
QoS-Aware Dynamic Caching for Destroyed Virtual Machines in
Sensor-Cloud Architecture

Arijit Roy

Student Member, IEEE
Indian Institute of

Technology Kharagpur,

Kharagpur 721302, India

arijitroy@iitkgp.ac.in

Sudip Misra

Senior Member, IEEE
Indian Institute of

Technology Kharagpur,

Kharagpur 721302, India

smisra@sit.iitkgp.ernet.in

Sayan Ghosh

Indian Institute of

Technology Kharagpur,

Kharagpur 721302, India

sgdgp@iitkgp.ac.in

ABSTRACT
In this work, we propose a scheme, named Quality-of-Service (QoS)

Aware Dynamic Caching for Destroyed Virtual Machines in Sensor-

Cloud Architecture, which enables efficient caching in sensor-cloud,

in the presence of heterogeneous sensor nodes. This work is one of

the first attempt of its type, in which a special cache is introduced

for the efficient use of sensor data in the sensor-cloud architecture,

in order to maintain QoS. Considering the reutilization of sensor

data, the proposed scheme is capable of keeping data of a Virtual

Machine (VM) for a certain duration of time, even if it is destroyed.

Therefore, the data from SDC can be used in future, if any further

requests arrive, which consists of same configurations of physical

sensors inside a virtual sensor. We compared the proposed caching

mechanism, Dynamic Caching for Destroyed VMs, with the existing

mechanism proposed by Chatterjee and Misra [1]. We observe that

the cache hit percentage increases at least double the number of

times exhibited by the existing scheme of caching. On the other

hand the energy consumption and message overhead decrease by

50% and 17% respectively.

CCS CONCEPTS
• Networks→ Sensor networks; • Software and its engineer-
ing → Cloud computing; Virtual memory;

KEYWORDS
Sensor-cloud, Wireless Sensor Networks, Dynamic caching, De-

stroyed virtual machine, QoS.

1 INTRODUCTION
The emerging technology of sensor-cloud [1, 2, 8] becomes an alter-

native to the traditional wireless sensor networks (WSNs). Sensor-

cloud virtualizes the physical sensors to serve multiple remote users

at the same time, thereby enabling the provisioning of Sensors-as-
a-Service (Se-aaS). The existing architecture of the sensor-cloud

consists of four layers. The bottom-most layer is the network of

physical sensor nodes, which sense various physical parameters

of the environment. One or more physical nodes are grouped and

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ICDCN’18, January 04-07, 2018, India
© 2018 Copyright held by the owner/author(s).

ACM ISBN 123-4567-24-567/08/06.

https://doi.org/10.475/123_4

virtualized to form virtual sensors. The system creates a virtual

machine (VM) corresponding to a user requesting the system for

Se-aaS. This virtual machine uses a virtual sensor group(VSG) to

get the data from the underlying physical sensor network.

The same data can be useful for a particular user at different

time instants. Consequently, for storing sensor data temporarily,

the concept of cache is used. The existing architecture of the sensor

cloud enabled with caching [2] has the following components: (a)

Internal Cache (IC), and (b) External Cache (EC). The end-users

request the sensor-cloud for sensed information through the Web-

interface. EC acts as a buffer between the physical sensor nodes

and the sensor-cloud, whereas IC acts as the intermediary memory

between the end-users or applications and the virtual sensors. The

system searches for data progressively in the IC and EC. However,

if the concerned data are not found, re-senses from the physical

sensor network, which is the bottom most layer of the sensor-cloud

architecture. We propose a novel scheme, to ensure storing of cache

of destroyed virtual machines. This idea is useful to provide cached

data to the re-activated virtual sensors destroyed a while ago.

1.1 Motivation
The existing sensor-cloud architecture [11] proposes the use of IC

and EC. However, in real implementation, the user may need a

set of heterogeneous physical sensor nodes for different applica-

tions. Therefore, in such cases, storing the data of all heterogeneous

sensors in the IC is not an efficient choice in the sensor-cloud archi-

tecture. Moreover, if all the virtual machines which use a particular

virtual sensor get destroyed from the cloud, eventually, the data

for that virtual sensor gets removed from the caches. However, if

at a later instant of time, another user requests the virtual sensor

comprising of the same set of physical sensors, which were used at

earlier instants, then the history of this virtual sensor is not avail-

able to the system. This results in re-sensing data from the physical

sensors. Since the physical sensors are energy-constrained, thereby,

redundant sensing consumes energy unnecessarily, thereby degrad-

ing the overall system performance. Therefore, storing only the

information required by the end-user in the IC for heterogeneous

sensor nodes suffices. We devise a novel scheme to enable storing

of cache of the destroyed virtual sensors, so that they may also

be used to provide history of the data to the newly created virtual

sensors, in case their configurations match. To address the issue of

lack of cache memory for a new end-user, we introduce the concept

of Special Dynamic Caching (SDC) in the sensor-cloud architecture.

The proposed scheme maintain QoS in terms of delay.

https://doi.org/10.475/123_4
ayan
For Personal Use Only

ICDCN’18, January 04-07, 2018, India A. Roy et al.

1.2 Contribution
In this work, we address the issue of dynamic caching in the sensor-

cloud architecture in the presence of heterogeneous sensor nodes.

The specific contributions of this work are as follows:

• We introduce the concept of Special Dynamic Cache (SDC)
storage corresponding to each of the distinct end-users present

inside the sensor-cloud.

• We consider the dynamic requirements of sensor data from

different end-users, and thereafter, propose a scheme to as-

sign memory dynamically from SDC to a particular end-user.

• The proposed scheme is evaluated rigorously, both mathe-

matically and theoretically.

2 RELATEDWORK
Sensor-cloud is a newly explored research topic. However, signifi-

cant amount of research has already been undertaken on sensor-

cloud. On the other hand, caching is an important issue in the

domain of cloud computing. In this section, we discuss the prior

work related to the fields of sensor-cloud and caching.

2.1 Sensor cloud
Yuriyama et al. [11] address the issues of virtualization in the sensor-
cloud architecture. Along with virtualization, the authors propose

the role of different actors such as sensor-owners and the end-user.

Misra et al. [8] introduce the theoretical model of sensor-cloud and

various operations which are needed to be undertaken inside it.

The work shows significant improvement in energy consumption

by using sensor-cloud rather than traditional WSN. For selecting an

optimal data center (DC) in sensor-cloud, a scheme is proposed by

Chatterjee et al. [3]. In order to select an optimal DC, the authors

consider the QoS using migration cost. A framework is proposed by

Neiat et al. [9], considering the spatio-temporal aspects of sensor-

cloud. The proposed framework is mainly based on the A∗ and 3D
R-Tree algorithms. Chatterjee et al. [1] propose a dynamic pricing

scheme including hardware and infrastructure cost. The pricing

scheme considers user satisfaction along with the other actors in

the sensor-cloud.

2.2 Caching
In order to meet the demands and necessities of the end-users faster,

the concept of caching emerged in the domain of cloud computing.

Using suitable caching methods a cloud environment can improve

the performance highly. Chockler et al.[4] propose Cache-as-a-
Service as a feature of cloud, alongwith its advantages. Idachaba et al.
[6] propose a new scheme in order to decrease cloud pollution and

cloud monoploy prevalaent in the earlier architectures of caching.

The authors claim that the cache-hit rate increases by using their

scheme. Gordon et al.[5] shows a process of inter-VM shared cache

memory to reduce latency in cache hits. According to the authors,

the nahanni memcached reduces the delay in cache-read operations.

Kantere et al. [7] propose a dynamic pricing scheme for cloud cache.

The proposed scheme by the authors aims for user satisfaction.

Only one work related to caching in sensor-cloud is discussed by

Chatterjee et al. [2]. The work focus on the implementation of

an External and Internal cache in sensor-cloud architecture. The

authors calculate the optimal time for re-caching of external and

internal caches, respectively.

2.3 Synthesis
The existing literature highlights different issues of sensor-cloud.

Besides sensor-cloud, large number works considered by differ-

ent authors discuss the various schemes for caching in multiple

domains. However, only the work of Chatterjee and Misra [2] dis-

cuss the caching mechanism in sensor-cloud. The existing caching

scheme in sensor-cloud [2] considers the existence of cache inside

the sensor-cloud, which clears after the removal of a VM from

the system. Consequently, this type of solution is not applicable,

when there exist a huge number of sensor nodes in the system. The

problem becomes challenging where it is required to tackle the

situations where VMs may be destroyed in the cloud and there is a

necessity to store the cache for the destroyed sensors.

3 PROBLEM SCENARIO
We consider a sensor-cloud architecture consisting of heteroge-

neous sensor nodes. Further, a set of homogeneous/ heterogeneous

sensor nodes comprise of a virtual sensor. For each of the end-users,

a VM is created. The VM is accompanied by an SDC which is differ-

ent from the cache, generated automatically inside every VM once

it is instantiated. The SDC is responsible for storing the sensor data

only. The size and number of partitions of SDC is dependent on the

end-users’ requirements.

Figure 1: Sensor-Cloud architecture

3.1 Formal Definition of the Problem
The components involved in the sensor-cloud infrastructure are as

follows:

• Physical Sensor Nodes: The physical sensor nodes represent
the bottom most layer of the sensor-cloud. These sensor

nodes sense physical parameters from the environment and

transmit those to the upper layer. In our system, let S repre-

sent the set of all the physical sensor nodes. Thus, if the total

number of physical sensor nodes is N , then the set can be

represented as: S = {si, j }, such that 1 ≤ i ≤ k, 1 ≤ j ≤ ni ,
where k represents the distinct types of physical sensor

nodes present in sensor-cloud and ni represents the number

of sensors of the ith type. Therefore,

ayan
For Personal Use Only

QoS-Aware Dynamic Caching for Destroyed Virtual Machines in Sensor-Cloud Architecture ICDCN’18, January 04-07, 2018, India

k∑
i=1

ni = N

• Virtual Machines: Virtual Machine (VM) are instantiated

inside the cloud. Let the total number of VMs present in

the system be p. Then, the set of VMs is represented as:

V = {vm1,vm2,vm3, · · · ,vmp }

• Internal Cache (IC): It consists of the most frequent data

requested by end-users from the system. This is present

within the sensor-cloud and is an intermediate layer between

the end users and the virtual machines instantiated within

the cloud [2].

• External Cache (EC): It exists between the physical sensor

network and sensor-cloud layer [2]. It stores data directly

from the physical sensor nodes.

Fig. 1 represents the entire sensor-cloud architecture which we

consider in this work.

3.2 Special Dynamic Cache
Definition 1. Special Dynamic Cache (SDC), a set of two tuple

⟨id , t⟩ is an additional caching, which comprises of two parts – Reserve
(SDCR) and Active (SDCA).

In Definition 1, t denotes the type of the sensor data and id
is the set of ordered pairs (data, time). The instant at which the

request was made to the system is denoted by time and data, which
contains the value either of a single sensor node or the combined

value of the multiple homogeneous/heterogeneous sensor nodes,

as per requirement. The Active part of SDC contains the cache of

VMs currently active in the cloud. On the contrary, the Reserve part
contains cache of VM that are destroyed from the system. Fig. 2

depicts the structure of SDC.

Figure 2: Special Dynamic Cache

4 SOLUTION APPROACH
Let the sizes of the two partitions be represented as size(SDCR) and
size(SDCA) respectively. The total memory of SDC is assumed to

beM. Memory management of SDC is essential to achieve proper

utilization of SDC. The active partition of the SDC requires to be

maximized for storing the content of all possible active virtual

machines in the cloud. The reserve partition also need to be maxi-

mized to an extent such that it can store cache of at least a single

VM in itself. Thus the optimization function can be represented

mathematically as,

maximize size (SDCA) (1)

subject to,

size (SDCR) + size (SDCA) =M (2)

n∑
i=1

Ŝ (xi) ≤ size (SDCA) + size (IC) (3)

size (SDCR) ≥
m∑
j=1

Ŝ (yj) (4)

CSDC × size (SDCR) < min((CM × size (SDCR)),Csensor) (5)

CIC × size (SDCR) < min((CM × size (SDCR)),Csensor) (6)

where

xi : Any i
th

active virtual sensor

n: The number of active virtual sensors

yj : Any jth virtual sensor with cache inside IC

m: The number of virtual sensors with their cache content in IC.

M : Memory of cloud

Definition 2. sizeone(Ŝ) is the size of one ordered-pair, (data,time)
for any virtual sensor inside SDC or IC.

Equation (3) signifies the SDCA and IC must hold at least one

entry for each of the VMs currently active. The size of IC is deter-

mined keeping in mind the interval of re-caching using the process

in the work [2]. On the other hand, SDCR must be able to store at

least one ordered pair for each of the virtual sensors currently with

its cache in IC, which is represented in Equation (4). SDC is respon-

sible to provide the history to a new VM too. Th cache content of a

virtual sensor residing in IC is one of the most frequently used one.

Therefore, there is a good chance the same virtual sensor will get

activated again, even though it is unused currently. Thus, SDCR
must be able to store content of IC at least.

Definition 3. Cost (C) is the overhead required to transfer data
from one location to another.

Cost, C, can be represented mathematically,

C = {Ci, j : cost from i to j, where i and j are two locations} (7)

We consider the cost for the followings:

CSDC : i = SDCR to j = SDCA
CIC : i = SDCR to j = IC
CM : i = M̂ to j = EU
Csensor : i = anys ∈ S to j = EU

Equations (5) and (6) represent the cost of moving data within

SDC or from SDC to IC should be less than the cost for retrieving /

re-sensing. We use the approximate solution approach to simplify

Equations (5) and (6). Also, assume that SDCR stores cache-content

of a single virtual sensor. To make calculations simpler, we assume

that the cost of inter-SDC data exchange is less than both memory

transfer and re-sensing.

Thus,

CSDC × size (SDCR) < CM × size (SDCR) (8)

=⇒ CSDC < CM (9)

CSDC × size (SDCR) < Csensor (10)

The size(SDCR) is bounded within the range obtained from the

Equations (4) and (10). As the size of the reserve and active partitions

ayan
For Personal Use Only

ICDCN’18, January 04-07, 2018, India A. Roy et al.

are flexible (dynamic nature), the size of the reserve partition is in

the specified range. The remaining part can be dedicated to SDCA.

Just after the onset of the cloud system, the reserve partition

can be made equal to the size of IC itself as Ŝ (xi) for xi ∈ IC can be

equal to IC itself at maximum. After that the sizes can be modified

suitably and dynamically. Hence initially,

size (SDCR) = size (IC) and size (SDCA) =M − size (IC) (11)

Based on Importance Factor, I, the space allocation within SDCA
and IC is decided. I is defined for each distinct virtual sensor cache

in the system. End-users who use the same group of virtual sensor

nodes will be assigned the same cache storage unit in SDC and

IC. In order to determine the value of I for a virtual sensor, the

required parameters are – number of VMs associated (N̂), the number
of physical sensor nodes associated (n̂), and the number of end-users
request for this virtual sensor (f).

Proposition 1. I is directly proportional to N̂ , n̂ and f .

Proof. Consider two cache partitions in SDCA namely, c1 and c2.
The set of VMs associated with c1 beV1 = {vmi1 ,vmi2 , · · · ,vmiN̂

1

}

andwith c2 beV2 = {vmj1 ,vmj2 , · · · ,vmjN̂
2

}, where 1 ≤ i1, i2, · · · ,

iN̂1

≤ p and 1 ≤ j1, j2, · · · , jN̂2

≤ p. Thus N̂1 = |V1 | and N̂2 = |V2 |.

Additionally, assume that N̂1 > N̂2.

We see c1 supplies data to a larger set of VMs, consequently han-

dling more end-user requests. To increase the cache hit ratio, c1
must be made larger in size than c2. Hence we conclude,

I ∝ N̂ (12)

Similarly, for n̂, let the number of physical nodes associated with

c1 be n̂1 and with c2 be n̂2. Also, assume n̂1 > n̂2. Without caching,

more data needs to be sensed for supplying user demands to the

VMs associated with c1 than with c2. Therefore, I of c1 is greater
than c2. Hence, we conclude,

I ∝ n̂ (13)

Let the number of requestsmade to virtual sensors corresponding

to c1 and c2 be f1 and f2 respectively. Further, let us assume, f1 > f2.
as data in c1 is requested more often, so allotting more space to c1
helps to store more history and thus the accuracy of data returned

from the system for a larger number of requests is improved. Thus,

I ∝ f (14)

�

Definition 4. Importance Factor (I) : Importance Factor decides
the importance level of virtual sensor cache present in either SDC or
IC, and I is a function of N̂ ,n̂, and f .

Mathematically,

I = kN̂n̂ f (15)

where k is the proportionality constant.

Theorem 4.1. The rate of change of the size of SDCA with respect
to the number of physical sensors in a virtual sensor is constant.

Proof. Let vi denote the i
th

VS and n̂i the number of physical

sensors involved in vi . As denoted earlier, Ŝi is the sizeone of the
virtual node vi .

As n̂i is dependent of the end-user request, we have,

n̂i = д(r) (16)

where r is the end-user request.
The sizeone of the node increases gradually, with the increase in

the number of physical sensor nodes associated with a particular

VS cache. Therefore, Ŝi is directly proportional to n̂i .

Ŝ (xi) ∝ n̂i (17)

Equation (17) is written as,

dŜ (xi)

dn̂i
= α1 (18)

where α1 is the proportionality constant.

Thus, the rate of change of the size of SDCA with respect to the

number of physical sensors in a virtual sensor is
∂SDCA
∂n̂i

.

Applying chain rule, we have,

∂size (SDCA)

∂n̂i
=
∂size (SDCA)

∂Ŝ (xi)
×
∂Ŝ (xi)

∂n̂i
(19)

We assume the inequality in Equation (3) to be an equality and

proceed. Thus,

n∑
i=1

Ŝ (xi) = size (SDCA) + size (IC) (20)

Partially differentiating Equation (20) with respect to
ˆS (xi), we

have,

n∑
i=1

∂Ŝ (xi)

∂Ŝ (xi)
=
∂(size (SDCA) + size (IC))

∂ ˆS (xi)
(21)

=⇒ 1 =
∂size (SDCA)

∂ ˆS (xi)
+
∂size (IC)

∂ ˆS (xi)
(22)

The size of IC is a constant. Thus,

∂size (SDCA)

∂ ˆS (xi)
= 1 (23)

From Equations (19) and (23), we get,

∂size (SDCA)

∂n̂i
= 1 ×

∂ ˆS (xi)

∂n̂i
(24)

Using Equation (18) in Equation (24), we get,

∂size (SDCA)

∂n̂i
= α1 (25)

Therefore, the rate of change of size(SDCA) with respect to the

number of physical sensors (n̂i) in a virtual sensor is a constant. �

Proposition 2. The size of SDCA is independent of the number
of VMs associated with a VS cache, provided the total number of active
virtual sensors in the cloud remains constant.

Proof. Equations (2)-(6) for determining the size(SDCA) do not

contain the number of VMs associated with a particular VS.

Let the number of VSs in the system be constant. If the number

of VMs associated with any VS is increased, the size of the corre-

sponding VS cache is not affected. Since SDCA is a collection of VS

caches, it also remains unaffected. �

ayan
For Personal Use Only

QoS-Aware Dynamic Caching for Destroyed Virtual Machines in Sensor-Cloud Architecture ICDCN’18, January 04-07, 2018, India

4.1 Size of VS Cache within SDCA and IC
I of a VS decides its size in SDCA and IC. VS caches with higher I

are alloted more space as compared to the lower one. Hence, cache

allotment is dynamic, since I changes dynamically. The total size

of SDCA is fixed in the system. Therefore, the sum of all the VS

cache sizes must be equal to the size of SDCA alloted to the cloud

system. Thus, we have,

k∑
i=1

size (ci) = size (SDCA) (26)

where ci denotes a VS cache.

4.2 IC and EC in the System
Similar to SDC, IC too comprises of a 2-tuple, ⟨id, t⟩, where id is the

actual data from different heterogeneous sensor nodes and t is the
type of the sensor data. On the other hand, EC stores the single most

recent reading for each of the virtualized physical sensor nodes

present. EC consists a set of 3-tuples, (sensor − readinд, time,T),
where sensor−readinд denotes the reading of the data, time denotes
the time to which the data corresponds to, and T is the type of

physical sensor node. The sizes of IC and EC are fixed, and are

determined using the method described in [2], in order to optimize

the re-caching interval.

4.3 Data Request Handling in Sensor-Cloud
using SDC
• Responding to user requests: On receiving requests through

a Web-portal from the end-user, our system first searches

for data progressively in IC, SDCA and then EC. Wherever a

hit is encountered, the data are returned. On failing to find

data in the EC, it re-senses data from the sensor network

and caches into SDC.

• On destroying a VM: When a VM is destroyed from cloud,

system checks if the VS caches related to this VM are associ-

ated with any other VM. Otherwise, at this instant, the VS

cache is moved to SDCR .

Let c be the VS cache, which needs to be moved to SDCR . In case,

SDCR is not full, cache c is included in SDCR .

SDCR = SDCR ∪ {ci } (27)

Otherwise, a cache block is replaced in SDCR by c , using the

LRU technique [10].

5 PERFORMANCE EVALUATION
5.1 Simulation Setup and Result
We evaluated our scheme based on the cache hit percentage, energy
consumption due to cache-miss and message overhead during cache-
miss. We analyze and discuss the results of the simulation setup.

The plots in Fig. 3 show the cache hit percentage for 250 and 500

nodes, respectively. Figs. 4 and 5 show the energy consumption

(nJ) during cache miss and message overhead (kb) for cache miss,

respectively. The cache percentage in DCD is much higher than that

for the existing architecture due to the presence of SDC. The energy

consumption and message overhead in DCD during cache miss is

substantially less. With the increase in the number of end-user

ALGORITHM 1: DCD
Inputs:VMID : ID of the Virtual Machine which the end-user requests

Output: Data requested by user

Begin
Select the required VM with the VMID

for each vnode in the requested VM

if vnode.active == 1

Search in IC, if found then flagIC = True
if flagIC = False
Search in SDCA , if found flagSDC = True
if flagSDC = False
Search in EC, if found flagEC = True

if flagEC = False
Re-sense from physical sensor network

Re-cache into EC, SDCA and IC

endif
endif

endif
else
Search in SDCR , if found re-cache to SDCA and IC

Remove from SDCR and set flagSDC = True
if flagSDC == False
Re-sense from physical sensor network

Re-cache into EC, SDCA and IC

endif
endif

End

Table 1: Simulation Parameters

Parameters Values
Deployment Area 500 m × 500 m

Deployment Uniform and random

Number of end-user requests 20 – 120

requests, the energy consumption and overhead increase as more

number of misses are encountered. Since in our proposed scheme,

the number of cache misses get reduced, the message overhead is

also significantly reduced compared to the existing architecture.

6 CONCLUSION
In this work we propose a new caching technique for heteroge-

neous virtual sensors in sensor-cloud to achieve caching for a newly

created virtual sensor. In order to maintain QoS we introduce an ad-

ditional caching component namely Special Dynamic Cache (SDC),
which increases the number of cache hits, and reduces the energy

consumption and message overhead considerably.

In the future, the work can be further extended considering the

QoS of data transmission in the proposed model.

ACKNOWLEDGMENT
The first author of this work is partially funded by project file no.

9/81(1293)/17 sponsored by the Council of Scientific and Industrial

Research (CSIR), Govt. of India. The second author of this work is

partially supported by project file no. 184-17/2017(IC) sponsored

by University Grants Commission (UGC)-UK India Education Re-

search Initiative (UKIERI) Joint Research Programme (UKIERI-III).

The authors would like to thank the anonymous reviewers for their

constructive suggestions.

REFERENCES
[1] S. Chatterjee, R. Ladia, and S. Misra. 2015. Dynamic Optimal Pricing for Het-

erogeneous Service-Oriented Architecture of Sensor-cloud Infrastructure. IEEE
Transactions on Services Computing 99 (2015).

[2] S. Chatterjee and S. Misra. 2014. Dynamic and adaptive data caching mecha-

nism for virtualization within sensor-cloud. In Proceedings of IEEE International

ayan
For Personal Use Only

ICDCN’18, January 04-07, 2018, India A. Roy et al.

 0

 10

 20

 30

 40

 50

 60

 70

20 40 60 80 100 120

C
a
c
h
e

h
i
t

p
e
r
c
e
n
t
a
g
e

(
%
)

Number of end-user requests (r)

With SDC Without SDC

(a) Number of node = 250

 0

 10

 20

 30

 40

 50

 60

 70

20 40 60 80 100 120

C
a
c
h
e

h
i
t

p
e
r
c
e
n
t
a
g
e

(
%
)

Number of end-user requests (r)

With SDC Without SDC

(b) Number of node = 500

Figure 3: Cache hit percentage

 0

 5000

 10000

 15000

 20000

 25000

20 40 60 80 100 120

E
n
e
r
g
y

l
o
s
s

(
n
J
)

Number of end-user requests (r)

Using EC, IC and SDC Using only EC and IC

1000

1500

2000

2500

3000

20 40 60 80 100120

(a) Number of node = 250

 0

 5000

 10000

 15000

 20000

 25000

20 40 60 80 100 120

E
n
e
r
g
y

l
o
s
s

(
n
J
)

Number of end-user requests (r)

Using EC, IC and SDC Using only EC and IC

1000

1250

1500

1750

2000

20 40 60 80 100120

(b) Number of node = 500

Figure 4: Energy consumption

 0

 2

 4

 6

 8

 10

20 40 60 80 100 120

M
e
s
s
a
g
e

o
v
e
r
h
e
a
d

(
k
b
)

Number of end-user requests (r)

With SDC Without SDC

(a) Number of node = 250

 0

 2

 4

 6

 8

 10

20 40 60 80 100 120

M
e
s
s
a
g
e

O
v
e
r
h
e
a
d

(
k
b
)

Number of end-user requests (r)

With SDC Without SDC

(b) Number of node = 500

Figure 5: Message overhead

Conference on Advanced Networks and Telecommuncations Systems. 1–6.
[3] S. Chatterjee, S. Misra, and S. Khan. 2015. Optimal Data Center Scheduling for

Quality of Service Management in Sensor-cloud. IEEE Transactions on Cloud
Computing PP, 99 (2015), 1–1.

[4] Gregory Chockler, Guy Laden, and Ymir Vigfusson. 2010. Data Caching As a

Cloud Service. In Proceedings of the 4th ACM International Workshop on Large
Scale Distributed Systems and Middleware (LADIS ’10). New York, NY, USA, 18–21.

[5] Adam Wolfe Gordon and Paul Lu. 2011. Low-latency caching for cloud-based

web applications. NetDB (2011).

ayan
For Personal Use Only

QoS-Aware Dynamic Caching for Destroyed Virtual Machines in Sensor-Cloud Architecture ICDCN’18, January 04-07, 2018, India

[6] U. Idachaba and F. Wang. 2015. A Community-Based Cloud Computing Caching

Service. In Proceedings of IEEE International Congress on Big Data. 559–566.
[7] Verena Kantere, Debabrata Dash, Gregory Francois, Sofia Kyriakopoulou, and

Anastasia Ailamaki. 2011. Optimal service pricing for a cloud cache. IEEE
Transactions on Knowledge and data engineering 23, 9 (2011), 1345–1358.

[8] S. Misra, S. Chatterjee, and M. S. Obaidat. 2014. On Theoretical Modeling of

Sensor Cloud: A Paradigm Shift From Wireless Sensor Network. IEEE Systems
Journal PP, 99 (2014), 1–10.

[9] Azadeh Ghari Neiat, Athman Bouguettaya, Timos Sellis, and Zhen Ye. 2014.

Spatio-temporal composition of sensor cloud services. In Proceedings of IEEE
International Conference on Web Services. 241–248.

[10] Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. 2008. Operating
System Concepts (8th ed.). Wiley Publishing.

[11] M. Yuriyama and T. Kushida. 2010. Sensor-Cloud Infrastructure - Physical Sensor

Management with Virtualized Sensors on Cloud Computing. In 13
th International

Conference on Network-Based Information Systems. 1–8.

ayan
For Personal Use Only

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contribution

	2 RELATED WORK
	2.1 Sensor cloud
	2.2 Caching
	2.3 Synthesis

	3 Problem Scenario
	3.1 Formal Definition of the Problem
	3.2 Special Dynamic Cache

	4 Solution Approach
	4.1 Size of VS Cache within SDCA and IC
	4.2 IC and EC in the System
	4.3 Data Request Handling in Sensor-Cloud using SDC

	5 Performance Evaluation
	5.1 Simulation Setup and Result

	6 Conclusion
	References

