
1

Detour: Dynamic Task Offloading in
Software-Defined Fog for IoT Applications

Sudip Misra, Senior Member, IEEE, and Niloy Saha, Student Member, IEEE

Abstract—In this paper, we consider the problem of task
offloading in a software-defined access network where IoT devices
are connected to fog computing nodes by multi-hop IoT access-
points (APs). The proposed scheme considers the following
aspects in fog-computing based IoT architecture — a) optimal
decision on local or remote task computation, b) optimal fog node
selection, and c) optimal path selection for offloading. Accordingly,
we formulate the multi-hop task offloading problem as an integer
linear program (ILP). Since the feasible set is non-convex, we
propose a greedy-heuristic based approach to efficiently solve
the problem. The greedy solution takes into account delay, energy
consumption, multi-hop paths, and dynamic network conditions
such as link utilization and SDN rule-capacity. Experimental
results show that the proposed scheme is capable of reducing
the average delay and energy consumption by 12% and 21%,
respectively, compared to the state-of-the-art.

Index Terms—Software-Defined Networking, Internet of
Things, Quality-of-Service, Fog computing, Task Offloading

I. INTRODUCTION

THE rapid growth of Internet of Things (IoT) technologies
has led to the emergence of a variety of latency-critical

IoT applications such as smart healthcare, vehicular and in-
dustrial automation, and augmented reality [1]. These appli-
cations demand substantial computation resources for real-
time processing which leads to high energy consumption on
resource constrained1 IoT devices. To address this issue, task
offloading using edge computing has emerged as a promising
solution [2], [3]. The edge computing paradigm proposes the
deployment of resource-rich entities at the network edge, in
order to execute tasks offloaded from the resource-constrained
IoT devices. Moreover, task offloading using edge computing
offers low-latency and flexible computation to IoT devices [4].

In this work, we consider task offloading in the context of
fog computing [5], which proposes deployment of compute,
storage and networking resources anywhere in the device-to-
cloud continuum, while providing abstractions to the underly-
ing communication technology which is useful to address the
heterogeneity of IoT.

A. Motivation

Task offloading schemes in existing literature have mainly
focused on computation power and energy consumption, with-
out considering the network load on the path from device to
edge server. Since IoT protocols such as MQTT-SN [6] and
CoAP [7] use application layer retransmissions to ensure reli-
able delivery, packet-loss due to network congestion will lead
to increased energy consumption at the IoT devices. Therefore,

1in terms of energy, computation capability, and storage

the dynamic load on the network must be taken into account
while making task offloading decisions. This can be achieved
by adopting a software-defined network (SDN) architecture
for IoT [8], [9], which offers logically centralized control,
abstracted global view of the network conditions, and flexible
rule-based forwarding. The network management abstractions
provided by SDN allows the SDN controller to collect net-
work information from heterogeneous wireless devices, across
different wireless technologies [10], [11]. Therefore, using the
abstracted global view of the network, the SDN controller is
capable of taking optimal task offloading decisions. Moreover,
SDN also offers benefits in terms of network flexibility and
simplification of network management, for the orchestration
and management of fog-based IoT infrastructures [12], [13].
This makes SDN particularly attractive to address the problem
of task offloading in a dynamic IoT scenario.

Therefore, leveraging the concept of SDN, we present a
dynamic task offloading scheme for IoT applications in the
presence of fog devices. Different from existing literature, we
consider a scenario where the offloaded tasks have to traverse a
multi-hop path to the fog devices. This is due to the fact that in
practice, due to limitations of CAPEX and OPEX, the number
of fog devices will be less than the number of IoT access
points in the network. Although SDN offers various advantages
for task offloading, the limited rule-capacity of SDN switches
adversely affects the performance of task offloading schemes.
Therefore, in contrast to existing literature on SDN-based task
offloading, the proposed solution takes into account the flow-
rule utilization to mitigate the effects of limited rule-capacity
of SDN switches.

B. Contributions
In this work, we present a dynamic task offloading scheme

in software-defined access-networks (SDANs) where IoT de-
vices are connected to fog computing nodes by multi-hop IoT
access-points (APs). The SDN controller can collect network
information using southbound APIs, and takes optimal task
offloading decisions according to its global view of the net-
work. In particular, in a fog-computing based IoT scenario, the
proposed scheme considers the following aspects — a) optimal
decision on local or remote task computation, b) optimal fog
node selection, and c) optimal path selection for offloading.
Accordingly, we formulate the dynamic task offloading prob-
lem as an integer linear program (ILP) and propose a greedy-
heuristic based approach to solve it efficiently. Extensive
simulation results are presented to show the effectiveness of
the proposed scheme. In summary, the main contributions of
this work are as follows:
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• We present a task offloading scheme in software-defined
access-networks for IoT applications in the presence of
fog devices. We consider a scenario where the number of
fog devices is less than the number of APs. The problem
is challenging because of the existence of multi-hop paths
from the devices to the fog nodes.

• We formulate the multi-hop dynamic task offloading
problem as a non-linear optimization problem and then
transform it into an equivalent integer linear program
(ILP). It takes into account the energy constraints of IoT
devices and dynamic network conditions such as link
utilization and SDN flow-rule utilization.

• Since the feasible set of the ILP is non-convex, we
propose a greedy-heuristic based approach to efficiently
solve the problem.

• We evaluate the proposed scheme using the POX SDN
controller and the Mininet network emulator. Experimen-
tal results show that the proposed scheme is capable of
reducing the average delay and energy consumption by
12% and 21%, respectively, compared to the state-of-the-
art.

The remainder of the paper is structured as follows. In Sec-
tion II, we analyze the relevant state-of-the-art. In Section III,
we present the system model, including architecture, problem
formulation, and greedy-heuristic based solution. Section IV
presents the performance evaluation of the proposed scheme.
Finally, we conclude the paper in Section V and present
directions for future work.

II. RELATED WORK

A. Software-defined Fog Architecture for IoT
In the recent past, SDN has received a lot of attention

from industry and academia for managing and orchestrating
edge computing and IoT architectures [8], [9]. Sood et al.
[8] discussed the recent efforts to integrate SDN and IoT and
highlighted the advantages of such integration on information
acquisition, analysis and decision making in IoT. Gupta et
al. [14] proposed a software-defined fog middleware which
provides abstractions to the heterogeneous fog infrastructure
and enables orchestration of fog services while considering
end-to-end QoS requirements. Hakiri et al. [15] proposed a
software-defined wireless fog architecture, in order to min-
imize delay and provide load-balancing among fog devices.
In the proposed scheme the SDN controller is used to collect
signal-to-noise ratio (SNR) values from the wireless clients, in
order to facilitate traffic engineering among the wireless fog
devices. Tomovic et al. [13] proposed a software-defined fog
architecture consisting of geo-distributed fog-nodes in order
to improve the overall performance of an IoT network. The
authors highlighted the advantages of the SDN-fog interplay
in terms network flexibility and scalability.

Therefore, due to the advantages of SDN in terms of
orchestrating and managing fog-based architectures, we adopt
a software-defined fog-based architecture for IoT.

B. Task Offloading in Fog
Recent works [16]–[21] also addressed task offloading in

fog. Chang et al. [16] proposed an energy-efficient task of-

floading scheme for fog computing. The authors presented a
queuing analysis of the task queues at both the mobile devices
and edge server. Chiti et al. [17] proposed a task offloading
scheme for fog computing in IoT, based on matching theory.
The authors proposed a distributed algorithm in which each
mobile device selects the most suitable fog node, based on
transmission, waiting, and computation times. However, the
authors did not consider the energy constraints of the de-
vices and the dynamic load on the network. Shah-Mansouri
and Wong [18] proposed a game-theoretic approach for task
offloading in hierarchical fog-cloud systems. The authors fo-
cused on achieving near optimal task offloading decisions in
the presence of selfish IoT users interested in maximizing
their own quality of experience (QoE). Yousefpour et al. [19]
studied task offloading in general IoT-fog-cloud architecture.
The proposed scheme considered inter-fog collaboration and
load-sharing in order to reduce the overall service delay.

However, the existing schemes did not take into consid-
eration the dynamic network conditions present in an IoT
scenario.

C. Software-defined Edge Computing and Task Offloading

Huang et al. [22] proposed a MEC framework for SDN-
based LTE networks. The authors proposed the radio API
abstraction in order to extract parameters such as topology,
band, and signal strength from the RAN using the SDN
controller. The radio API also enables the SDN controller
to modify the underlying network state using the statistics
and network information gathered from the RAN. Cui et al.
[23] proposed a software-defined cooperative task offloading
scheme for mobile cloudlets using device-to-device (D2D)
communication. In the proposed scheme, the SDN controller
is deployed at the LTE gateway in order to gain informa-
tion about the devices and obtain a global view of network
states. Task offload to other devices or edge servers take
place according to the instructions of the centralized SDN
controller. Chen and Hao [24] presented a task offloading
scheme for MEC in an ultra-dense software-defined network.
In the proposed scheme, the SDN controller is deployed at the
macro-cell base-station in order to obtain global information
about devices, base-stations, edge servers and tasks. Zhao et
al. [25] proposed a SDN-based scheme for optimal cloudlet
placement in order to reduce access-delay in IoT. Huang et al.
[27] proposed an SDN-based framework for V2V offloading
in VANETs using the MEC concept. In the proposed work,
SDN-enabled road-side units (RSUs) were used to collect
contextual information and for centralized management and
control of offloading strategy. The existing schemes [22]–[25]
highlight the advantages of SDN in a task offloading scenario,
in terms of — real-time gathering of statistics, modification
of network state, and global view of the network. However,
our work differs from the existing literature in the following
aspects — a) the existing schemes considered task offloading
where the offload target is single-hop away from the devices,
while in this work, we consider a more general fog computing
framework where the fog nodes may be located one or more
hops away from the devices, and b) we take into account the
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dynamic network conditions such as link-utilization and SDN
rule-capacity, which were not considered.

Synthesis: In Table I, we summarize the existing literature on
task offloading. Detailed analysis of the state-of-the art reveals
that there exists a research lacuna on software-defined task
offloading schemes, while taking into account multi-hop paths,
and dynamic network conditions such as link utilization and
SDN rule-capacity, as well as delay and energy consumption.
Therefore, we propose a dynamic task offloading scheme in
SDN, named DETOUR, to address these issues.

III. SYSTEM MODEL

Figure 1: Architecture of SDIoT network

We consider a software-defined fog network as shown in
Figure 1, consisting of a set of access points, A, set of fog
nodes, F , and set of IoT devices, D. The network is modeled
as a directed graph G = (A∪F ,L) where L denotes the set of
links between access points and fog nodes. The access points
and the fog nodes are SDN-enabled and can communicate with
the SDN controller using southbound APIs [10], [28]. The
fog nodes may consist of physical servers or virtual machines
(VMs) provisioned on the access points. In general, since
provisioning of fog nodes increases the cost of the network, we
consider the number of fog nodes to be less than the number
of access points, i.e., |F| < |A|. We consider each device
k ∈ D has a single computation task at a time, given as
tk. A task is defined as tk := (ωk, sk), where ωk and sk
denote the CPU cycles needed for execution and input data
size, respectively [23], [24]. Since number of fog nodes is less
than the number of access points, task offloading requests from
the devices arrive at the fog nodes in a multi-hop manner. The
SDN controller makes optimal decisions about where to send
each task offloading request and accordingly places appropriate
flow-rules in the SDN-enabled access points.

The multi-hop task offloading problem (MHTO) in SDN is
formulated as an integer program and is presented below. The
key notations are summarized in Table II.

A. Delay Model

We define binary variables zk ∀k ∈ D to represent whether
task tk is computed locally (zk = 0) or offloaded to a fog
device (zk = 1). The time taken for local execution of task tk

is given as δloc
k = ωk

fk
, where fk represents the CPU frequency

of device k ∈ D. On the other hand, if task tk is offloaded,
the time taken comprises of — a) time δtx

k to transmit the data
sk to the associated access point i ∈ A, b) propagation delay
δprp
k from access point i to fog node j ∈ F , c) queuing delay
δque
j at fog node j, and d) task execution time δfog

k at the fog
nodes.

We consider a log-distance path-loss model with log-normal
shadowing given as PL[dB] = 140.7+36.7 log10 d[km]+N (8)
[21]. Therefore, the maximum data rate between device k ∈ D
and access point i ∈ A is given by Shannon’s equation
as rki = B log2(1 +

ptxk −PLki

σ2 ), where ptxk represents the
transmission signal power of device k, and σ2 represents the
noise power. In this work, we mainly focus on the choice
of fog node, which is, in general, more than 1-hop away
from the devices. Therefore, we consider device k ∈ D can
access the network by associating with access point i ∈ A,
using existing association policies X , such as [29], such that
X (k) = i. Thus, the time taken to transmit data sk from device
k for offloading is given as δtx

k = sk
rkX(k)

. We define binary
variables xkij ∀(i, j) ∈ L to denote whether link (i, j) ∈ L
is chosen for offloading task tk. Let δij be the propagation
delay associated with each link (i, j) ∈ L. Therefore, the
propagation delay experienced by an offloaded task tk, from
access point to fog node, is given as δprp

k =
∑
ij δijx

k
ij . At

each fog node j ∈ F , offloaded tasks arrive following unique
paths consisting of sequence of links (i, j) ∈ L, through
the network. Therefore, applying the Kleinrock independence
approximation [30], the task arrival at a particular fog node
j ∈ F may be approximated as a Poisson process, and task
arrival rate given as γj =

∑
ik x

k
ij . We consider a multi-

threaded model of task execution at the fog nodes. When
a task arrives at a fog node, it waits in the task queue
while a proper application for processing the task is fetched.
This allows parallel processing of multiple tasks. Therefore,
considering an M/M/1 model, the queuing delay at the fog
node j ∈ F is given as δque

j = 1
µj−γj , where µj denotes

the service rate. We consider binary variables ykj ∀k ∈ D
to denote whether fog node j ∈ F is chosen to offload task
tk. Therefore, the time taken for execution of task tk at the
chosen fog node (ykj = 1) is given as δfog

k =
∑
j
ωk

fj
ykj , where

fj represents the CPU frequency of fog node j. Here, we
assume that tasks are unsplittable, i.e., a particular task can be
offloaded to only one fog node. Therefore, we define a cost
function for delay in the MHTO problem as Jδ(x, y, z) :=∑
k

[
(1− zk)δloc

k + zk(δ
tx
k + δprp

k + δfog
k )
]
+
∑
j δ

que
j .

B. Energy Consumption Model

The energy consumed during task execution on an IoT
device depends on various factors such as task type and clock
frequency. In line with existing works [21], [23], [24] we
consider the energy consumption of local computation to be
given as E loc

k = ρ(fk)
2ωk, where ρ is the power coefficient

depending on chip architecture and fk is the CPU frequency
of device k ∈ D. On the other hand, when tk is offloaded, the
energy consumption of an IoT device is given by the energy
consumed for transmitting the data sk. The SDN controller is
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Table I: Summary of existing literature

Work Delay Energy Multihop SDN Rule-capacity
Chiti et al. [17], Yousefpour et al. [19] 3 7 7 7 7
Chang et al. [16], Shah-Mansouri and Wong [18],
Zhao et al. [25], Tran et al. [21]

3 3 7 7 7

Huang et al. [22], Chen and Hao [24], Zhao et al. 3 3 7 3 7
Proposed scheme (DETOUR) 3 3 3 3 3

Table II: Summary of key notations

Notation Description
A Set of SDN-enabled access points.
F Set of SDN-enabled fog nodes.
L Set of links between A ∪ F .
D Set of IoT devices.
tk Computation task of device k ∈ D.
ωk CPU cycles needed for execution of task tk.
sk Input data size for task tk.
X Access point association policy.
δloc
k Time taken for local computation of task tk.
δtx
k Time taken to transmit data sk to access point.
δprp
k Time taken to reach fog node from access point.
δque
j Queuing delay at fog node j ∈ F .
δfog
k Task execution time at fog node.
fk CPU frequency of device k ∈ D.
fj CPU frequency of fog node j ∈ F .
µj Task service rate of fog node j ∈ F .
E loc
k Device energy consumption for executing task tk.
E tx
k Device energy consumption for transmitting data sk.
Bwl Bandwidth of wireless channel.
Bij Bandwidth of link (i, j) ∈ L.
Rmax

i Maximum SDN rule-capacity at access point i ∈ A.

capable of collecting information such as transmission power
and data rate using protocols through southbound APIs such
as Simple Network Management Protocol (SNMP) or Control
and Provisioning of Wireless Access Points (CAPWAP) [10].
Therefore, the energy required for offloading task tk is given as
E tx
k = ptxk δ

tx
k . Thus, we define a cost function for energy in the

MHTO problem as JE(x, y, z) :=
∑
k

[
(1− zk)E loc

k + zkE tx
k

]
.

C. Problem Formulation
Using the cost functions for delay and energy, we formulate

the MHTO problem for SDN as follows:

min
x,y,z

J(x, y, z) = αJδ(x, y, z) + (1− α)JE(x, y, z) (1a)

s.t.
∑
j

xkij −
∑
j

xkji =


+1, if i = X (k),
−yki , if i ∈ F ,
0, otherwise.

(1b)

∑
j∈A

ykj = 1, ∀k ∈ D (1c)

(1− zk)E loc
k + zkE tx

k ≤ Emax
k , ∀k ∈ D (1d)∑

k

1

δtx
k

skx
k
ij ≤ Bij , ∀(i, j) ∈ L (1e)∑

jk

xkij ≤ Rmax
i , ∀i ∈ A (1f)

where α is a user-defined constant to control the relative
importance of delay and energy consumption. For example,

for highly latency critical applications, α can be set to 1. The
flow-conservation constraints in Equation (1b) ensure that each
task is served only by the fog nodes. Equation (1c) ensures that
each task can be offloaded to only one fog node, i.e., tasks
are unsplittable. The energy constraints in Equation (1d) take
into account the energy of the IoT devices, so that devices
are not depleted of energy. Equation (1e) takes into account
the bandwidth utilization of the links, in order to reduce
congestion in the network, and hence, reduce the number of
retransmissions. Equation (1f) ensures that the number of SDN
flow-rules at the access points does not exceed the maximum
capacity. In order to simplify the model, we consider exact-
match flow-rules [31], where a flow-rule is placed for each
task tk.

The MHTO integer program presented in Equation (1) is
difficult to solve since — a) the feasible set is non-convex due
to the presence of binary variables x, y, z, and b) the objective
function in Equation (1a) is non-linear due to the presence
of product terms zkδ

prp
k and zkδ

fog
k . Therefore, we adopt the

linearization approach proposed in [32] by — a) replacing the
product terms by new continuous variables ak and bk, ∀k, and
b) adding four new linear constraints for each product term, in
order to transform the problem into an integer linear program
(ILP) as given below.

min
x,y,z

J ′(x, y, z) = αJ ′δ(x, y, z) + (1− α)JE(x, y, z) (2a)

s.t. 0 ≤ ak ≤ zk
∑
ij

δij , ∀k ∈ D, (2b)

δprp
k − (1− zk)

∑
ij

δij ≤ ak ≤ δprp
k , ∀k ∈ D, (2c)

0 ≤ bk ≤
maxk ωk
minj fj

, ∀k ∈ D, (2d)

δfog
k − (1− zk)

maxk ωk
minj fj

≤ bk ≤ δfog
k , ∀k ∈ D, (2e)

(1b)–(1f).

where J ′δ(x, y, z) =
∑
k

[
(1 − zk)δ

loc
k + zkδ

tx
k + ak +

bk
]
+
∑
j δ

que
j represents the linearized form of Jδ(x, y, z),

and Equations (2b)–(2e) represent the additional constraints
introduced due to linearization.

Moderate-sized instances of the ILP in Equation (2) can be
solved exactly in reasonable time, using commercial solvers
such as CPLEX or Gurobi [33]. However, with large instances,
the ILP may take prohibitively high time to converge, which
may not be acceptable for the on-line nature of task offloading
under consideration. Therefore, in the subsequent section,
we present an approximate greedy solution to the problem.
Further, to validate the proposed greedy algorithm, we compare
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its performance against the ILP solution.

D. Approximate Greedy Solution

In order to design a greedy heuristic solution to the MHTO
problem, we define utility functions as follows:

Uoff
k := βδ

δloc
k − δtx

k

δloc
k

+ βE
E loc
k − E tx

k

E loc
k

(3a)

U fog
jk := θqueδ

que
j + θexe

ωk
fj

minj fj
maxk ωk

(3b)

U link
ij :=

(
γδ

δij
maxij δij

+ γB
Butil
ij

Bij
+ γR

Rutil
i

Rmax
i

)−1
(3c)

Equation (3a) represents the offload utility which incorpo-
rates the improvement in delay and energy consumption by
offloading a task. The constants βδ and βE denote the relative
importance of delay and energy consumption, respectively,
which are application dependent. It is noteworthy that a task tk
should be offloaded only when Uoff

k ≥ 0. Similarly, given that
a particular task tk is chosen to be offloaded, Equation (3b)
denotes the utility of choosing a particular fog node j ∈ F ,
which takes into account the queuing delay, as well as the
task execution time. The constants θque and θexe denote the
relative importance of queuing delay and task execution time,
respectively. For example, if the service rate of the fog nodes
is low, we should set θque > θexe to reduce the overall delay.
In our experiments, we assume θque = θexe. Equation (3c)
denotes the utility of choosing link (i, j) ∈ L. The constants
γδ , γB, and γR denote the relative importance of link delay,
bandwidth utilization, and SDN rule utilization respectively,
which are application dependent. For example, if the memory
available at the SDN switches is low, γR should be relatively
high compared to γδ and γB. It is noteworthy that link delay,
δij , link bandwidth utilization, Butil

ij , and rule utilization, Rutil
i ,

are available in real-time at the SDN controller using tools such
as OpenNetMon [34], and does not require apriori knowledge
of all flows. Therefore, the utilities defined in Equation (3) can
be calculated online, upon task arrival.

Algorithm 1 Detour: Multi Hop Task Offloading
Inputs: A,F ,L,D,X
Output: Task offloading policy 〈zk, yk, pk〉 ∀tk | k ∈ D.

1: for task tk | k ∈ D do
2: Calculate Uoff

k using Equation (3a).
3: if Uoff

k ≥ 0 then
4: Set zk ← 1.
5: for fog node j ∈ F do
6: Calculate U fog

jk using Equation (3b).

7: Select fog node yk = argminj U
fog
jk .

8: Calculate offload path pk from access point X (k)
to fog node yk using Equation (3c) and
Dijkstra’s shortest path algorithm.

9: else
10: Set zk ← 0, compute tk locally, at device k.

Algorithm 1 presents the proposed greedy algorithm, termed
DETOUR, for the MHTO problem in SDN. Upon arrival of a
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Figure 2: Comparison of DETOUR vs ILP-based solution

task tk, we decide whether to offload it or not, according to
local information available at that instant, as given in Step 3. If
the task is chosen for offloading, the best fog node for that task
is chosen using the fog utility as given in Step 7. Subsequently,
the offload path from the associated access point (given by
association policy X ) to the selected fog node is decided while
taking into account the dynamic network conditions such as
link and rule utilization, as given in Step 8. We analyze the
complexity of the proposed scheme by considering the time
complexity of Algorithm 1. For a given task, tk, Step 3 takes
constant time. Step 7 involves finding the minimum in a list
of length |F| and has worst-case time O(|F|). Subsequently,
Dijkstra’s algorithm in Step 8 has worst-case running time of
O((|A|+ |F|)2). Therefore, the worst-case time complexity is
given as O(|F|+ (|A|+ |F|)2) ≈ O((|A|+ |F|)2).

We used the commercial Gurobi solver [33] to solve the ILP
formulated in Equation (2). Figure 2 shows the comparison
between the proposed scheme, DETOUR, and the ILP-based
solution. We observe that with a large number of tasks, the
proposed scheme offers comparable performance to the ILP,
and thus, offers an approximate solution to the MHTO problem
in SDN.

IV. PERFORMANCE EVALUATION

A. Simulation Settings

We evaluate the performance of the proposed scheme using
the POX2 SDN controller and the Mininet3 network emulator.
The experiments were carried out on a Intel i7 2.7 GHz PC
with 8 GB RAM, running Linux kernel 4.15. The differ-
ent parameters considered for the experiments are given in
Table III. In line with existing literature [19], we consider
Arduino and Intel i7 CPU as examples of IoT device and fog
node, respectively, in order to obtain realistic values regarding
computation capability. Since topology traces of software-
defined access networks are difficult to obtain, in this work,
we consider a scale-free Barabasi-Albert topology [35]. The
access points and fog nodes are arranged in a 500m x 500m
area, as shown in Figure 3. The figure shows four different
topologies considered in this work, with different selection of
fog nodes. The fog nodes are randomly chosen from the total
number of nodes. The IoT devices are placed uniformly within
the coverage area.

2https://github.com/noxrepo/pox
3http://mininet.org/
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Table III: Simulation parameters

Parameter Value
Number of APs 15
Number of fog nodes 5
Number of tasks 100− 1000
Fog CPU frequency 2.9− 4.2 GHz
IoT device CPU frequency 16− 84 MHz
IoT device transmit power 60 mW [19]
Computation amount for task 1500− 2500 Megacycles [21]
Battery capacity of IoT device 1000 J [24]
Average task size 450KB [21]
Noise power −100 dB [21]
Wireless channel bandwidth 20 MHz [21]

Figure 3: Topologies considered for experiment with different
selection of fog nodes (fog nodes are given in blue)

B. Benchmark Schemes

To show the effectiveness of the proposed scheme, DE-
TOUR, we compare it with the following baselines —
delay-aware greedy-path (DAGP) [24], and random-offloading
random-path (RORP). In the DAGP scheme, the offload de-
cision is taken in order to minimize the average delay while
respecting the energy constraints. The shortest path to the fog
node is taken based on the hop count. The DAGP scheme was
chosen to show the impact of factors other than delay and
energy, such as — multi-hop path, link utilization, and SDN
rule-capacity, on software-defined task offloading schemes. In
the ROGP scheme, the offload decision and path to the fog
node are randomly chosen. Since the RORP scheme takes path
selection decisions randomly, it highlights the impact of proper
path selection in a multi-hop software-defined task offloading
scenario. In both the DAGP and RORP schemes, the nearest
fog node (minimum number of hops) is chosen as the offload
target.

On the other hand, in the proposed scheme, DETOUR, the
offload decision, choice of fog node, and path to fog node
are taken while taking into account — delay, energy, link
utilization and SDN rule-capacity, according to Algorithm 1.

C. Results and Discussion

1) Average Reduction in Delay: We analyze the average
reduction in delay per task due to task offloading. Figure 4
shows the performance of the proposed scheme DETOUR
compared to the benchmarks. From the figure, we observe
that with an increase in the number of tasks, the reduction
in delay decreases. This is expected, since more offloaded
tasks increases the load on the network (in terms of bandwidth
utilization) and load on the fog nodes (queuing delay). We
also observe that the performance varies according to the
topology (i.e., different selection of fog nodes). However, the
proposed scheme, DETOUR, outperforms the benchmarks in
all cases. In particular, overall, the proposed scheme is capable

of reducing the delay by 35% and 12% more, compared to the
RORP and DAGP schemes, respectively. The RORP scheme
does not take into account the path chosen during offloading,
and hence suffers from increased delay due to longer path
lengths. On the other hand, the DAGP scheme chooses the
shortest path based on hop count and does not take into account
the bandwidth utilization and SDN rule capacity. Thus it
suffers additional delay due to congestion and re-transmission.
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Figure 4: Percentage reduction in delay vs tasks

2) Average Energy Consumption: We also analyze the
average energy consumption per device due to task offloading.
Figure 5 shows the performance of the proposed scheme
compared to the benchmarks. From the figure, we observe
that with an increase in the number of tasks, the energy
consumption increases almost linearly. We also observe that
the performance varies according to the topology. However,
the proposed scheme, DETOUR, outperforms the benchmarks
in all cases. In particular, overall, the proposed scheme is
capable of reducing the energy consumption by 13% and
21%, compared to the RORP and DAGP schemes, respectively.
The RORP scheme randomly chooses whether to offload a
task, and thus, suffers increased energy consumption due to
local processing. On the other hand, the DAGP chooses to
offload tasks only based on delay without considering whether
offloading that particular task will reduce energy consumption.
Therefore, DAGP suffers from increased energy consumption
due to both sub-optimal offloading decision, as well as re-
transmissions (as explained in Section IV-C1).
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Figure 5: Energy consumption vs tasks

3) Impact of Intermediate Hop Count: We analyze the
impact on intermediate hop count to the fog nodes on task
offloading, as shown in Figure 6. Table IV shows the average
number of hops to the nearest fog node, with different per-
centages of nodes acting as fog nodes. It is evident that with
increasing number of fog nodes, the average hop count to the
nearest fog node decreases.
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Table IV: Fog nodes vs hop count

Fog nodes (%) 10 20 30 40 50
Hop Count 2.166 1.5 1.21 1.08 1.0

Figure 6(a) shows the percentage reduction in delay (due
to offloading) with different percentages of fog nodes (See
Table IV), while the number of tasks is kept constant at
500. We observe that while the proposed scheme, DETOUR
outperforms the benchmarks, the relative performance is better
with less number of fog devices. In particular, with 30%
of the APs acting as fog devices, DETOUR is capable of
achieving 40% and 9% more reduction in delay compared to
the RORP and DAGP schemes, respectively. This implies that
the proposed scheme is capable of achieving good performance
with less number of fog devices, thereby reducing CAPEX and
OPEX.

Figure 6(b) shows the average hop count incurred by the
different schemes, across the different topologies, while task
offloading. From the figure, we observe that the RORP scheme
has the highest hop count, while the DAGP scheme has the
lowest. It is interesting to note that even with the lowest hop
count, the DAGP scheme does not have the best performance
in terms of delay (refer Figure 6(a)). This implies that the
delay performance depends not only on hop count, but other
factors such as bandwidth utilization and SDN rule-capacity,
which are taken into account by the proposed scheme.
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Figure 6: Impact of intermediate hop count

4) Impact of SDN on Task Offloading: Even though SDN
offers advantages in task offloading in terms of gathering
network statistics, and reducing delay and energy consumption
(Sections IV-C1 – IV-C3), it comes at a price, in the form of
two factors — control plane overhead, and b) additional flow-
rule utilization. In this work, we have utilized the OpenNetMon
[34] framework to collect information such as delay, link
utilization and rule utilization. OpenNetMon uses adaptive
polling techniques and probe packets for measurement, which
introduce additional control plane overhead in the network.
Further, in order to forward probe packets in a timely manner,
OpenNetMon uses fine-grained exact-match rules, which in-
crease rule utilization in the network. Since the rule-capacity
of SDN switches is limited [36], this adversely effects the
performance of task offloading.

In this Section, we analyze the impact of SDN on task
offloading, as shown in Figure 7. We measure the number of
packet-in messages to the controller to get an estimate of the
SDN control plane overhead. Packet-in messages are generated

when a flow4 does not find a matching flow-rule at the SDN
switch. Figure 7(a) shows the number of packet-in messages
with increasing number of tasks. We observe that with an
increase in the number of tasks, the growth rate of packet-in
messages reduces. This is due to the fact that with increasing
number of tasks, the probability of finding a matching flow-
rule at the SDN switches increases. Accordingly, less number
of packet-in messages are generated for new flows. This
implies that the SDN control overhead does not linearly scale
with the number of tasks, and is relatively more with less
number of tasks.
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Figure 7(b) shows the impact of SDN rule-capacity on task
offloading. The figure shows the average reduction in delay
with increasing number of tasks at different values of γR
in Equation (3c). From the figure, we observe that with less
number of tasks, γR = 0 (i.e., rule utilization not considered)
performs as well as γR = 0.25 (rule utilization considered).
However, with increasing number of tasks, considering the
effect of rule utilization gives significantly better results. This
is because when the rule-capacity of an SDN switch is fully
utilized, an existing rule needs to be replaced, which incurs
an additional flow-setup delay of 3 − 8 ms per packet [37],
leading to increased overall delay.

From the analysis above, we see that the proposed scheme,
DETOUR, is able to reduce the average delay and energy con-
sumption in the network, by utilizing the global network view
offered by the SDN controller, and taking into consideration
dynamic network conditions such as link and rule utilization.

V. CONCLUSION

In this paper, we proposed a task offloading scheme for
software-defined networks where IoT devices are connected
to fog computing nodes by multi-hop IoT access points. The
global view of the network at the SDN controller was used to
take optimal decisions about task offloading, while considering
dynamic network conditions. Since the non-linearity of the task
offloading problem makes it hard to solve, we utilized a lin-
earization technique to present an integer linear programming
(ILP) formulation of the problem. Subsequently, we proposed a
greedy-heuristic based scheme to solve the problem efficiently.
Experimental results showed that the proposed scheme is
capable of reducing the average delay and energy consumption
by 12% and 21%, respectively, compared to the state-of-the-
art.

4A stream of packets representing an end-to-end connection.
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In this work, a static topology was considered, i.e., the
access points and the fog nodes were considered fixed. How-
ever, in a realistic IoT scenario, mobile access points may
be present. Therefore, we plan to consider how a dynamic
topology will impact the performance of SDN-based task
offloading scheme, as a future extension of this work.
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