
1

Soft-WSN: Software-Defined WSN Management
System for IoT Applications

Samaresh Bera, Student Member, IEEE, Sudip Misra, Senior Member, IEEE,
Sanku Kumar Roy, Student Member, IEEE, and Mohammad S. Obaidat, Fellow, IEEE, Fellow, SCS

Abstract—In this paper, we propose a software-defined wire-
less sensor network architecture (Soft-WSN) — an effort to
support application-aware service provisioning in internet of
things (IoT). Detailed architecture of the proposed system is
presented involving the application, control and infrastructure
layers to enable software-defined networking in IoT. We design
a software-defined controller, which includes two management
policies — device management and network management. Device
management facilitates users to control their devices in the
network. To enable device control mechanisms, we investigate
three scheduling issues in a sensor node — sensing task, sensing
delay, and active-sleep. On the other hand, topology of the
network is controlled by the network management policies, which
can be modified in run-time to deal with dynamic requirements
of IoT. Furthermore, the proposed scheme is implemented in
a real hardware platform without changing the underlying
sensor networking concepts, so that existing sensor devices can
be seamlessly integrated. Therefore, in contrast to the existing
SDN solutions for wireless sensor networks (WSNs), the pro-
posed system, Soft-WSN, focuses on both device management
and topology management to meet run-time application-specific
requirements of IoT, while enhancing flexibility and simplicity
of WSN management. Experimental results on a real hardware
based test-bed indicate that the proposed scheme is beneficial
to meet real-time application-specific requirements of IoT, while
ensuring significant improvements on network performance, over
the traditional approaches.

Index Terms—Wireless Sensor Networks, Software-Defined
Networking, Internet of Things, Device Management, Topology
Management, Network Performance

I. INTRODUCTION

A WSN comprises of several sensor nodes, which can be
used in different application scenarios such as agriculture,
militant, health-care, and energy. A WSN may consist of
several heterogeneous sensor nodes to perform dedicated tasks
deployed in an area-of-interest. There exists many proprietary
and non-proprietary existing solutions to fetch sensed data
from the sensor nodes [1]. However, the current trend of using
IP-based sensor networking solutions (such as 6LoWPAN
and IPv6) enable the WSN to be connected to the Internet.
Thus, WSNs can be used for monitoring/controlling different
applications through the Internet connectivity, which, in turn,
establishes the concept of internet of things (IoT). The concept

S. Bera, S. Misra and S. K. Roy are with the Computer Science and
Engineering Department, Indian Institute of Technology, Kharagpur, 721302,
India, Email: s.bera.1989@ieee.org, smisra@sit.iitkgp.ernet.in, sankukumar-
roy@gmail.com

M. S. Obaidat is the Chair and Professor of the Dept. of Computer and
Information Science, Fordham University, New York, 10458, USA, Email:
mobaidat@fordham.edu

of internet of things (IoT) enables physical objects, which are
embedded with sensors, actuators, and network connectivity, to
collect and exchange data among themselves in a collaborative
manner [2], [3]. Consequently, it is evident that WSNs are
expected to play a key role for monitoring different objects in
order to build smart things (such as smart home, intelligent
transportation systems, and smart health-care). Concurrently,
software-defined networking (SDN) leverages a centralized
network control paradigm, while decoupling control logic
from physical devices in a real network platform [4]. Thus,
traditional forwarding devices are logically separated into two
planes — control plane and data plane. Different network
control operations are performed through the control plane,
whereas, the data plane refers to the physical devices in
the network. Therefore, the physical devices are capable of
adapting adequate forwarding rules defined by centralized
controller in order to improve network performance.

A. Motivation

The business requirements of modern WSN implementation
require them to change the in-built policy in order to meet
these requirements [5]. The changes are dynamic in nature,
which need to be carried out in real-time. Additionally, due
to the presence of heterogeneous sensor nodes in a WSN, it
is necessary to control adequately the data of such nature,
in order to take optimal decisions. Therefore, it is required
to program the sensor nodes to deploy desired policy and
to control the data forwarding logic in sensor nodes in an
adequate manner. SDN-enabled WSN implementations can
help in addressing this problem.

Most of the existing solution approaches related to pro-
grammable WSN concentrated on FPGA-based programmable
architecture, which suffers from functional complexity and
resource-constrained nature of sensor nodes. As evident from
the work of Sood et al. [4], the functionality of the physical
devices/networks can be changed in real-time using SDN, to
support the application-specific requirements of IoT, while
changing the control logic of the devices/network. Thus, SDN-
based technologies are expected to play a major role in
establishing an efficient IoT environment. However, existing
SDN-based solution approaches focus on low-level configu-
ration and completely based on operating system. Recently,
researchers proposed different SDN-based approaches for ef-
ficient data-center and high-speed backbone networking. In
such approaches, OpenFlow [6] is considered as the main com-
munication protocol between the controller and the physical

Fo
r p

ers
on

al 
us

e o
nly



2

devices. However, due to the large number of rule-matching
fields and energy expensive nature of OpenFlow, it may not
be adequate to use it in low-power networks (such as sensor
networks) in IoT. To address such issue, Luo et al. [5] proposed
Sensor-OpenFlow, which defines flow-table implementation
rules in sensor networks. However, issues related to real-time
device and topology management in sensor networks, which
are crucial factors to fulfill the requirements of IoT, are yet to
be adequately addressed.

B. Contributions

To address the above mentioned issues, we propose a
software-defined wireless sensor network architecture, which
enables the sensor devices/networks to be configured in real-
time for application-aware service provisioning in IoT, named
as Soft-WSN. We design a controller having two management
entities — device manager and topology manager. The device
manager is responsible for controlling device-specific tasks.
On the other hand, topology manager maintains the topology
of the network so that the performance of the network is op-
timized. Therefore, the device manager and network manager
define adequate control logic based on the application-specific
requirements, and it is sent to the devices in the network.
Accordingly, the devices in the network adapt the control
logic defined by the controller in real-time, and change their
activities. We use the IEEE 802.15.4 [7] and IEEE 802.11
[8] protocols in the proposed architecture, so that the existing
sensor networking devices can be used without changing the
hardware platform, while modifying the control logic in real-
time. Therefore, in contrast to the existing SDN solutions
for WSNs, Soft-WSN focuses on both device management
and topology management to meet application-specific re-
quirements of IoT in real-time, while enhancing flexibility
and simplicity of WSN management. Experimental results on
a real hardware platform show that the proposed approach
outperforms the traditional WSN technologies in terms of
energy consumption, message overhead, and packet delivery
ratio. In brief, the contributions in this paper are as follows:

• We propose a software-defined wireless sensor network
architecture to support application-specific requirements
of IoT, named as Soft-WSN.

• In Soft-WSN, we design a software-defined controller
with two management facilities — device and topology
management. The former is responsible for controlling
devices in the network, whereas the latter is responsible
for topology management in the network.

• To change the functions of devices and network-topology
in real-time, we present different rule management poli-
cies, while describing packet formats which are required
to be exchanged.

• We evaluate the performance in hardware platform to
show the effectiveness of the proposed scheme, Soft-WSN.
From the results, it is evident that the proposed scheme is
capable of enhancing the network performance in terms
of energy consumption, message overhead, and packet
delivery ratio.

The rest of the paper is organized as follows. Section II
discusses the current state-of-the-art of programmable and
software-defined networking aspects in WSN, while presenting
their limitations. Section III presents a detailed architecture of
the proposed system and its components. Section IV describes
device-specific control mechanisms, whereas in Section V, net-
work topology management is presented. Section VI presents
the experimental setup and results to show the effectiveness
of the proposed scheme. Finally, we conclude the paper in
Section VII, while mentioning some future research directions.

II. RELATED WORK

In this Section, we discuss the existing works from the pro-
grammable and software-defined wireless sensor networking
aspects. Several works are proposed in the literature to enable
real-time programmable features in wireless sensor networks.
We discuss the existing works in two folds — programmable
and software-defined WSNs.

A. Programmable WSNs

In recent years, researchers proposed different schemes for
WSN, so that the latter can be programmed in real-time
based on requirements [9]–[12]. Krasteva et al. [9] proposed
a run-time re-configurable sensor node architecture, while
incorporating field programmable gate array (FPGA) into the
traditional sensor devices. In the proposed scheme, sensor
nodes change their activities in run-time based on the control
mechanisms decided by ‘reconfiguration control’ unit. The
authors showed that deployment cost can be minimized signifi-
cantly with the proposed scheme compared to pre-programmed
sensor networks. Similarly, Hsieh et al. [10] proposed FPGA-
based re-configurable sensor nodes to minimize the energy
consumption in the network. The authors focused on hard-
ware accelerated information compression to minimize energy
consumption, while aggregating the sensed information at the
cluster-head nodes. Vera et al. [11] proposed a programmable
interface in WSN which supports the plug-and-play concept
use in sensor nodes. In such a system, a sensor node can
reconfigure itself according to the properties of the network.

Angove et al. [12] designed a platform for remote inter-
action with on-field sensor nodes, while deploying a pro-
grammable gateway device in the network. The gateway
node is reconfigurable and mobile in nature, and thus, it
interacts with the on-field sensor nodes. However, the proposed
scheme only facilitates the gateway device to be reconfigured.
Therefore, activities of the sensor node and network cannot be
configured in real-time.

In sum, in the proposed programmable sensor network
platforms, the control mechanism is situated within the sensor
node, which increases the functional complexity of the system.
Moreover, very specific things can be reconfigured due to the
resource-constrained nature of the sensor nodes, which, in turn,
may not be adequate to support different application-specific
requirements of IoT.

Fo
r p

ers
on

al 
us

e o
nly



3

B. Software-Defined WSNs

Several schemes are also proposed in the context of
software-defined WSNs, which address different challenges
involved in programmable sensor nodes [5], [13]–[16]. Ferrari
et al. [13] proposed a new software-defined WSN architecture,
where each of the sensor nodes are enabled with a software
programmable transceiver. Depending on the environmental
conditions, the transceiver switches to adequate radio com-
munication channels and standards in order to optimize the
network performance. Therefore, the proposed approach is
capable of addressing different communication issues in WSN
in the presence of adverse environmental affects.

Luo et al. [5] proposed a flow-table implementation mech-
anism in sensor networks (Sensor-OpenFlow), in which the
forwarding rule is defined by a centralized controller. Thus,
the software-defined networking concepts are applied in WSN
in order to improve the network performance. The forward-
ing rules are implemented based on two aspects — com-
pact network-unique address and concatenated attribute-value
pairs. In the former one, node-ID is compared with the flow-
table before taking any action (similar to OpenFlow), whereas
sensed-values are compared in the latter one before taking de-
cisions. Thus, based on the application-specific requirements,
forwarding rules can be deployed in the network.

Galluccio et al. [14] proposed a solution concept for
software-defined WSN in order to reduce information ex-
change between controller and the sensor nodes. Therefore,
stateful operations are executed at the sensor nodes, so that
they are able to adopt adequate policies (previously defined
by controller) without requesting to the controller every time.
Consequently, the proposed scheme minimizes the message
overhead and energy consumption in the network.

Zeng et al. [15] proposed a software-defined sensor network
platform, in which each node is embedded with multiple
sensors. Three different issues are investigated in the proposed
scheme — sensor activation, sensor mapping, and sensor
scheduling. The authors showed that energy consumption
of the sensor nodes can be minimized significantly, while
the sensor nodes are embedded with multiple sensors and
controlled in a centralized manner. Similarly, Miyazaki et
al. [16] proposed a software-defined networking architecture
for sensor networks. However, the proposed software-defined
networking aspects in WSN are limited to individual sensor
node management.

Synthesis: Critical analysis of the existing works reveals that
there exists a research lacuna on software-defined wireless sen-
sor networks to meet the application-specific requirements of
IoT. The existing works focused on the issues related to either
sensor node or flow-table implementation. However, both the
device-specific and network-specific issues must be handled in
an efficient manner for better monitoring of physical objects
which is the main objective of IoT. In this paper, we propose
a software-defined WSN architecture for application-aware
service provisioning, so that both the devices and the network
can be managed together to improve quality-of-service (QoS)
to the IoT users.

Fig. 1: Proposed software-defined wireless sensor network
architecture

III. SYSTEM MODEL

In this Section, we present the proposed software-defined
WSN architecture, while describing different components of
the controller and sensor node in detail.

A. Proposed Architecture

We follow the traditional layered architecture of SDN to
design the proposed system [4]. Figure 1 presents an overall
architecture of the proposed system with infrastructure layer,
control layer, and application layer.

Assumption 1. We assume that the sensor nodes are deployed
in a uniform random fashion, and initially, the network is
connected, i.e., each node is within the communication range
of atleast one node in the network.

All physical devices (such as sensor nodes and access
points) exist in the infrastructure layer. The sensed data from
the sensor node is forwarded to the access point (AP), and
finally, it is forwarded to the base station (BS). In the proposed
system, both the sensor nodes and AP can be reconfigured
in real-time to support application-specific requirements. The
detailed architecture of a sensor node is presented in Figure
2. We follow the generalized architecture of a sensor node
with different modules — communication, sensor, power, and
micro-controller [15].

In the control layer of the proposed architecture, adequate
decisions are taken by the controller depending on the re-
quirements and topology of the network in order to improve
the QoS of the network. Therefore, we design two managers
at the control layer — device manager and topology manager.
Detailed architecture of the device manager and topology
manager are presented in Figure 3. The device manager
is responsible for controlling device-specific tasks such as
sensing delay, sensing task, and active-sleep maintenance.
On the other hand, the topology manager is responsible for

Fo
r p

ers
on

al 
us

e o
nly



4

Fig. 2: Architecture of the sensor node

Fig. 3: Proposed architecture of the controller

managing different tasks such as forwarding rule management
and network-connectivity management. As shown in Figure
3, the topology manager can instruct all the nodes within
the network to drop or forward any message depending on
requirements. For example, if there is any malicious node in
the network, the topology manager instructs all nodes to drop
the malicious node’s message. On the other hand, the topology
manager can instruct all the nodes to forward a node’s message
with higher priority. Therefore, the topology manager handles
the topology management issues in the network.

Finally, in the application layer, application-specific requests
are generated, and eventually, those are sent to the controller
for execution at the control layer.

Thus, we design a complete software-defined sensor net-
work architecture having application, control, and infrastruc-
ture layer, as maintained in the traditional SDN architecture for
application-specific service provisioning in IoT. Consequently,
any sensor node can be incorporated within the proposed
system, and can be controlled in real-time without changing
the hardware platform of the sensor node.

B. Protocol Architecture

In this Section, we discuss about the protocols used in
the proposed system. The sensor nodes communicate among
themselves and APs, and the APs communicate with the
controller and server, which store the sensed data. Therefore,
we discuss the sensor-AP and AP-controller communications,
in brief, in the subsequent Sections III-B1 and III-B2.

1) Sensor-AP Communication: We use the Zig-bee (IEEE
802.15.4) [7] protocol architecture to enable communication

among sensor nodes in the network, as it is widely used in low-
power networks. Moreover, most of the sensor nodes, which
are available in market, use Zig-bee protocol for communica-
tion. Therefore, we assume that the sensor nodes support Zig-
bee for communication with the APs in the network. However,
other radio technologies can also be integrated.

2) AP-Controller Communication: We use the IEEE 802.11
[8] protocol architecture to enable communication among APs,
server and controller. Therefore, AP sends sensor data to the
server through the WLAN technology, in which server is
running in high-speed wired network. Similarly, the controller
communicates with the APs through the traditional network-
ing technologies. The decisions taken by the controller are
forwarded to the corresponding nodes by APs.

Moreover, we use the IEEE 802.15.4 and the IEEE 802.11
protocols in the proposed system as they are well-established
protocols used in IoT. We limit our discussions to both the
sensor-AP and AP-controller communication architecture, as
our main objectives in this work are device management and
topology management in software-defined WSN.

C. Network Controlling

The main objective of the proposed software-defined WSN
architecture is to manage the wireless sensor nodes and net-
work in order to improve the network performance. Therefore,
we propose two management policies — device management
and topology management. In the device management, device-
specific control tasks are included. On the other hand, network
topology is controlled by topology management. We describe
the functions of device management and topology management
in Sections IV and V, respectively.

IV. DEVICE MANAGEMENT

Device management policies are taken by device manager.
The device manager manages individual sensor nodes in the
network, and it is responsible for scheduling the sensing
tasks, sensing delay, and active-sleep maintenance. We dis-
cuss sensor management, delay management, and active-sleep
management policies in Sections IV-A, IV-B and IV-C. We
primarily focus on the packet formats which need to be
exchanged in real-time to change different tasks. Accordingly,
sensor nodes change their activities to meet the application-
specific requirements.

A. Sensor Management

As discussed in Section III, the sensor nodes have multiple
sensors, which are required to be managed to meet application-
specific requirements. Figure 4 presents the packet format
to control the sensor-IDs within a sensor node. The packet
includes different fields — Header, Length, Type, Node-ID,
Sensor-ID, Action, TTL, Checksum, and Options. The Header
defines the header format to enable application programming
interface (API) mode on the Zig-bee modules. Length repre-
sents the total length of the packet, which is used to calculate
the Checksum. We define three types of information exchange
— unicast, multicast and broadcast. To enable/disable specific

Fo
r p

ers
on

al 
us

e o
nly



5

Fig. 4: Packet format for sensor management

Fig. 5: Packet format for delay management

Sensor-ID in individual sensor node, the unicast mode is
used. On the other hand, the broadcast mode is used to
enable/disable specific Sensor-ID in all sensor nodes in the
network. Node-ID and Sensor-ID represent the IDs of sensor
node and sensor, respectively. In case of Node-ID, 16-bit
address of the Zig-bee module is used. Action defines the
required sensor to be activated. TTL defines the duration of
time-to-live of a packet. Checksum is used for error checking.
Finally, the Options field is used for any specific instruction
to be given to sensor nodes.

B. Delay Management

The sensing delay of the WSN nodes is managed by the
delay management policy. Similar to the sensing task, sensing
delay can also be changed in real-time. Figure 5 presents
the packet format used for delay management. In the packet
format, Header, Length, Type, Node-ID, TTL, Checksum and
Options represent similar things, as described in Section IV-A.
Action defines the desired sensing-delay of the sensor nodes.

C. Active-Sleep Management

The active-sleep state of a sensor node is managed by
the active-sleep management. Packet format for active-sleep
management is presented in Figure 6. In the packet format,

Fig. 6: Packet format for active-sleep management

Header, Length, Type, Node-ID, TTL, Checksum and Options
represent similar things as described earlier. Action defines the
desired state, i.e., active or sleep, of the sensor node.

Fig. 7: Packet format for node-specific forwarding rule man-
agement

V. TOPOLOGY MANAGEMENT

In this Section, we describe the topology management
module, while focusing on the forwarding rule and network-
connectivity management in the network. We categorize the
forwarding rule management in two aspects — node-specific
and network-specific — rather than considering a uniform
forwarding rule management policy. Consequently, depending
on the application-specific requirements, rules can be imple-
mented, while preserving QoS of the network. We discuss both
the forwarding rule management policies in the subsequent
Sections.

A. Node-Specific Management

In node-specific rule management, we define the forwarding
rules which are applicable for a node or group of nodes.
Figure 7 presents the packet format used for node-specific
forwarding rule management. The packet includes Header,
Length, Type, Node-ID, Action, TTL, Checksum, and Options,
which are already described above. However, in node-specific
forwarding rule management, the Type field defines either
unicast or multicast. The Action field includes different actions
— Change-Dest, Do-Not-Send and Do-Not-Receive. The
Change-Dest defines the change in the forwarding device ID to
whom a node sends the packet to forward. Thus, the network
remains connected in absence of any other nodes. A node
is instructed not to send its data to a specific forwarding
device. Finally, Do-Not-Receive signifies that a node should
not receive from a specific node. Therefore, node-specific
forwarding rules management policies are ensured with the
above mentioned rules.

B. Network-Specific Management

In contrast to the node-specific forwarding rules manage-
ment, network-specific management defines a uniform for-
warding rules for all nodes in the network. The packet format
used in network-specific management is shown in Figure 8. It
also includes Header, Length, Type, Action, TTL, Checksum,
and Options. Here, the rule is broadcasted to every node in
the network, which is defined by the field Type. Different
actions in the network-specific management are as follows
— Drop-From and Do-Not-Forward. Drop-From defines that
all the nodes in the network are instructed to drop a particular
node’s message. For example, if a malicious node is present
in the network, the controller instructs all other nodes to drop
the malicious node’s information. Similarly, Do-Not-Forward

Fo
r p

ers
on

al 
us

e o
nly



6

Fig. 8: Packet format for network-specific forwarding rule
management

Fig. 9: Developed Soft-WSN hardware platform

defines that all the nodes in the network are instructed not
to forward to a particular node. For example, this situation
occurs when there is a selfish node in the network, which does
not forward others’ messages. Therefore, using the proposed
scheme, the ‘selfish’ nodes can be avoided from data forward-
ing route. We limit our discussion on detecting the ‘selfish’
nodes in the network, as our main objective in this paper is to
control the network topology. However, we ensure that using
the proposed Do-Not-Forward concept, it is possible to avoid
the selfish nodes in the network in data forwarding process.
Therefore, we ensure that all the network-specific forwarding
rule management can be done using the proposed method.

VI. PERFORMANCE EVALUATION

In this Section, we analyze the performance of the proposed
system in terms of different performance metrics, which are
the key-factors in a WSN. Figure 9 shows developed platform
as discussed in Sections III, IV and V. The proposed system
can be used for several IoT applications such as building a
smart home, environment monitoring, and traffic monitoring,
in which the sensors can be controlled in a centralized manner
from both the aspects — device and topology management. It
is noteworthy that we implement the flow-table rules at the
devices as mentioned in Sections IV and V. Upon receiving
requests, the devices take decisions based on the rules defined
in the flow-tables. For simplicity, we limit our discussion
on flow-table implementation as part of the performance
evaluation, as we discuss it earlier in detail. Moreover, we
believe that it is easy to implement the flow-table rules at the
devices, while following the procedure presented in this paper.

Fig. 10: A schematic view of the experimental setup

A. Experimental Setup

To evaluate the performance of the proposed scheme, we
setup a hardware platform as mentioned in Section III. The
schematic view of the hardware platform is shown in Figure
10. Table I shows the list of parameters and the corresponding
values used for the experiment [17].

TABLE I: Experimental Setup

Parameter Value
Transmission Range 15 m

Transmit Power 24.75 mW
Receive Power 13.5 mW

Idle Power 13.5 mW
Transmission bit rate 40 kbps

Protocol IEEE 802.15.4 & IEEE 802.11

B. Performance Metrics

We use different performance metrics — packet delivery
ratio, energy consumption, and message overhead for char-
acterizing the performance of the proposed system. Detailed
calculation of the performance metrics is discussed in the
subsequent Sections.

1) Packet Delivery Ratio (ρ): The packet delivery ratio (ρ)
is calculated as the ratio between total number of packets
received and total number of packets transmitted, mathemati-
cally:

ρ =

∑
Total packet received∑

Total packet transmitted
(1)

2) Energy Consumption: To calculate total energy con-
sumption in the network, we calculate the energy spent for
transmission, reception, and idle condition. The energy re-
quired for transmission (Etran), reception (Erec), and idle
condition (Eidle) are calculated as follows:

Etran = PtranTtran (2)

Erec = PrecTrec (3)

Eidle = PidleTidle (4)

where Ptran, Prec and Pidle denote energy required for
transmission, reception and idle condition in a unit time,

Fo
r p

ers
on

al 
us

e o
nly



7

 30

 40

 50

 60

 70

 80

 90

 100

30 60 90 120 150 180 210 240 270 300

P
ac

k
et

 D
el

iv
er

y
 R

at
io

 (
%

)

Time (min)

WSN
Soft-WSN

(a) Packet delivery ratio at different time periods

 30

 40

 50

 60

 70

 80

 90

 100

30 60 90 120 150 180 210 240 270 300

P
ac

k
et

 D
el

iv
er

y
 R

at
io

 (
%

)

Time (min)

WSN
Soft-WSN

(b) Total packet delivery ratio

Fig. 11: Packet delivery ratio in the network

respectively. Ttran and Trec represent time required for trans-
mission and reception, respectively. Tidle represents idle time
of the sensor nodes.

3) Message Overhead: Message overhead is calculated as
the number of messages transferred among the sensor nodes.
We calculate the number of messages as the combination of
both data packet and control message.

C. Results and Discussion

Using the performance metrics discussed above, we observe
the performance of the proposed scheme, Soft-WSN, over
traditional WSN to show the effectiveness of the proposed
scheme. As discussed in Sections III, IV and V, the controller
manages all the sensor nodes in the network in a centralized
manner depending on the application-specific requirements.
On the other hand, in traditional WSN, we use the distributed
architecture in which sensor nodes act in a distributed manner.
We discuss the performance of the proposed scheme, Soft-
WSN, compared to the traditional WSN, WSN, in the following
Sections with confidence interval. The confidence interval is
considered to show the variation of obtained results in multiple
runs. We adopt the use of 95% confidence rule [18], i.e.,
in 95% cases, we are confident that the obtained results lie
between the specified range.

1) Packet Delivery Ratio: Figure 11 shows the packet
delivery ratio in the network obtained by the proposed scheme,
Soft-WSN and traditional scheme, WSN. In Figure 11(a), we
present the packet delivery ratio at each time-period. On the
contrary, Figure 11(b) shows the packet delivery ratio in the
network in terms of cumulative distribution function. In both
the cases, it is evident that the proposed scheme outperforms
the traditional WSN schemes in terms of packet delivery ratio.
In the proposed scheme, the controller defines the forwarding
rules for each sensor node in the network. Therefore, the rout-

 1

 2

 3

 4

 5

 6

 7

 8

30 60 90 120 150 180 210 240 270 300

E
n

er
g
y

 C
o
n

su
m

p
ti

o
n
 (

W
)

Time (min)

WSN
Soft-WSN

(a) Energy consumption in the network at different time periods

 0
 10
 20
 30
 40
 50
 60
 70
 80

30 60 90 120 150 180 210 240 270 300

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n
 (

W
)

Time (min)

WSN
Soft-WSN

(b) Total energy consumption in the network

Fig. 12: Energy consumption in the network

ing path is maintained by the controller. Additionally, network
connectivity is also ensured by the controller, while leveraging
global view of the network. Consequently, more data packets
reach to the destination compared to the traditional WSN
schemes in which routing is done in a distributed manner.
Eventually, the packet delivery ratio using Soft-WSN is higher
than the traditional WSN schemes.

2) Energy Consumption: We evaluate the energy consump-
tion in the network incurred by sensor nodes due to transmis-
sion, reception, and idle condition. Figure 12(a) shows the
energy consumption at different time periods in the network.
On the other hand, Figure 12(b) presents the total energy
consumption in the network. From the Figures, it is also
evident that the proposed scheme, Soft-WSN, minimizes the
energy consumption in the network significantly compared
to the traditional WSN schemes. Similar to the information
routing, transmission, reception and idle-condition of sensor
nodes are controlled by the centralized controller. Thus, Soft-
WSN optimizes the scheduling tasks of sensor nodes to
minimize the energy consumption, while leveraging global
view of the network. On the other hand, the sensor nodes
schedule different activities (such as transmission, reception
and idle-condition) in a distributed manner, in which central
coordination is absent. Consequently, the proposed scheme
outperforms the without SDN-based schemes in terms of en-
ergy consumption in the network. Thus, the proposed scheme
is also beneficial to improve the lifetime of the network.

3) Message Overhead: Finally, we present the message
overhead in the network in Figure 13 from two aspects
— overhead for data packets and control packets. Figure 13(a)
shows the message overhead at different time periods for data
packets in the network. On the contrary, Figure 13(b) presents
the cumulative overhead for control packets in the network.
These figures signify that the proposed scheme is capable

Fo
r p

ers
on

al 
us

e o
nly



8

 0

 50

 100

 150

 200

 250

 300

30 60 90 120 150 180 210 240 270 300

N
o

. 
o
f 

D
a
ta

 P
a
c
k
e
ts

Time (min)

WSN
Soft-WSN

(a) Overhead for data packets at different time periods

 0

 50

 100

 150

 200

 250

 300

 350

 400

30 60 90 120 150 180 210 240 270 300

N
o
. 

o
f 

C
o
n

tr
o

l 
P

a
c
k

e
ts

Time (min)

Soft-WSN
WSN

(b) Cumulative overhead for control packets

Fig. 13: Message overhead in the network

of minimizing the total message overhead in the network
to a large extend compared to traditional WSN schemes. In
the proposed scheme, Soft-WSN, the sensor nodes unicast
(or multicast) its information to its neighbor(s) depending on
the forwarding rule defined by the controller. Therefore, cre-
ation of data packet-replicas is controlled using the proposed
scheme. On the other hand, in case of traditional WSN, the
sensor nodes broadcast the data packets in the network. As a
result, message overhead for data packets in traditional WSN
is higher than the proposed scheme, Soft-WSN. On the other
hand, overhead for control packets in the network is higher
using Soft-WSN compared to that of using the traditional WSN
schemes, as the nodes communicate with the controller on
receiving a new packet from other nodes.

VII. CONCLUSION

In this paper, we proposed a software-defined WSN ar-
chitecture to deal with the application-specific requirements
of IoT, which is dynamic in nature. We presented controller
and sensor node architecture to enable SDN support in WSN.
We proposed two components of the controller — device
manager and topology manager. The former is responsible
for handling device-specific tasks (such as sensing task,
sensing delay, and active/sleep scheduling), and the latter is
responsible for managing network topology to ensure QoS
of the network. Therefore, in contrast to the existing SDN
solutions for wireless sensor networks (WSNs), the proposed
system, Soft-WSN, focused on both device management and
topology management in the network. From the experimental
results, it is evident that the proposed scheme is beneficial for
application-aware service provisioning in IoT, while improving
network performances over the traditional sensor networking
approaches.

In this work, we considered that the sensor devices use
similar radio technology for communication, which may not
be adequate to include all types of sensor devices in the
network. Therefore, we plan to incorporate other radio tech-
nologies (such as Bluetooth) within the sensor devices as a
future extension of this work. Additionally, in this work, we
place the controller at the server end to control the network
activities. However, minimization of network delay and control
message overhead may be explored, while focusing on optimal
controller placement problem in SDWSN. Additionally, we
plan to analyze the complexity involved in the flow-table
implementation at the devices using the proposed scheme.

REFERENCES

[1] L. Mainetti, L. Patrono, and A. Vilei, “Evolution of wireless sensor
networks towards the Internet of Things: A survey,” in Proc. of Intl .Conf.
on Software, Telecomm. and Computer Networks, Split, Sept. 2011, pp.
1–6.

[2] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”
Computer Networks (Elsevier), vol. 54, no. 15, pp. 2787–2805, 2010.

[3] O. Bello and S. Zeadally, “Intelligent Device-to-Device Communica-
tion in the Internet of Things,” IEEE Systems Journal, 2014, DOI:
10.1109/JSYST.2014.2298837.

[4] K. Sood, S. Yu, and Y. Xiang, “Software Defined Wireless Networking
Opportunities and Challenges for Internet of Things: A Review,” IEEE
Internet of Things Journal, 2015, DOI: 10.1109/JIOT.2015.2480421.

[5] T. Luo, H.-P. Tan, and T. Q. S. Quek, “Sensor OpenFlow: Enabling
Software-Defined Wireless Sensor Networks,” IEEE Communications
Letters, vol. 16, no. 11, pp. 1896–1899, 2012.

[6] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. R. andScott Shenker, and J. Turner, “OpenFlow: enabling innovation
in campus networks,” in ACM SIGCOMM Computer Communication
Review, vol. 38, no. 2, Apr. 2008, pp. 69–74.

[7] J. A. Gutierrez, E. H. Callaway, and R. Barrett, IEEE 802.15.4 Low-Rate
Wireless Personal Area Networks: Enabling Wireless Sensor Networks.
IEEE Standards Office, NY, USA: IEEE, 2003.

[8] IEEE 802.11: Wireless LAN Medium Access Control (MAC) and Phys-
ical Layer (PHY) Specifications, IEEE Std.

[9] Y. Krasteva, J. Portilla, E. de la Torre, and T. Riesgo, “Embedded Run-
time Reconfigurable Nodes for Wireless Sensor Networks Applications,”
IEEE Sensors Journal, vol. 11, no. 9, pp. 1800–1810, 2011.

[10] C.-M. Hsieh, Z. Wang, and J. Henkel, “A Reconfigurable Hardware
Accelerated Platform for Clustered Wireless Sensor Networks,” in Proc.
of the IEEE Intl. Conf. on Parallel and Distributed Systems (ICPADS),
Singapore, Dec. 2012, pp. 498–505.

[11] S. Vera, A. Bayo, N. Medrano, B. Calvo, and S. Celma, “A pro-
grammable plug&play interface for WSN applications,” in Proc. of the
IEEE Sensors, Limerick, Oct. 2011, pp. 1808–1811.

[12] P. Angove, M. O’Grady, J. Hayes, B. O’Flynn, G. O’Hare, and D. Dia-
mond, “A Mobile Gateway for Remote Interaction With Wireless Sensor
Networks,” IEEE Sensors Journal, vol. 11, no. 12, pp. 3309–3310, 2011.

[13] P. Ferrari, A. Flammini, and E. Sisinni, “New Architecture for a Wireless
Smart Sensor Based on a Software-Defined Radio,” IEEE Trans. on
Instrumentation and Measurement, vol. 60, no. 6, pp. 2133–2141, 2011.

[14] L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo, “SDN-WISE:
Design, prototyping and experimentation of a stateful SDN solution for
WIreless SEnsor networks,” in Proc. of the IEEE INFOCOM, Kowloon,
Apr.-May 2015, pp. 513–521.

[15] D. Zeng, P. Li, S. Guo, T. Miyazaki, J. Hu, and Y. Xiang, “Energy
Minimization in Multi-Task Software-Defined Sensor Networks,” IEEE
Trans. on Computers, vol. 64, no. 11, pp. 3128–3139, 2015.

[16] T. Miyazaki, S. Yamaguchi, K. Kobayashi, J. Kitamichi, S. Guo,
T. Tsukahara, and T. Hayashi, “A software defined wireless sensor
network,” in Proc. of Intl. Conf. on Computing, Networking and Com-
munications (ICNC), Honolulu, HI, Feb. 2014, pp. 847–852.

[17] F. Bouabdallah, N. Bouabdallah, and R. Boutaba, “On Balancing Energy
Consumption in Wireless Sensor Networks,” IEEE Trans. on Vehicular
Technology, vol. 58, no. 6, pp. 2909–2924, 2009.

[18] A. Hackshaw, A Concise Guide to Clinical Trials. Oxford, UK: BMJ,
2009, ch. Statistical formulae for calculating some 95% confidence
intervals.

Fo
r p

ers
on

al 
us

e o
nly




