined as the weighted
mean of the probability of detection, Psp, and the probability of accuracy,
Pacc, as desired by the end user.

Qthreshold =
w′1Psp(n) + w′2Pacc(n)

2
(36)

where w′1 and w′2 are the weights of the cumulative probabilities of detection
and accuracy desired by the user.

Definition 4.2. An optimal set of sensors nt at a time instant t is defined
as nt ⊂ Nt such that the cumulative QoS, Qn, provided by the first n sensors
is arranged in their increasing order of utility Ui.

Ui is higher than the threshold QoS Qthreshold and the number of sensors
n is greater than a minimum predefined percentage of sensors.

Therefore, it can be inferred that the problem is reducible to selecting nt
sensors with lowest utilities Ui, such that:

Qn ≥ Qthreshold and n ≥ χ ·Nt (37)

where Qn is the set of cumulative values of probability of detection and the
probability of accuracy for the first nt sensors, χ is a predefined percentage
of sensors which which should be employed for tracking the target out of
the total available sensors at that point. This forms the subset of nt sensors
that meets the requirements of the user. The proposed steps of execution
are presented in Algorithm 1. The proposed algorithm, Q-SAA, requires
an input of the present (xi, yi), and previous (xi−1, yi−1) target positions to
start localizing of all sensors that are available to the sensor-cloud in that
region. On the basis of the location information of the target and the sensing
radius of each node, a set of Nt sensors is formed for tracking the target. All
the four parameters are evaluated only for this set of Nt sensors and further
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filtering is performed on the basis of availability of sensors. Availability is
measured in terms of battery life that is sufficient to give lifetime for a sensor
more than the dwelling time of the target in that particular sensor’s coverage
area. After omitting the sensors which are unavailable, from Nt, all sensors
evaluate their cost incurred for providing tracking service and place their
bids. Bids can be based on the assessment of each sensor and the weightage
it gives to all three parameters. In case a target is likely to have a longer
dwelling time in a sensors area of coverage, it will be beneficial for the user
to choose such a sensor, as it may not have to disengage the sensor for long
time, thereby, reducing the overheads for forming a virtual sensor, which can
generate revenue by providing service for a longer time. Therefore, it may
be inferred that the weightage of dwelling time can be higher as compared
to the other two parameters for better results from the algorithm. On the
basis of bids, the utility for each sensor is computed for the first nt sensors
with highest utility, which satisfies the QoS requirement for the user. This
optimizes resource allocation in the sensor-cloud. This process is repeated
at the next step if the chosen set of sensors in the last position cannot meet
the QoS requirements of the user. Thus, a new group of sensors is formed,
otherwise, we continue with the same set of sensors.

Theorem 4.1. There exists a Nash Equilibrium (NE) for the bid of every
sensor of the maximal subset Nt.

Proof. Wang et al. [26] proved the existence of NE in an auctioned system.
Wang et al. and Rosen [21] characterized the existence of NE for a negative
second order derivative of the utility function. From Equation (35), for every
si ∈ Nt, we obtain,

δ2Ui(h)

δh2
=

(
v′i(h)− v′i(h)

∑
j∈Nt

pj(h)− vi(h)
∑
j∈Nt

p′j(h) +
∑
j∈Nt

b′j(h)

)
f(h)

+f ′(h)

(
vi(h)(1−

∑
j∈Nt

pj(h)) +
∑
j∈Nt

bj(h)

)
(38)

Now, we see that,

f ′(h) = c2hie
−(hi−µj)

2

2σ2 , v′i(h) = 1−Ki|Nt|+Ki (39)
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c2 being a negative constant. From Equation (39) and the values of Ki, we
observe that f ′(h) and v′i(h) are negative quantities. From this , we can

directly infer that δ2Ui(h)
δh2

< 0, as f(h) > 0. This concludes the proof.

5. Performance Evaluation

In this Section, we discuss and analyze the performance of the proposed
system and the algorithm under several categories as follows:

5.1. Scheduling of Sensor Nodes

The simulation setup considering a 10,000 X 10,000 units 2-D terrain with
1000 sensors randomly deployed, is depicted in Fig. 3(a). The dotted line
depicts the trajectory of the target over the actual path with correction and
the solid line the trajectory of the target on the predicted path. Rhombus
markers represent the set of Nt sensors that satisfy the condition (x−xj)2 +
(y−yj)2 < R2

maxj
. These sensors have the target within their sensing range at

a given time instant for a target position. The depicted rhombuses correspond
to the third position of the target in the figure. Simulation experiments were
executed by changing different parameters over a period of time and also
varying the weights associated with them to see their effect on the selection
of sensors.

Fig. 3(b) shows the variation in the percentage of sensors in subset nt,
which is undertaken by taking the range of values for Psp = Pacc = (0.1 −
0.6), Psp = Pacc = (0.1−0.5), Psp = Pacc = (0.1−0.4), Psp = Pacc = (0.1−0.3)
and Psp = Pacc = (0.1 − 0.2) for allocating a subset of sensors. Rmaxj si
randomly assigned within the interval [150m, 200m]. Psp = Pacc = (0.1 −
0.6) implies that the value of Psp and Pacc for all sensors which are part of
Nt is randomly selected within the range of 0.1 to 0.6 for the first set of
experiments, i.e., the maximum value of Psp and Pacc for a sensor is 0.6, and
similarly, for the other set of experiments, the maximum value of the two
parameters is 0.5, 0.4, 0.3, and 0.2. Let us consider the percentage of sensors
in the subset nt at the 3rd time instant. The percentage of allocated sensors
is 0.2, 0.6, 0.8, 0.9, or 1.1 for different decreasing values in the range of Psp
and Pacc. It can be seen that on decreasing the range of parameters Psp and
Pacc, the required percentage of sensors increases. The subset with square
markers which has a range of values for Psp = Pacc = (0.1 − 0.6) requires
4-5 sensors to fulfill the requirement of the user. However, the subset with
star markers (Psp = Pacc = (0.1 − 0.2)) requires 11-12 sensors to meet the
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(a) Simulation of 2D area with predicted path.
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Figure 3: Comparative study by changing system parameters

QoS parameters of the user. This is because the cumulative probability of
accuracy and detection requires more number of sensors to reach Qthreshold

due to the smaller individual values of Psp and Pacc for each sensor. Fig. 3(c)
shows a comparison between the percentage of sensors allocated (nt) to the
percentage of sensors available (Nt) in that area that can engage the target
at the given time instant. In this experiment we allocate χ% of the available
sensors as per their utility and meet the Qthreshold of the user. If the selected
χ% of sensors does not satisfy the Qthreshold, then in such a case more than
χ% of sensors are allocated till the Qthreshold is satisfied. In this experiment,
we take χ as 30%. It can be seen from the graph that with the use of this
algorithm, the requirement of sensors varies with the available set of sensors
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Figure 4: Variation of Ui with change in different parameters

at a given point. Here, we can also infer that by using this approach, we
can find an optimal number of sensors that can be allocated to utilize the
resources in the sensor-cloud, thereby saving lot of sensor resources.

5.2. Utility Behavior

We also analyzed the behavior of the value of utility for a sensor by varying
different parameters. Some of the results are explained as follows. The
weights for these experiments are kept the same for each of the parameters.
Fig. 4(a) shows the graph plotted between the probability of accuracy and
the utility for different values of dwelling time, while keeping the detection
probability as constant. As we see, the graph shows an upward trend with
the increase in the values of dwelling time.
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In Fig. 4(b) a plot between dwelling time and utility is plotted. The
graph is plotted for different values of detection probability, while keeping
the probability of accurate detection constant. The behavior shows a lower
utility value for most of the graph, followed by which there is a steep rise in
utility specially on higher values of detection probability. In Fig. 4(c) a plot
between the probability of detection and utility is plotted. The weightage of
all the three parameters is kept the same, the graph is plotted for different
values of probability of accuracy, while keeping the dwelling time as constant.
The curve shows that initially there is very little effect on the value of utility,
but after a certain point, the value of utility takes a linear rise. The experi-
mental values for the above mentioned plot are given out in Table 2 for better
understanding. The results show how the three parameters affect the utility
Ui associated with different sensors and a user can get an idea how to set
his/her preferences for obtaining the desired quality of service. For example
in the third case, where the dwelling time is kept constant, a user for lower
values of Pacc and Psp will get lower utility sensors, i.e., these sensors are
more beneficial to the user in monetary terms but more number of sensors
will be required for achieving higher QoS. Also, the weights associated with
the parameters will have a bearing on the behavior of utility.

Table 2: Simulation Parameters

S.No. Psp Pacc τi Ui(×10−27)
1 0.6 0.5 1 4.858
2 0.6 0.6 1 10.46
3 0.65 0.5 1 7.295
4 0.65 0.6 1 14.376
5 0.7 0.5 1 10.45
6 0.7 0.6 1 19.046

5.3. Comparison with PPSS

To verify the efficiency of Q-SAA, we compared it with an existing sen-
sor management algorithm for target tracking application. The algorithm
we chose to compare is the Probability-based Target Prediction and Sleep
Scheduling Protocol (PPSS) [15]. The methodology of PPSS concerns the
duty cycling and activation of a set of physical sensor nodes, followed by the
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prediction of the target trajectory. PPSS focuses on duty cycling of sensor
nodes within the vicinity of the target, thereby reducing the consumption of
resources. In our work, we propose Q-SAA for a QoS aware sensor scheduling
and activation. Q-SAA not only activates sensor nodes within the vicinity of
the predicted target location, but also focuses on the QoS of the provisioned
service, unlike PPSS. To investigate the difference in the objectives of PPSS
and Q-SAA, and the consequent effects in their performance, we choose PPSS
as the benchmark. Also, as the authors have also executed PPSS in TelosB
motes [1] and TinyOS [2], PPSS finds its credibility even from an implemen-
tation point of view. This is also one of the primary reasons because of which
we follow the tracking algorithm of PPSS (during performance evaluation),
after executing Q-SAA for sensor scheduling and allocation. For simulation
of PPSS, we have used the experimental setup as indicated by the authors
of the work. For the simulation of utility of Q-SAA, the simulation settings
are illustrated in subsections 5.1 and 5.2.

Fig. 5(a) shows the comparison of selection of a superset of sensors (Nt)
by both the algorithms. We see that in Q-SAA, the percentage of sensors in
Nt is approximately one-third the percentage of sensors in Nt in case of PPSS,
thereby saving lot of computational overhead in selecting nt from Nt, because
all sensors in Nt need to be analyzed for selecting the best sensors. In Fig.
5(b), we show the comparison of nt, i.e., the allocated or active sensors from
both the algorithms. Results show that the percentage of sensors selected to
be part of nt in Q-SAA is lesser than that in PPSS. Therefore, Q-SAA gives
an optimal set of sensors and saves on the sensor resource.
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Figure 5: Comparison of PPSS and Q-SAA
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5.4. Economics of the Model

The very basic idea that motivates the use of sensor-cloud is the economy
of scale. There are common resources that are utilized by different users
through online connectivity thereby reducing the location dependence. The
users get on-demand scalable and elastic resources and they are priced as
usage-sensitive or pay-per-use model. The economics of using a sensor-cloud
for target tracking is justified as follows. Firstly, by using Q-SAA, we reduce
the the number of sensors actually required by a traditional algorithm. Sec-
ondly, the cost of ownership of a WSN vis-a-vis the pay-as-per-usage for a
set of sensors from the sensor-cloud works out to be cheaper, specially on a
longer run. The cost of ownership of a sensor network accounts for the cost
of investment of setting up a privately owned WSN. On the other hand, in a
sensor-cloud, the cost of investment is zero. However, the user has to pay as
per his/her usage. The experimental setup is indicated in Table 3.

Table 3: Experimental setup

Parameters Values

Time period (T) 3× 104 units
Number of sensor nodes (ns = nsc) 1000
Unit cost price of a node (Cr) Rs. 20/unit
Unit cost due to maintenance in WSN (Cm1) Rs. 20/unit
Unit cost due to maintenance in WSN (Cm2) Rs. 10/unit
η1 0.85
η2 0.85

A comparison between cost of ownership and cloud usage cost [22] shows
that the cost of ownership evaluated for 3 years is approximately 1.58 times
the cost of usage of cloud infrastructure. If the cost of buying a sensor is Cs
the cost of buying n sensors to form a WSN is ns×Cs. However, in case of a
sensor cloud cost, the of ownership is negligible. But, we need to pay for the
time we have used a sensor, i.e., the cost is incurred on the basis of rate based
on per unit time per sensor, given by Cr, such that Cs >> Cr. The cost of
ownership further includes additional costs such as maintenance cost and cost
of supporting infrastructure required for setting up a WSN. We term all these
costs as Cm. On the contrary, in case of a user of sensor-cloud, these costs do
not exist or they are negligible. Another factor that comes into play is the
efficiency η, which is defined as the amount of resources utilized at a given
time. It can be understood that a lot of resources of a privately-owned WSN
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Figure 6: Cost comparison of WSN vs Sensor-Cloud.

are under-utilized because of the fact that once a target is being tracked, all
the sensors are not used at any time instant and there may not be target
to be tracked throughout the life-cycle of a the WSN. On the contrary, in
sensor-cloud, the resources have higher utilization due to elastic and scalable
nature of resources. Therefore, the efficiency of a WSN is low, as compared
to a sensor-cloud. Also, in a sensor-cloud, there is more flexibility, scalability,
and reduced chances of failure. Therefore, the total cost of ownership C of a
WSN is calculated as follows:

C =
ns × Cs
η1

+
T∑
t=0

Cm1 (40)

where T is the time of usage, ns is the number of sensors deployed, η1 is
the efficiency and Cm1 is the cost of maintenance per unit time for privately-
owned WSN. The cost of using the sensor resource as a part of sensor-cloud
Csc is given by the number of sensors used at a given rate for a given time
duration. Hence, Csc is represented as;

Csc =
T∑
t=0

(
nsc × Cr

η2
+ Cm2) (41)

where T is the time of usage, nsc is the number of sensors allocated in the
sensor-cloud, η2 is the efficiency, and Cm2 is the cost of maintenance per unit
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time for a sensor-cloud. Fig. 6 shows a graph of comparison between cost
of ownership and the cost of using the sensor-cloud. The graph compares
the cost of usage for using sensor-cloud vis-a-vis a privately owned WSN
for approximately 30,000 hours, which corresponds to three years and four
months of continuous usage. It is worth noting that the graph is plotted
keeping the number of sensors the same for both WSN and sensor-cloud.
Using Q-SAA we further reduce the number of sensors required and widen
this gap between the two lines of sensor-cloud and private WSN. We can be
intuited that this gap will increase further if the usage is not continuous.
This is because the user pays as per usage in the sensor-cloud. However, the
maintenance in private WSN will be undertaken irrespective of the level of
usage. Also, it can be predicted that after every 5-6 years, there will arise a
requirement of major upgradation in the infrastructure of the privately owned
WSN, whose cost may be assumed to be similar to the initial setup of the
infrastructure. The above mentioned reasons further justify the rationale for
using a sensor-cloud. Hence, we observe that by using sensor-cloud we reduce
the cost of usage, firstly, by cutting down on initial purchase of infrastructure,
secondly, by getting over the maintenance and upgradation costs and effort
required for the same and thirdly, just paying for what the user uses.

5.5. Complexity Analysis of Q-SAA
In this subsection, we discuss and analyze the runtime complexity analysis

of Q-SAA as presented below.

Lemma 5.1. The worst case asymptotic computational complexity for eval-
uation of the cumulative detection probability is O(| Nt |2)), Nt being the
maximal subset of physical sensor nodes for tracking a target.

Proof. Let us assume that T ′(k) is the computational complexity for ob-
taining the cumulative detection probability involving k sensor nodes, such
that, | Nt |= k. From the cumulative probability of detection, as shown in
Equation (12), we obtain,

T ′(k) = T ′(k − 1) + c′, T ′(1) = O(1) (42)

c being a constant. Therefore, T ′(k) = O(k2) which implies that T ′(| Nt |) =
O(| Nt |2). This completes the proof.

Theorem 5.1. The worst case asymptotic computational complexity of Q-
SAA involving | Nt | number of sensors in the maximal subset is T (| Nt |) '
O(| Nt |2).
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Proof. We assume T (k) as the computational complexity of Q-SAA in which
| Nt |= k. From a step by step analysis of Q-SAA, as illustrated in Algorithm
1, and using the results of Lemma 5.1, the recursive equation for analysis of
computational complexity can be derived as,

T (k) = c1O(k) + c2O(k2) + c3(T
′(k − 1) + c′) + c4, T (1) = c (43)

Therefore, we infer, T (k) = O(k2) which implies T (| Nt |) ' O(| Nt |2).

6. Conclusion

In this paper, an auction-based scheme for autonomous allocation of sen-
sors to a particular target through sensor-cloud service provider was formal-
ized. The sensor-cloud architecture is able to retrieve and process sensor data
in a cost-effective, timely, and easily accessible manner. In other words, due
to visualization in sensor-cloud, a particular sensor becomes usable to mul-
tiple end-users and its employability becomes application independent. We
specifically addressed the problem of resource allocation in a target track-
ing scenario and utilized the resources of multiple sensor network providers
for achieving the aim while being agnostic about the physical locations of
the nodes. It can be seen from the results that this algorithm enables the
sensor-cloud service provider to autonomously allocate the optimal number
of sensors based on QoS parameters to achieve the desired efficiency. The
selection is based on direct revelation auction mechanism, in which all the
bidders reassess their evaluation of the object based on the evaluation of
other bidders before placing a bid. This auction mechanism helps the user
to get a better value of the service being offered to him. We evaluated the
results to find the effect of quality of service parameters on the utility in
auction process and effect on of selection of optimal number of sensors.

In the future, we plan to consider scenarios involving multiple targets
in a sensor-cloud environment. This improvement will further enhance the
usability of sensor-cloud for more applications and their concurrent use by
a number of users. Also, the sensor selection procedure may be made more
efficient by incorporating application dependent QoS.
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