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Abstract

In this paper, we address the issue of rule duplica-
tion during network updates in Software Defined Net-
working (SDN). In SDN, network update involves the
controller in sending update packets to desired set of
switches, where the update rules are installed. To
ensure update consistency, old flow-rules are stored
until the total update procedure is complete. Higher
consumption of TCAMs during update increases the
cost of network update and decreases the scalabil-
ity of SDN. In this work, we propose an approach
for consistent update with redundancy reduction,
named CURE, that reduces TCAM usage during up-
date. CURE prioritizes switches according to their
usage pattern and schedules updates based on prior-
ity zones. The proposed approach guarantees that
highly loaded switches are updated first. CURE also
maintains packet-level consistency by implementing
a multilevel queueing approach. In this framework,
each switch in the current update region stores the in-
coming packets in individual device queues until the
switch completes update. Therefore, after the initia-
tion of an update, packets are processed according to
new rules only. The results of performance evaluation
depict that the average rule space utilization during
update using CURE is 29.954% less than using the
two-phase update proposed in the existing literature.

Index terms— SDN, Network Update, Open-
Flow, TCAM, Multiclass Classification, Queueing
Theory
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1 Introduction

In traditional networks, each network device or
switch includes both a control plane and a data plane.
The control plane determines the forwarding rules for
the incoming packets. The data plane stores the for-
warding table, which is a collection of the forward-
ing rules determined by the control plane. There-
fore, traditional networks are complex and resistant
to changes. Software Defined Networking (SDN) is a
new networking paradigm, which separates the con-
trol plane from the data plane to offer network ser-
vices dynamically [1]. In SDN, a single controller or
a cluster of controllers [2] determines the forwarding
rules and installs them in the switches. The switches
store the forwarding tables and forward the incoming
packets based on matched table entries.

Similar to traditional networks, updates in SDN
occur frequently. Major reasons for network update
are — (1) optimization of flow-table, (2) flow swap-
ping after arrival of new flow, (3) traffic monitoring,
(4) maintaining state of shut-down switches, (5) expi-
ration of flow-rules due to timeouts, and (6) switch or
link failure[3]. Update in traditional network involves
changing the configuration of each switch separately
[4]. On the other hand, SDN update is triggered by
the controller, which generates forwarding rules for
new network configuration and installs those rules to
the required switches. Additionally, the controller
performs garbage collection by deleting the old rules
[5].

However, according to the state-of-the-art, Open-
Flow [6] switches have Ternary Content Addressable
Memory (TCAM) to store forwarding rules. TCAMs,
which are high-speed memories, can match the rules
in parallel in O(1) time. However, TCAMs consume
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large amount of power [7] and occupy large footprints
[8]. These constraints restrict the storage capacity of
TCAMs [9]. Moreover, multiple TCAM entries can
be generated for a single forwarding rule [10]. There-
fore, the update of a single forwarding rule causes an
update of a single or multiple TCAM entries.

In this scenario, the maximum number of flow-rules
stored in a switch during update is required to be
managed optimally considering the restricted storage
capacity of TCAMs. However, existing SDN update
approaches store old rules along with new rules until
all switches are updated. Hence, for the worst case
scenario, 50% of the storage space needs to be empty
before starting the network update. Therefore, the
cost of storing redundant rules decreases the scalabil-
ity of the overall network. Furthermore, the number
of large-scale applications are increasing [11]. The
continuous flow of high-volume data generates high
number of update entries for each flow-table. There-
fore, provisioning storage space for redundant TCAM
entries can be a bottleneck.

In this work, we propose a SDN update policy with-
out storing the redundant rules. Consequently, the
maximum number of flow-rules present in the net-
work during update is reduced. Updates in SDN
switches are scheduled in an optimized manner, so
that the high priority switches are updated first.
We classify the switches based on the frequency of
matched rules. Packet-level consistency is also en-
sured by employing a packet-queueing mechanism.
In brief, the primary contributions of our work are
listed below.

• Initially, we design a priority-based algorithm for
scheduling updates to SDN switches.

• We propose a packet queueing mechanism for
maintaining the consistency of incoming packets
during update.

• Further, we design a packet processing algorithm
that process the queued packets consistently.

• We compare our approach with two-phase up-
date [12], timed two-phase update [5], and
buffered update [13] to highlight the benefits of
the proposed scheme.

The remainder of this paper proceeds as follows.
Section 2 discusses the existing approaches for SDN
update. In Section 3, we define the network model
and describe CURE, the proposed scheme, in detail.
Section 4 depicts the experimental results and com-
parative studies with other existing approaches. Fi-
nally, Section 5 concludes the work.

2 Related Work

Existing literature in this field are categorized in
four parts including ordered, incremental, timed, and
buffered updates.

In case of ordered update, the controller parti-
tions the total update procedure into multiple stages
[14], [15], [16]. It waits for the completion of each
stage, prior to starting the next stage. The last stage
is garbage collection, where older rules are deleted.
Francois et al. [14] proposed an ordered update
scheme that ensures packet-level consistency by pre-
venting the formation of loops. However, this ap-
proach requires a modification of network protocols
as well as of the forwarding devices. Bera et al. [15]
proposed a prediction-based mobility-aware update
mechanism for Software-Defined IoT which inserts
new rule at the next access device (AD), and per-
forms garbage collection at the current AD. Clad et
al. [16] generated an optimized sequence for updat-
ing the weights of links. The ordered update policy
encounters service latency as each phase is restricted
by completion of previous phase.

In the incremental update approach, the network
is updated in multiple phases or rounds, where each
round updates a portion of flow-rules or a subset
of switches. Reitblatt et al. [12] proposed a two-
phase update approach where the internal and ingress
switches are updated in phase 1 and phase 2, respec-
tively. Updated ingress switches attach new version
tags to the incoming packets. The incoming packets
are processed by either old or new rules (not both)
based on the version tag. Older rules are deleted after
all packets with old version tag are processed. This
method increases the load on the ingress switches, as
they have to modify the incoming packets. Moreover,
memory overhead is incurred for storing old rules. In
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another work, Canini et al. [17] discussed an incre-
mental update approach, which is similar to database
transactions, where either all switches are updated
or none are. Therefore, the ordered and incremental
update approaches require extra flow-table space for
accommodating duplicate rules. Moreover, the con-
troller is involved until all switches complete update.

To reduce this overhead, Mizrahi et al. [5] pro-
posed an extension of OpenFlow protocol by schedul-
ing the update phases at particular time instants
for both ordered and incremental updates. This ap-
proach preserves packet-level consistency by avoiding
conflicts in updates. This technique reduces the du-
ration required to store older rules in SDN switches.
However, synchronizing updates to all the switches
encounters computational complexity and depends
on the characteristics of particular forwarding de-
vices.

Buffered update approach [13] identifies the incom-
ing packets, whose routes are going to be affected by
the upcoming update, and redirects the packets to
the controller by installing an intermediate ruleset
to all switches. These packets are buffered in the
control plane until the switches are updated. After
the completion of update, the packets are processed
according to the new rules. The major limitation
of this approach is that it overloads the controller
and increases the service latency. Further, additional
overhead is incurred due to the installation of the
intermediate ruleset.

In this paper, we propose an update procedure
where switches are updated according to their work-
load. In addition, we process packets consistently
by maintaining a multilevel queueing approach. The
proposed scheme is different from the existing ordered
and incremental approaches, as we do not store old
rules, once the new rules are installed. Our approach
is also different from the buffered update approach,
where the entire network is updated at a time and
all the affected packets are buffered at the controller
until the update completes. In CURE, switches are
updated incrementally based on their usage pattern.
Additionally, switch buffers are prioritized over the
controller buffer to reduce the response time and con-
troller load.

3 CURE: The Proposed
Scheme

In this section, we describe the network model con-
sidered for our proposed scheme, CURE. We also dis-
cuss the approach for implementing a redundancy-
free consistent update of SDN.

3.1 Network Model

Figure 1: SDN architecture

We model the network as a graph G = (N ,L),
where N is the set of nodes, and L is the set of links
between the nodes. The set N is expressed mathe-
matically as:

N = C ∪ S, (1)

where C is the set of controllers, and S is the set
of OpenFlow switches. Figure 1 shows the proposed
network model. The upper bound of the number of
flow-rules which can be stored in an OpenFlow switch
Si is denoted as Ui. Each switch Sj has an associated
device queue denoted as Qj . The set of links L is
defined as:

L = Lcc ∪ Lcs ∪ Lss, (2)

where Lcc is the set of links between the controllers,
Lcs is the set of control links between the controllers
and the OpenFlow switches, and Lss is the set of
data links between the OpenFlow switches for packet
forwarding.
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For simplicity, we assume a centralized control
plane containing a single controller C. Hence, S =
{S1,S2, ...,S|N |−1}, Lcc = φ and the number of links
in Lcs is |S| = |N |− 1. Each link Li has an associate
link capacity ci.

Each switch stores the flow-rules in one or multiple
flow-tables [6]. A flow-rule Rji in Sj is a ternary string

denoted by a tuple < Prji ,M
j
i , A

j
i >, where Prji de-

notes rule priority, M j
i denotes the set of match fields,

and Aji denotes the set of action values. Each flow-
rule also contains a set of counters for storing the
rule statistics, timeout value, cookie, and flags [6]. If
an incoming packet matches with multiple rules, then
the rule with the highest priority value is selected and
the corresponding action is taken.

Definition 1 (State of a Switch). The state of Sj at
time t is defined by:

Λj(t) = {Rj(t),Ljcs(t),Ljss(t), τ j(t)}, (3)

where Rj(t) is the set of flow-rules of Sj at time t,
Ljcs(t) ∈ Lcs is the set of control links involving Sj at
time t, Ljss(t) ∈ Lss is the set of data links involving
Sj at time t, and τ j is the last update time of Sj at
time t.

Definition 2 (Network Configuration). Network
configuration at time t is defined by:

Γ(t) =

|S|⋃
j=1

Λj(t) (4)

Definition 3 (Network Update). Network update in
SDN is migration from one network configuration Γ
to another configuration Γ

′
such that,

Γ(ti) 6= Γ
′
(tj), where ti 6= tj (5)

Major objective for this work is to minimize the
maximum TCAM usage during update without con-
gesting the links and to maintain packet-level consis-
tency. For a network update from Γ(ti) to Γ

′
(tj), the

optimization problem is formulated as follows:

min max

tj∑
t=ti

|S|∑
j=1

|Rj(t)| (6)

Equation (6) minimizes the maximum number of
rules in the whole network, subject to the following
constraints:

|Rj(t)| 6 Uj ,∀Sj ∈ S (7)

Equation (7) expresses the switch capacity con-
straint for storing flow-rules.

M j
r = M j

s and Ajr = Ajs,∀Λj(ti) = {Rj(ti),Ljcs(ti),Ljss(ti),
τ j(ti)},∀Λj(tk) = {Rj(tk),Ljcs(tk),Ljss(tk), τ j(tk)}, ti < tk,
Rjr ∈ Rj(ti), Rjs ∈ Rj(tk),Duration(Rjr) < Duration(Rjs),

(8)
where Duration(Rji ) is a counter [6], which denotes

the elapsed time after installation of the flow-rule Rji .
Equation (8) prohibits the storage of older and newer
versions of a rule in a switch simultaneously.

3.2 Redundancy-free Consistent Up-
date

In this section, we describe the proposed scheme,
CURE, for SDN update. Based on workload, we first
classify the to-be-updated switches into three priority
regions, namely high, medium, and low. Thereafter,
we design an algorithm for scheduling updates among
the switches of different priority regions. Next, we
propose a packet queueing mechanism to maintain
packet-level consistency during update. Finally, we
propose an algorithm for processing the queued pack-
ets.

3.2.1 Switch Classification

Each OpenFlow switch flow-table maintains a
counter field, which records the details of the match-
ing packets. Based on the counter value, we build a
training data set. Therefore, we employ the existing
One-Vs-All (OvA) multiclass classification algorithm
[18] to classify the to-be-updated switches into three
priority zones — low, medium, and high. This clas-
sification depends on the network topology, packet
arrival rate, and existing flows in the network. If
the traffic load in all the switches are approximately
equal, CURE uses the number of active entries in
each flow-table as a metric for the classification. The
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number of active entries in each flow-table is also
stored as a counter field [6].

3.2.2 Rule Update

Algorithm 1 schedules the update based on the pri-
ority zones. Before starting the update, C sends UP-
DATE signal at time T0 to mark the set of switches
which are to be updated. Therefore, the network
configuration before update is Γ(T0). C waits for δ
time interval before sending the first update packet.
Heavily loaded switches are updated first at time
Thigh > T0. Next, medium priority switches are up-
dated at time Tmedium > Thigh. Finally, low prior-
ity switches are updated at time Tlow > Tmedium.
During the update procedure at a switch, the set of
new rules is installed first and the older rules are
deleted thereafter. In other words, garbage collec-
tion at each switch is performed right after the com-
pletion of update at the switch. Therefore, this algo-
rithm complies with the constraints stated in Equa-
tions (7) and (8). When every switch is updated, the
network reaches a configuration Γ(Tcomplete) at time
Tcomplete > Tlow.

Definition 4 (Old Packet). After T0, a packet is
marked old, if it is processed by a switch, which is yet
to be updated.

Definition 5 (New Packet). After T0, a packet is
marked new, if it is processed by a updated switch.

Let Pold and Pnew denote the sets of old and new
packets, respectively. When C selects a priority re-
gion for update, all p ∈ Pold in that region are pro-
cessed before starting the installation of new rules.
This ensures that a packet, which is already processed
by an old rule, is processed by old rules only. If an
old packet reaches an updated switch, the packet is
sent to C for further decision. Similarly, if a new
packet reaches a to-be-updated switch, which is not
in the current update region, the packet is sent to C
for further decision.

Definition 6 (Update Duration). Update duration
is the time interval between the dispatch of the first
update message by C, and update completion of the
last switch, including garbage collection.

Definition 7 (Inconsistent Packet). A packet p ∈
Pold is termed inconsistent, if it reaches an updated
switch. A packet p ∈ Pnew is termed inconsistent if
it reaches a switch, which is not updated and is not
in the current update region.

3.2.3 Packet Queueing

Algorithm 2 depicts a queueing mechanism for the
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consistent processing of incoming packets during an
ongoing update procedure. The packet queueing al-
gorithm (PQA) is triggered for each to-be-updated
switch Sj ∈ S in the present update region after C
starts update in that region. If Sj has received an
UPDATE signal recently, PQA checks statistics at C
to verify whether the switch is already updated. PQA
stores the packet if the update process is incomplete
in the corresponding switch.

Packets are stored in Qj until it is full. Thereafter,
the packets are redirected to the least priority switch
Sneighbor which belongs to a lower priority region and
has free buffer space within one-hop neighbors of Sj .
In this scenario, a switch-identifier flag is added to
the packet header specifying the switch id where the
packet arrived initially. The packets are buffered at
C when no such neighbor exists. For each switch, we
maintain a counter Pcount that counts the number of
packets stored outside of the switch’s own buffer.

3.2.4 Packet Processing

After the completion of update, each switch Su
triggers C by informing that it is ready for process-
ing packets. Algorithm 3 describes the procedure
of processing the waiting-packets. If Qu is full and
the buffer size is K, the packet processing algorithm
processes the first K packets waiting at Qu. Then
a portion of Qu is reserved for storing the waiting
packets with matching switch-identifier flag in the

one-hop neighbor. We name this buffer space as sec-
ondary buffer. The size of secondary buffer is de-
termined from the available counter value. Packets
waiting in Qneighbor and/or C are shifted to the sec-
ondary buffer. After processing these packets, the
secondary buffer space is merged with the switch’s
original buffer before processing the new ones.

3.3 Queueing Model

Assuming a Markovian server per switch, the queue of
each switch Sj is modeled as a M/M/1/K/α queue-
ing system [19, 20] where the incoming packets fol-
low Poisson’s distribution and those packets are pro-
cessed by Sj with an exponentially distributed ser-
vice time. Let, 1

µj
and 1

λj
denote the mean service

time and mean inter-arrival time at Sj , respectively.
We also consider that each switch has a finite queue
length K. Figure 2 depicts the queueing model for
SDN.

Figure 2: SDN Queueing Model

Figure 3 shows the state-transition-rate diagram
of our proposed queueing model for a single switch.
The average packet arrival rate and average service
rate for the switch be λ and µ, respectively. There-
fore, the traffic intensity is ρ = λ

µ . The switch is

in region r ∈ {high ∪ medium ∪ low}. Initially, C
sends update signal to the switch. As depicted in Fig-
ure 3, we consider that the update procedure of an
OpenFlow switch consists of three stages. In the first
stage, the switch receives update signal and region
r has not started update. The second stage begins
when r starts update. The final stage begins when

6



the switch completes update. The switch continues
processing until the second stage begins. During the
second stage, the switch queues the received packets,
unless it completes an update. Therefore, the service
rate for this stage is µ = 0. If the switch queue is
full, the packets are buffered at the neighbor queue
or at the controller buffer according to Algorithm 2.
Hence, the increased traffic intensity of a neighbor
switch Sa for buffering packets of the current switch
is given by:

ρovera =

(
λ+ λa
µa

)
(9)

Figure 3: State-Transition-Rate Diagram of CURE
for a Switch

During the final stage, the switch processes the
packets from the neighbor buffer as well as its own
buffer, as mentioned in Algorithm 3. Therefore, the
new packet arrival rate is λnew = λ+λneighbor, where
λneighbor is the rate at which the packets arrive at the
current switch from the buffer of the neighbor switch.
The traffic intensity in this scenario is ρnew = λnew

µ .
After the switch processes all the packets stored in
neighbor queue, λneighbor = 0 and λnew = λ.

The probabilities that the switch has a packets in
the three stages are denoted by P 1

a , P 2
a , and P 3

a , re-
spectively. However, as per our assumption, the pro-
cessing of packets at a switch is a Poisson process.
Therefore, according to queueing theory, the steady
state probability that the switch has i packets in the
first stage is given by:

P 1
i = ρiP 1

0 (10)

We consider the scenario that region r starts up-
date when the switch has i packets queued and com-
pletes update when it has j packets queued. We
know, P 2

i = P 1
i . During the second stage, packets

are added to the queue at the rate of λ and no pro-
cessing is performed. Hence, we get:

P 2
i = P 2

i+1 = . . . = P 2
K = P 1

i (11)

Similarly, from Equation (11), we get:

P 3
j = P 2

j = P 1
i (12)

The probability P 3
j is also expressed as:

P 3
j = (ρnew)jP 3

0 (13)

From Equations (10), (12), and (13) we have:

P 3
0 =

ρi

(ρnew)j
P 1
0 (14)

According to queueing theory for finite queue
length, at steady state:

P 1
0 =

1− ρ
1− ρK+1

, P 3
0 =

1− ρnew

1− (ρnew)K+1
(15)

Hence, from Equations (14) and (15), the proba-
bility P 1

0 is defined as:

P 1
0 =

(ρnew)j(1− ρnew)

ρi(1− (ρnew)K+1)
(16)

Let L and Lnew be the expected number of packets
in the switch before starting update and after the
completion of update, respectively. Mathematically,

L =
ρ(1 +KρK+1 − (K + 1)ρK)

(1− ρ)(1− ρK+1)
(17)

Lnew =
ρnew(1 +K(ρnew)K+1 − (K + 1)(ρnew)K)

(1− ρnew)(1− (ρnew)K+1)
(18)
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Let W and Wnew be the mean waiting time at the
switch before starting update and after the comple-
tion of update, respectively. Therefore, the increase
in mean waiting time at the OpenFlow switch due to
update is given by:

Wnew −W =
(
Lnew

λnew − L
λ

)
= 1

µ

(
− 1+KρK+1−(K+1)ρK

(1−ρ)(1−ρK+1)

+ 1+K(ρnew)K+1−(K+1)(ρnew)K

(1−ρnew)(1−(ρnew)K+1)

)
(19)

The value Wnew −W provides an estimate of the
latency incurred due to rule update. After the switch
completes processing the packets stored in the neigh-
bor queue, Wnew −W becomes zero, eventually.

4 Performance Evaluation

In this section, we evaluate the performance of CURE
in terms of the following metrics: (a) update du-
ration, (b) average rule space utilization, (c) aver-
age packet waiting time, and (d) inconsistent packet
count. To evaluate the performance, we implemented
a discrete event simulator in MATLAB and per-
formed two experiments. In the first experiment,
we measured the update duration and the aver-
age rule space utilization, while varying the num-
ber of switches in a leaf-spine topology with 2N

3 leaf

(ingress) switches and N
3 spine switches (e.g., [5]).

In the second experiment, we simulated three net-
work topologies available in the Internet Topology
Zoo [21], namely Sprint, NetRail, and Compuserve.
We run five test flows in each of these topologies to
compute the performance with respect to the average
packet waiting time and inconsistent packet count.

4.1 Simulation Parameters

Table I depicts the simulation parameters. We im-
plement the leaf-spine topology by varying the total
number of switches from 6 to 48. The maximum num-
ber of flow entries in a switch is fixed to 8000 [22].
We consider that the upper bounds on controller-to-
switch delay, end-to-end network delay, and the time
interval between generation of two consecutive up-
date messages are 4.865 ms, 0.262 ms, and 5.240 ms,

respectively [5]. The average packet arrival rate, av-
erage packet service rate, and average queue size per
switch are 0.005 − 0.025 million packets per second
(mpps), 0.030 mpps [23], and 0.073 million packets,
respectively. We consider that the flow-table lookup
time for each packet is 33.333 µsec [23].

4.2 Result and Discussion

4.2.1 Update Duration

The update duration is the time interval between
the dispatch of the first update message by the con-
troller, and the update completion of the last switch.
Garbage collection, i.e., the removal of old rules is
included in the update duration, as defined in Defi-
nition 6.

Figure 5 depicts the update duration for two-phase
update [12], timed two-phase update [5], Buffered
Update [13], and CURE in a leaf-spine topology.
The two-phase update approach (both untimed and
timed) updates the spine switches in phase 1, the
leaf switches in phase 2 and performs garbage col-
lection after completion of phase 2. From Figure 5,
we can see that the update duration for timed two-
phase update is 27.919% less than that of two-phase
update. The update duration for CURE is 37.563%
less than that of two-phase update. The update du-
ration is almost similar for timed two-phase update
and CURE. Duration for buffered update is high due
to the overhead for the installation of intermediate
rules. From Figure 5, we yield that the update dura-
tion for CURE is short as it does not have a separate
garbage collection phase.

4.2.2 Average Rule Space Utilization

We calculate the average rule space utilization as the
percentage of rule space used during different stages
of update by N switches in the leaf-spine topology.

Figure 6 shows the rule space utilization percent-
age for two-phase update [12], timed two-phase up-
date [5], Buffered Update [13], and CURE. CURE
and buffered update utilize similar amount of rule
space, as they both do not store redundant rules.
Whereas, rule space utilization is almost similar for
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Figure 4: Test Flows in Sprint, NetRail, and Compuserve Topology
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Figure 5: Update Duration
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Figure 6: Average Rule Space
Utilization
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Figure 7: Update Duration and
Average Rule Space Utilization

the two-phase update and the timed two-phase up-
date, as they both require to store both old and new
rules until the start of the garbage collection phase.
Average rule space requirement for CURE is 29.954%
and 30.348% less than that of the two-phase update
and timed two-phase update, respectively. As shown
in Figure 6, we synthesize that the average rule space
utilization is short in CURE, as storage of both ver-
sions of rules, simultaneously, is not required.

Figure 7 portrays the relation between the number
of switches, average rule space utilization, and update
duration for two-phase update, buffered update, and
CURE. We see that CURE outperforms the others,
considering both performance metrics — average rule
space utilization and update duration.

4.2.3 Average Packet Waiting Time

For each of the three topologies — Sprint, NetRail,
and Compuserve, we simulate five test flows, and
calculate the average waiting time for the incoming
packets that are either waiting in the switch queues
or are in process. Figure 4 depicts the topologies
and the test flows. We estimate the delay of each
link based on the distance between the corresponding
nodes. Similar to Ref. [5], we assume 5 microsecond
delay per kilometer.

Figure 8 depicts the average packet waiting time
for different packet arrival rate for each of the test
flows in each of the topologies. The average packet
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Figure 8: Average Packet Waiting Time

Figure 9: Average Packet Inconsistency

queue size is 0.073 million packets. Average packet
waiting time increases with increasing packet arrival
rate.

4.2.4 Inconsistent Packet Count

We measure inconsistency as a percentage of incon-
sistent packets in the system. Inconsistent packets
are identified based on Definition 7.

Figure 10: Controller Overhead in Sprint Topology

Figure 9 compares inconsistency count in CURE

with two-phase update and timed two-phase update
[5] for different average packet arrival rates. We simu-
late test flows s1, n1, and c1 in topologies Sprint, Ne-
tRail, and Compuserve, respectively. Average queue
size per switch is 0.073 million packets. In the two-
phase update approaches (both untimed and timed),
inconsistency count decreases with increasing packet
arrival rate. In two-phase update, the average in-
consistency counts for Sprint, NetRail, and Com-
puserve are 2.976%, 1.118%, and 1.327%, respec-
tively. In timed two-phase update, the average incon-
sistency counts for Sprint, NetRail, and Compuserve
are 2.629%, 1.237%, and 1.389%, respectively. How-
ever, average inconsistency count for CURE is similar
for different packet arrival rates. The average incon-
sistency count for Sprint, NetRail, and Compuserve
is 0.322%, 0.205%, and 0.240%, respectively. There-
fore, we yield that in CURE an initial percentage
of incoming packets become inconsistent due to the
ongoing network update and inconsistency count re-
duces as time elapses after completion of the update.
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4.2.5 Controller Overhead

Controller overhead is calculated as the percentage of
packets sent to controller during an ongoing update.
In Sprint topology, CURE incurs 0.31% controller
overhead for packet arrival rate 0.005 mpps. Figure
10 depicts that the controller overhead in buffered
update is 82.209% higher than that in CURE. This
is because CURE redirects packets to the controller
only in the absence of a neighbor switch having lower
priority and free buffer space. Whereas, buffered up-
date keeps redirecting all the affected packets to the
controller until the update completes.

5 Conclusion

This work emphasizes reduction of TCAM usage dur-
ing SDN update with an aim to increase scalability re-
quired for handling large-scale data. This work mod-
ifies the update scheme of OpenFlow-enabled SDN
and proposes a multilevel queue-based policy for en-
suring packet-level consistency. We compared our
scheme with the other approaches of SDN update to
evaluate its performance. Results clearly depict that
CURE significantly reduces the update duration and
the average rule space requirement during update ap-
proximately by 38% and 30%, respectively.

The future work will include extension of the
proposed scheme in distributed SDN control plane,
where multiple controllers perform network update
concurrently. We will consider flow-level consistency
along with packet-level consistency.
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