
OPTIVE: Optimal Configuration of Virtual Sensor in
Mobile Sensor-Cloud

Arijit Roy†, Student Member, IEEE, Sudip Misra‡, Senior Member, IEEE, and Lakshya§
†Advanced Technology Development Centre, ‡§Department of Computer Science and Engineering,

†‡§Indian Institute of Technology Kharagpur, India,
{†arijitroy, ‡sudipm}@iitkgp.ac.in, §lakshya0459.iitkgp@gmail.com

Abstract—In this paper, we propose a scheme, OPTIVE, for
obtaining the optimal configuration of a virtual sensor in the
mobile sensor-cloud (MSC) architecture. The proposed scheme
is capable of selecting the physical sensor nodes to form a
virtual sensor (VS), based on the sensing area coverage for
an application region. We use Markov Decision Process (MDP)
to select the optimal mobile sensor nodes among the available
ones, for configuring the VS in the application area. The MSC
architecture is a new paradigm in which physical sensor nodes
attain mobility by the virtue of mobile devices such as, laptops,
cell phones, and vehicles. In MSC, a mobile device may move or
exit from the application region at any time instant. Consequently,
sensing hole arises in the application area, resulting in undesirable
interruption in the end-user services. As multiple sensor nodes
may be present in the application region, it is not suitable to
allocate any available sensor node, randomly, to re-configure the
VS for covering the sensing hole. In such a situation, OPTIVE
selects the optimal physical sensor node to allocate in the VS
for ensuring uninterrupted services to the end-users. Simulation
results show that OPTIVE is capable of providing at least
80 − 90% coverage in the application area. Additionally, in the
presence of 2 to 7 sensor nodes, the number of iterations in MDP
change by 19.56%.

Keywords—Mobile Sensor-Cloud, Virtual Sensor, Optimal Sens-
ing Coverage, Markov Decision Process, Percentage of coverage.

I. INTRODUCTION

The sensor-cloud architecture is based on the concept
of virtualization of physical sensor nodes [1], which allows
multiple end-users to receive the services from a single sensor
node simultaneously. The sensor-cloud architecture depletes
the traditional single user-centric view of Wireless Sensor
Networks (WSNs). Typically, in sensor-cloud, a set of static
sensor nodes combine to form a VS for provisioning Sensor-
as-a-Service (Se-aaS) to the end-users. On the other hand,
the Mobile Sensor-Cloud (MSC) explores a new dimension of
cloud computing where mobile sensor nodes are virtualized
to serve end-user applications. In MSC, the sensor nodes
are attached to certain mobile devices, such as laptop, cell
phone, and vehicles. Thus, the physical sensor nodes attain
mobility due to the movement of the devices, to which these
are attached. The MSC architecture comprises of four actors–
sensor owner, device owner, end-user, and sensor-cloud service
provider (SCSP). The sensor owners procure and deploy the
sensor nodes on the mobile devices, which are owned by the
respective device owners. A SCSP manages the entire MSC
architecture using certain algorithms or by manual intervention
and provides Se-aaS to multiple end-users. On the other hand,

the end-users enjoy the requested services through a Web
portal on payment-basis. Further, SCSP pays rent to the device
owners and the sensor owners using the payment earned from
the end-users. Additionally, SCSP makes his/her profit and
earns the maintenance cost from the payment of the end-users.
Typically, the payment mechanism is maintained with the help
of some pre-defined pricing schemes. An architecture of MSC
is depicted in the Fig. 1.

In an MSC, the sensor nodes become mobile with the
movement of the devices to which they are attached. In order
to provision Se-aaS for an end-user application, mobile sensor
nodes are required to be allocated to a VS. Also, the coverage
in the application area depends on the location of mobile
devices, which are equipped with the sensor nodes. Therefore,
the movement of a device, which serves a certain application
area, from one location to another gives rise to sensing holes
in the application area. This work primarily focuses on the
dynamic allocation of physical sensor node, optimally, for
configuring a VS to cover the sensing holes in an application
region.

Fig. 1: Architecture of MSC

A. Motivation

In an MSC architecture, a VS comprises of multiple
physical sensor nodes, which are attached to different mobile
devices. Thus, due to the dynamic movement of these mobile
devices, the application region may become uncovered. Con-
sequently, sensing hole arises in the application region and

ayan
For Personal Use Only

ayan
Typewritten Text
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. doi: 10.1109/WCNC.2019.8885626

the end-users service interrupts. To resume the uninterrupted
end-user services, it is essential to allocate other sensor nodes
in the VS. In such a situation, multiple mobile devices,
equipped with different sensor nodes, may be present in the
application region. Thus, these sensor nodes can be used for
reconfiguring the VS to cover the sensing hole. However, the
selection of any random sensor node among the available
ones for reconfiguring the VS is not pertinent. The traditional
sensor-cloud architecture comprises of static sensor nodes, and
therefore, the existing schemes [2] and [3] for reconfiguring
the VS is not suitable for MSC. Thus, we propose a scheme,
named OPTIVE, which is capable of reconfiguring the VS by
selecting the best possible sensor node, among the available
ones in the MSC architecture.

B. Contribution

In this work, we consider the case of distortion in the
composition of a VS in MSC, due to the dynamic movement
of the mobile devices from an application area. This situation
gives rise to sensing holes in the application area. To address
this problem, we propose a scheme, OPTIVE, which optimally
selects a physical sensor node among the available ones to re-
configure the VS. In Fig. 2, we depict a few possible cases
of the movement of mobile devices from the application area.
Further, we use MDP in the solution for allocating the best
possible available sensor nodes in a VS to remove the sensing
holes from the application area. Finally, to evaluate the pro-
posed scheme, OPTIVE, we performed rigorous simulations
and discussed the results.

II. BACKGROUND

In this section, we discuss different works on sensor-cloud
architecture. Yuriama and Kushida. [4] introduced the concept
of sensor-cloud with a basic architecture. Further, Misra et al.
[1] proposed the theoretical model of senor-cloud in which
the authors elaborately discussed about the different actors
associated with it. Typically, in the sensor-cloud architecture,
end-users pay the price based on the usage of the services.
The payment from the end-users is needed to be distributed in
a fair way among the different actors, such as the SCSP and
the sensor owner. Thus, in order to handle the pricing issues
of sensor-cloud, Chatterjee et al. [5] proposed an optimal
pricing scheme for sensor-cloud architecture. Additionally, a
trust enforcing pricing scheme, DETER, for sensor-cloud is
proposed by Chakraborty et al. [6]. DETER enforces trust
among the sensor owners, while maintaining the quality of
Se-aaS. The authors used Single-Leader-Multiple-Follower
Stackelberg Game for deciding the price to be paid to the
sensor owners. Bose et al. [7] proposed the concept of using
virtual sensors for environment monitoring. Further, Madria et
al. [8] explored the real implementation of sensor-cloud. An
adaptive data caching scheme for sensor-cloud is proposed
by Chatterjee et al. [9], which is capable of minimizing
the service delay to the end-users. Additionally, Roy et al.
[10] came up with a unique scheme of data caching for
sensor-cloud, which is able to cache the data of the destroyed
virtual machines. In another work, Chatterjee and Misra [2]
proposed a scheme for composing virtual sensors dynamically
in order to provide efficient services to the end users. In this
work [2], the authors consider the presence of non-overlapping

sensor deployment region. Further, considering overlapping
sensor node deployment region, Roy et al. [3] designed a
scheme for forming VS with the physical sensor node.

Synthesis: In the existing literature, the authors studied
different problems in sensor-cloud architecture and provided
corresponding suitable solutions for addressing these
problems. These works consider the presence of static sensor
nodes in the sensor-cloud architecture. Moreover, the authors
in [2] and [3] proposed their respective schemes for forming
a VS optimally considering only static sensor nodes in the
sensor-cloud architecture. In this work, we consider that the
VS is composed of mobile sensor nodes, which are typically
attached to the mobile devices. These mobile devices may
exit the application area at any time instant, which result
in distortion in the composition of the VS. Moreover, the
aforementioned problem itself is different from the problems
of configuring the VS, discussed in the existing literature [2]
and [3]. Consequently, the existing solutions are not suitable
for addressing the problem of formation of VS in MSC,
identified in this work.

III. PROBLEM DESCRIPTION

An MSC consists of mobile devices, which are equipped
with different physical sensor nodes. Thus, physical sensor
nodes attain mobility by the motion of mobile devices. How-
ever, the motion of the devices is controlled by the device
owner.

A. Problem Scenario

We consider a mobile sensor-cloud platform, which con-
sists of heterogeneous physical sensor nodes. In order to pro-
vide sensing coverage to a particular application area, multiple
physical sensor nodes are required. Consequently, multiple
devices are essential to be present inside the application area.
In MSC platform, multiple physical sensor nodes combine to
form a VS. However, due to the movement of mobile devices,
physical sensor nodes may exit from the VS at any time instant.
Thus, in such a scenario, it is essential to re-configure the VS,
in order to provide an uninterrupted service to the end users.

Definition 1. Threshold Percentage of Sensing Coverage (PS)
is defined as the minimum amount of sensing coverage, ex-
pressed in percentage, in an application area, provided by a
SCSP to an end-user.

Fig. 2 depicts the possible cases for which re-allocation
of physical sensor node in a VS is required. In each of the
cases, there are four nodes-1, 2, 3, and 4, which are already
covering the application region and are the part of a VS.
However, other sensor nodes, A,B,C,D, and E are present in
the application area, which are not part of the VS. The possible
cases those arise due to the mobility of physical sensor nodes
are as follows:
Case 1: Physical sensor nodes, 1, 2, 3, 4, cover the application
region more than a threshold value, PS , defined by SCSP.
Case 2: Initially, the physical sensor nodes cover the appli-
cation region more than the threshold value. However, due to
the mobility of the device, node 3 exits the application region.
Consequently, sensing hole arises in the application region and
percentage of coverage drops below PS , defined by the SCSP,

ayan
For Personal Use Only

(a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4

Fig. 2: Few possible cases, where re-allocation of sensor node is required

as mentioned in Definition 1.
Case 3: Due to mobility, the sensor nodes, 1, 2, 3, 4, are aligned
in such a fashion that they are unable to cover the application
area, equal to or above PS value, resulting in sensing hole.
Case 4: In this case, node 4 move in such a fashion that the
sensing range of node 2 and 4 overlaps. Consequently, sensing
hole arises in the application region and percentage of coverage
drops below PS .
We consider Case 1 to be a normal condition, where the
percentage of coverage is above or equal to PS . For Case
2-4, we require to re-allocate the physical sensor nodes to the
VS, in order to cover the application area. However, there may
exist other cases also, for which re-allocation of the physical
sensor nodes are required.

B. Problem Formulation

Let the set of physical sensor nodes present in the system be
denoted as S = {s1, s2, s3, · · · , sn}. The set of mobile devices
present in the MSC platform are represented by D, where each
di ∈ D be any device, which is equipped with one or multiple
physical sensor nodes. An application requested by an end-user
is depicted as A = 〈Aid, Aloc, Atype〉, where Aid, Aloc, Atype
are application id, application location, and application type
respectively [1]. A physical sensor node, s, is defined as a
tuple, s = 〈sid, sloc, stype, sdevice, svelocity, sst, senergy, sr〉,
where sid and stype denote the id and type of the physical
sensor node, s. Additionally, sdevice, sloc, and svelocity denotes
the device id to which the sensor node is attached, current
location of the sensor node in the application area, and the
current velocity of the device, respectively. senergy and sr
represents the current residual energy and the sensing range of
the sensor node, s. The state of a sensor node is denoted as sst.
The possible state of the sensor node is either active or inactive.
If a physical sensor node serves at least one application area,
then we consider the state of the sensor node as active. Thus,
the state of a sensor node, sst, is represented as:

sst =

{
1, if node is active
0, if node is inactive (1)

The set of applications is denoted by A. We define S′(t) as a
set of physical sensor nodes, which are suitable to be used for
serving the application, A, given as:

S′(t) = {s|s.stype = A.Atype and s is located
inside A.Aloc,∀s}, (2)

At any time instant t, V S(t) represents a virtual sensor, such
that V S(t) ⊆ S′(t).

Definition 2. Percentage of coverage (PC) is the total per-

centage of application area covered, by the sensing area of a
set of physical sensor nodes, S, such that S ⊂ S and si ∈ S
∀i.

Let si ∈ S denotes any sensor node. The total number of
nodes present in S is represented by k. The sensing area of
any physical sensor node, si, is denoted by Area(si) = πri

2,
where ri is the sensing radius of si. Let γt denotes the set of
locations at time instant t, such that γt = {l1, l2, l3, · · · , lk}
and li is the location of si. The percentage of coverage,
PC(S, γt), is mathematically represented as:

PC(S, γt) =
Area(S, γt)

Areaapp
× 100% (3)

and

Area(S, γt) =

k⋃
i=1

Area(si) (4)

where Areaapp and Area(si) denote the total application area
and the area covered by any physical sensor node, si ∈ S,
respectively. Let at time instant, t = 0, the computation for
the reconfiguration of a VS is started. At t = −ε, PC(S, γε) >
PS , and at t = 0, PC(S, γ0) < PS , where, ε → 0, γ0 is the
corresponding set of locations for S at t = 0, and γε is the
corresponding set of locations for S at t = −ε.

Therefore, we re-configure the VS, at time instant τ , in
such a way that the percentage coverage of VS is greater than
PS . Mathematically, at t = τ , we have, PC(S, γτ) > PS ,
where γτ is the corresponding location set for S.

IV. SOLUTION APPROACH

Let P denotes the probability of the achieved location by
a sensor node after time, τ .

P (s, θ, τ, r) = real value between (0,1) (5)
where θ is the angle of deviation of the location of mobile
device with respect to the current velocity of sensor node, with
range, (0, π) ∪ (−π, 0).

θ =

{
> 0, if θ is clockwise
< 0, if θ is anticlockwise (6)

where r is the distance between the current location of the
mobile device and the location to which the device reaches
after time, τ .

A. Approximation of device motion

The possible values of θ and r, in Equation (5), are infinite
for a particular value of s and τ . Therefore, the process of
computing the probability, P (s, θ, τ, r), of a sensor node, s,

ayan
For Personal Use Only

being at any given position (r, θ) after given time, τ , is very
challenging. We can approximate (r, θ), by a set of expected
locations1 of the device owner. We compute the expected
locations of a sensor node, in terms of expected trajectories and
possible distance, d, traveled by the sensor node in time τ . The
locations of the sensor node after traveling the distance d in
time τ on the expected trajectories are the expected locations.
We use linear regression [11] for calculating the value of d as
d = a+ b · t, where a and b are computed using the observed
motion of the device, such that d− (a+ b · t) is minimum for
each pair (di, ti). We use least square error to penalize the
learning, using Equations (7) and (8), as follows:

δ =

i=n∑
i=1

(di − (a+ b · ti))2 (7)

a, b : mina,b(δ) (8)

where n is the total number of observations recorded for the
device. In order to calculate minimum value of δ, we calculate
the partial derivatives of Equation (7) w.r.t. a and b, and equate
them to zero. Thus, we get Equations (9) and (10) respectively.

∂δ

∂b
= −2

i=n∑
i=1

ti · (di − (a+ b · ti)) = 0 (9)

∂δ

∂a
= −2

i=n∑
i=1

(di − (a+ b · ti)) = 0 (10)

Therefore,[
b

a

]
=

[∑
i di∑

i(ti · di)

] n
∑
i(ti · di)∑

i ti
∑
i t

2
i

−1 (11)

P ′(s, τ, l) denotes the probability of a sensor node, s,
for being at the expected location, l, after time, τ . Let
Li = {l1, l2, l3, · · · , ln} denote the set of all expected locations
of sensor node, si. Let L be the set of expected location sets
of corresponding sensor nodes. Thus, we have,

L({s1, s2, s3, ...sz}) = {{l1, l2, l3....., lz}, |li ∈ Li} (12)

B. Markov Decision Process-based Optimal Reconfiguration

In MSC, the devices in which the sensor nodes are
attached are mobile and their motion is unpredictable. In such
a scenario, configuring the VS with mobile sensor nodes is a
stochastic process. Therefore, we use the MDP [12], in order
to reconfigure the VS with available physical sensor nodes
in the application region. Typically, MDP has four major
components–state, action, state transition probability, and
reward, which are defined as follows:
State: In this work, we represent state, Ψ, as a 3-tuple,
〈α,M, β〉, where α = PC(M,β), M ⊆ S′(t = 0)
and β ∈ L(M). Subsequently, we define state
space={Ψ,∀M and ∀β}.

1Example: A sensor node is attached to cell phone of employee of a
company. The motion of the cell phone will depend on the motion of the
employee (as the employee keeps his/her phone with himself/herself). The
possible destinations of the employee are his desk, his friend’s desk, to a toilet,
to a boss office etc. Moreover, there are some finite paths that he will take
(through cabins, stairs, and lift), to reach a destination. A statistical analysis
can be done to compute the probability of the employee going to a particular
destination through the particular path.

Fig. 3: Possible state transition based on action

Proposition 1. The size of state space is
∏|S′(t=0)|
i=1 (qi + 1),

where qi=|Li|

Justification: Consider β of any state for a particular sensor
node, si, there are (qi + 1) independent choices with respect
to β as:

(i) si ∈M and it exists in one of the expected locations in
Li. Thus, it generates qi choices.

(ii) si /∈M

Each sensor node, si has (qi + 1) independent choices, and
therefore, the size of state space is

∏|S′(t=0)|
i=1 (qi + 1)

Action: An action is one of the following:

• Inclusion of a sensor node , si ∈ (S − Mi), with
expected location, li, which results in change of state
from Statei to Statej , such that (Mj−Mi) = si and
(βj − βi) = li.

• Inclusion of a sensor node, si ∈Mi, which results in
no change of state.

Mathematically:

A(Statei) =

{
Statei, if included sensor node si ∈M
Statej , such that Mj −Mi = si

(13)
where si ∈ (S−M).

Let us consider that there are two states, Statei and Statej .
The possible state transitions based on the possible actions are
depicted in the Fig. 3.

Lemma 1. If the Markov chain is considered to be a directed
graph, then there exists a directed path between two states, ψ1

and ψn, such that M1 ⊂Mn and β1 ⊂ βn.

Proof: We use mathematical induction for justifying this
lemma. In base case, we consider two states, ψ1 and ψ2, such
that (M2−M1) = s1 and (β2−β1) = l1, where l1 ∈ L1, then
there exists a path between ψ1 and ψ2, consisting of action,
A, on inclusion of a sensor node, s1, with expected location,
l1. We assume that there exists a path between two states, ψ1

and ψn−1, such that (M(n−1)−M1) = {s1, s2, s3, · · · , sn−2}
and (βn−1−β1) = {l1, l2, l3, · · · , ln−2}, where lk ∈ Lk,∀k ∈
[1, (n− 2)].

If we consider state, ψn, such that (Mn − M1) =
{s1, s2, s3, · · · , sn−1} and (βn − β1) = {l1, l2, l3, · · · , ln−1},
where lk ∈ Lk,∀k ∈ [1, (n − 1)], then there exists a path
between ψn and ψn−1, consisting of action, A, of inclusion of
a sensor node, sn−1, with expected location, ln−1. Moreover,
there exists a path between states, ψ1 and ψn−1 as per the
assumption. Therefore, we conclude that there exists a path
between states, ψ1 and ψn, given M1 ⊂Mn and β1 ⊂ βn.

ayan
For Personal Use Only

Reward: Reward is defined as
R : Ψ→ R (14)

such that

R(Ψ) =

{
λ, if α < PS
α

|M |
, if α ≥ PS (15)

where λ is a negative constant. Moreover, the magnitude of
λ has no impact on the optimal policy. If α ≥ PS , the
reward must be positive and proportional to α, and inversely
proportional to |M |.
State Transition Probability: The state transition probability
associated with the action, A, of inclusion of a sensor node,
si, with expected location, li, is depicted in Equation (16).

A(Statei) =

{
P(Ψi|Ψi,A) = 1, si ∈M
P(Ψj |Ψi,A) = P ′(si, τ, li), si ∈ S−M

(16)

C. Computation of Optimal Policy

For calculation of optimal policy in the proposed problem,
we use value iterations over infinite horizon [13]. Thus, we
compute policy, such that expected sum of all future rewards
are maximum. Mathematically:

max

{
E

[
t=∞∑
t=0

µtRt

]}
(17)

where µ is the scaling factor to provide an upper bound over
the expected sum of all future rewards, such that 0 < µ < 1.
The value function with respect to policy, π, is given as:

V π(Ψ) = Eπ

[
t=∞∑
t=0

µtRt

]
(18)

The optimal policy corresponds to the optimal value function,
V ∗(Ψ). In order to determine V ∗(Ψ), we use value iteration
method. In this process, we start with Vt(Ψ) = 0, ∀Ψ.
Subsequently, we calculate Vt+1(Ψ) = 0 using:

Vt+1(Ψ)← R(Ψ) + µ ·maxA

{∑
Ψ′

P(Ψ′|Ψ,A) · Vt(Ψ′)

}
(19)

According to Bellman’s theorem, the value function converges
to V ∗(Ψ) in finite number of iterations. Thus, we get the
optimal policy, π∗ as follows:

π∗ = argmaxα

{∑
§′
Pr(§′|§, α) · V ∗(§′)

}
(20)

After achieving the optimal policy, we start the initial state as
Ψinitial = 〈0, φ, φ〉 and follow the policy until we reach to
a state from which further action results in no change in the
state. Let the final state be Ψfinal = 〈αfinal,Mfinal, βfinal〉,
then the reconfigured VS is equal to Mfinal.

Theorem 1. Re-configured VS always provides higher cover-
age than PS , if there exist a state, ψk such that αk ≥ PS .

Proof: Let there exist a state, ψk, such that αk ≥ PS .
The policy in MDP tries to optimize Equation (15). Thus,
any state, ψi, in MDP state space, must have optimal action,
which leads to a state, ψj , such that R(psij) ≥ R(psii).
Moreover, by Lemma 1, there exists a path between ψinitial
and ψk. The optimal action in ψinitial must lead to a state
ψfinal, such that R(ψfinal) ≥ R(ψk). Thus, R(ψk) >
PS =⇒ R(ψfinal) > PS . Therefore, we conclude that re-
configured VS always provide coverage higher than PS .

Algorithm 1 OPTIVE
INPUTS:

1: Optimal action(ψ) : Returns optimal action for the input state
ψ w.r.t. optimal policy

2: Apply(ψ,A) : Returns the state, after state transition from ψ due
to A

OUTPUT:
3: ψfinal : The final state reached by applying optimal policy

PROCEDURE:
1: ψ1 =< 0, φ, φ >
2: while true do
3: A = Optimal action(Ψ1)
4: ψ2 = Apply(ψ1,A)
5: if (φ1 == φ2) then
6: ψfinal = ψ1

7: break
8: else
9: ψ1 = ψ2

10: end if
11: end while
12: return ψfinal

V. PERFORMANCE EVALUATION

To evaluate the performance of our proposed scheme, we
consider the presence of 40−50 sensor nodes, with the sensing
range 90 − 95m over a simulation area of 500m × 500m.
These sensor nodes have equal number of possible expected
locations. We also consider the presence of 3 user applications
for the simulation. Mathematically, ∀i, |Li| = k, where k is a
constant. The algorithm for simulating OPTIVE is represented
in Algorithm 1. Fig. 4 depicts the percentage of coverage in
an application region in the presence of total number nodes
4, 5, and 6. We observed that OPTIVE provides at least 80%
coverage, which is significantly higher as compared to the
initial percentage of coverage. Fig. 5 depicts the variation in the
number of iterations required by the MDP process, considering
the number of nodes available and number of possible expected
locations of a sensor node. In Fig. 5a, we observe that in the
presence of one sensor node, the number of iterations is less
than 10. The possible reason for such a value is that, to find
the optimal policy, number of actions considered by MDP are
only 2. However, in the presence of 2 − 7 sensor nodes, the
number of iterations is significantly higher as compared to the
case with one sensor node. Moreover, there is no significant
change in the number iterations, when the total number of
sensor nodes varies from 2−7. Similarly, in Fig. 5b, we observe
that the number of iterations is 10 when the expected possible
number of locations is one. The possible reason behind this
patten is that, when the number of expected location is one,
the process becomes non-stochastic. Consequently, the number
of iterations is less as compared to the other cases. In the
presence of 2 − 4 expected possible locations, the number of
iterations vary between 25 − 35. However, in the presence
of 5 − 9 expected possible locations, the variations in the
number of iterations is significantly less, which is between
45 and 50. Additionally, we observe from Figs. 5a and 5b that
the number of iterations get saturated after reaching a certain
value of the total number of nodes and possible locations. Fig.
6 shows the change in number of states with the variation
in number of sensor nodes and number of expected possible
locations. We observe exponential increase in the number of

ayan
For Personal Use Only

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 6 7 8 9 10

P
er

ce
n

ta
g

e
co

v
er

a
g

e

Timesteps

Initial coverage
Final coverage

(a) # available sensor nodes=4

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 6 7 8 9 10

P
er

ce
n

ta
g

e
co

v
er

a
g

e

Timesteps

Initial coverage
Final coverage

(b) # available sensor nodes=5

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 6 7 8 9 10

P
er

ce
n

ta
g

e
co

v
er

a
g

e

Timesteps

Initial coverage
Final coverage

(c) # available sensor nodes=6

Fig. 4: Percentage of coverage

 0

 10

 20

 30

 40

 50

1 2 3 4 5 6 7

N
u

m
b

e
r
 o

f
it

e
r
a
ti

o
n

s

Number of available Nodes

(a) Sensor nodes

 0

 10

 20

 30

 40

 50

1 2 3 4 5 6 7 8 9

N
u

m
b

e
r
 o

f
it

e
r
a
ti

o
n

s

Number of Possible locations for a Node

(b) Possible locations

Fig. 5: Change in iterations required for MDP

 0

 10000

 20000

 30000

 40000

 50000

 60000

 2 3 4 5 6 7 8 9 10

N
u

m
b

e
r
 o

f
s
ta

te
s

Size

Available nodes
Possible locations of the nodes

Fig. 6: Change in states with number of sensor nodes and
number of expected possible locations

states in MDP with the increasing number of sensor nodes. We
also observe that the number of states increases polynomially,
with the increment in expected possible locations. Both the
trends are in accordance with the state space size defined in
the Proposition 1.

VI. CONCLUSION

In this work, we focused on the MSC architecture and
proposed a scheme, OPTIVE, for configuring a VS. In MSC,
the sensor nodes are attached with the mobile devices and
attain mobility. These mobile devices may move dynamically
at any time instant, which causes the distortion in the con-
figuration of the VS. Consequently, such situation gives rise
to the sensing hole in the application area. However, multiple
device, equipped with sensor nodes, may be present in the
application region. Thus, in such a scenario, our proposed
scheme, OPTIVE, selects the sensor nodes optimally to al-
locate in the VS and cover the sensing hole. In future, we
plan to extend this work, considering the Quality-of-Service
of Se-aaS. Additionally, we plan to provide a data caching
scheme for the MSC which can significantly reduce the end-
user service time.

VII. ACKNOWLEDGMENT

The first author of this work is partially funded by project
file no. 9/81(1293)/17 sponsored by the Council of Scientific
and Industrial Research (CSIR), Govt. of India.

REFERENCES

[1] S. Misra, S. Chatterjee, and M. S. Obaidat, “On Theoretical Modeling
of Sensor Cloud: A Paradigm Shift From Wireless Sensor Network,”
IEEE Systems Journal, no. 99, pp. 1–10, 2014.

[2] S. Chatterjee, S. Misra, and S. Khan, “Optimal Data Center Scheduling
for Quality of Service Management in Sensor-cloud,” IEEE Transac-
tions on Cloud Computing, no. 99, 2015.

[3] C. Roy, A. Roy, and S. Misra, “DIVISOR: Dynamic virtual sensor
formation for overlapping region in IoT-based sensor-cloud,” in IEEE
Wireless Communications and Networking Conference (WCNC), April
2018.

[4] M. Yuriyama and T. Kushida, “Sensor-Cloud Infrastructure - Physical
Sensor Management with Virtualized Sensors on Cloud Computing,” in
Proceedings of the 13th International Conference on Network-Based
Information Systems, Sept 2010, pp. 1–8.

[5] S. Chatterjee, R. Ladia, and S. Misra, “Dynamic optimal pricing for
heterogeneous service-oriented architecture of sensor-cloud infrastruc-
ture,” IEEE Transactions on Services Computing, vol. 10, no. 2, pp.
203–216, March 2017.

[6] A. Chakraborty, A. Mondal, A. Roy, and S. Misra, “Dynamic Trust
Enforcing Pricing Scheme for Sensors-as-a-Service in Sensor-Cloud
Infrastructure,” IEEE Transactions on Services Computing, 2018.

[7] N. M. S. Bose and S. Mistry, “Environment Monitoring in Smart Cities
Using Virtual Sensors,” in the 4th IEEE Int. Conf. on Future Int. of
Things and Cloud, 2016, pp. 399–404.

[8] S. Madria, V. Kumar, and R. Dalvi, “Sensor Cloud: A Cloud of Virtual
Sensors,” IEEE Software, vol. 31, no. 2, pp. 70–77, Mar 2014.

[9] S. Chatterjee and S. Misra, “Dynamic and Adaptive Data Caching
Mechanism for Virtualization within Sensor-cloud,” in IEEE Inter-
national Conference on Advanced Networks and Telecommuncations
Systems (ANTS), Dec 2014, pp. 1–6.

[10] A. Roy, S. Misra, and S. Ghosh, “QoS-Aware Dynamic Caching for De-
stroyed Virtual Machines in Sensor-Cloud Architecture,” in Proceedings
of the 19th International Conference on Distributed Computing and
Networking, ser. ICDCN ’18. New York, NY, USA: ACM, 2018, pp.
28:1–28:7.

[11] D. T. Larose, Regression Modeling. Wiley-IEEE Press, 2006, pp. 33–
92.

[12] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dy-
namic Programming, 1st ed. New York, NY, USA: John Wiley &
Sons, Inc., 1994.

[13] S. Bhatnagar and M. S. Abdulla, “A Reinforcement Learning Based
Algorithm for Finite Horizon Markov Decision Processes,” in Proceed-
ings of the 45th IEEE Conference on Decision and Control, Dec 2006,
pp. 5519–5524.

ayan
For Personal Use Only

