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Abstract—In this paper, we propose a Quality of Service (QoS)-aware pricing mechanism, termed as Q-Safe, for provisioning
safety-related decisions to the end-users. Typically, a Safety-as-a-Service (Safe-aaS) platform provides real-time decisions to the
customers, as per their requirement. At the time of registration of the use, customers provide the details of their source and destination
locations, chose certain decision parameters, and make payment through the Web portal. Based on these selected decision
parameters, the decision is generated. In the proposed pricing scheme, we consider the presence of multiple Safety Service Providers
(SSPs) in the Safe-aaS platform. Therefore, the end-users possess the opportunity to select a SSP, depending on the price charged by
the latter. On the other hand, the end-users may compromise with the quality of the decision provided through the selection of the
available safety services at a low cost. Considering road transportation as the application scenario of Safe-aaS and to address these
above-mentioned issues, we propose a dynamic pricing scheme, Q-Safe. We introduce the concept of varying prices to be charged by
the SSPs for each of the decision parameters, based on the fluctuation in the value of these parameters with time. Each of the
end-users selects certain decision parameters among the ones displayed in the Web portal. Thereafter, the SSPs suggest decision
parameters to the end-users depending upon their present geographical location. To model these interactions between the SSPs and
the end-users, we map the scenario with Non-Cooperative Multiple Leader Multiple Follower Stackelberg game, where the SSPs act as
leaders and the end-users act as followers. Exhaustive analysis of our proposed scheme demonstrates that the average profit of the
SSP is improved by 70.88%, 52%, and 77% compared to the Per-Subscriber model [1], PRIME [2], and RegPrice [3] in the presence of
200 sensor nodes in the simulation environment. Additionally, we characterize the errors during the estimation of energy consumed,
utility, effective time, and total cost, with the increase in the number of end-users.

Index Terms—Road Transportation, Service Oriented Architecture (SOA), Decision Virtualization, Decision parameters, Quality of
Service (QoS)
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1 INTRODUCTION

W ITH the recent advancements in the diverse Internet
of Things (IoT)-based technologies such as Intelligent

Transportation System (ITS) [4] and Advanced Driver Assis-
tance System (ADAS) [5]–[7], the on-road traffic conditions,
as well as the safety of drivers have improved. Further,
the rate of increase in the number of on-road accidents
has also reduced significantly. The prior intimation of the
safety-related information to the drivers may result in min-
imizing the rate of accidents. Safe-aaS [8]–[10] is one of the
unique platforms, which provides safety-related decisions
to the end-users, as per their requirements. Considering
road transportation as the application scenario of Safe-aaS,
we design a QoS-aware pricing mechanism for provisioning
customized, virtualized decisions to the end-users.

In Safe-aaS, the end-users provide the source and des-
tination locations, select certain decision parameters, and
make payment. Based on their selected decision parameters,
the decision is provided to the end-users. Typically, in a road
transportation environment the decision parameters such as
the presence and depth of potholes, the location of man-
holes, and the sharp turnings on road, which do not fluc-
tuate with time are termed as low-cost parameters. On the
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other hand, the decision parameters such as weather con-
ditions and road congestion, whose value varies frequently
with time are known as high-cost parameters. The end-users
have the flexibility to select both high- and low-cost param-
eters. The SSPs suggest the end-users with certain decision
parameters, as per their geographical location. Therefore,
the SSPs may possess the tendency to suggest only the high-
cost parameters to increase their profit. The end-users may
select only the low-cost parameters to avail safety services
at a cheaper price. To maintain a balance between the profit
of SSPs, QoS of services provided, and prices charged from
end-users, we propose a pricing scheme.

Existing researchers proposed certain schemes, real-time
assistance systems, and infrastructures to minimize the
number of on-road accidents, forecast and evaluate the
traffic measures, provide alerts to the drivers, and recognize
their driving pattern [4], [5], [11]. Safe-aaS [8] is a newly
developed, unique platform which provides a customized
safety-related decision to the end-users. Founded on the
concept of decision virtualization, the same decision is
shared among multiple end-users. The key actors of Safe-
aaS are – end-users, sensor owners, vehicle owners, and
SSPs. The end-users select certain decision parameters and
make payments to the Safe-aaS platform. The value of some
of these decision parameters does not fluctuate frequently
with time. On the other hand, sensor and vehicle owners
rent their sensor nodes and receive payment from SSP.
The remaining amount from the payment received from
end-users and rent paid to owners is the profit of the
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TABLE 1: Summary of the existing research works on road safety and pricing

Applications IoT Pricing Fog/cloud QoS Latency
Safe-aaS [10], [24] X D X × X
mSe-aaS [11] X D X X X
Se-aaS [16] X D X × ×
Smart road pricing [19], [20] X D X × ×
Resource allocation [26] X D ×(edge) × X

[Legend: Pricing - Static (S)/ Dynamic (D)]

SSP. Therefore, complex monetary transactions occur among
these actors of Safe-aaS. The demand of end-users vary
dynamically. Further, the SSPs may demand higher prices
from the end-users to increase their profit. Therefore, to
provide customized prices to the end-users maintaining the
quality of service is challenging. None of the existing pricing
schemes are applicable for the Safe-aaS platform. Motivated
by these facts, we design a QoS-aware pricing scheme for
Safe-aaS, which satisfies both the SSPs as well as end-users.

In this paper, we propose a QoS-aware pricing mech-
anism, Q-Safe, which satisfies both the SSPs and the end-
users. The proposed scheme maintains a trade-off between
the minimum price charged from the end-users and the QoS
of the decision generated. The SSPs suggest certain decision
parameters to the end-users, based on their present geo-
graphical location, after they have submitted their selected
decision parameters. Depending upon the optimal number
of low- and high-cost decision parameters selected, the min-
imum price to be charged from the end-users is estimated.
Therefore, we primarily aim to address the following issues:
(a) how to provide safety services to the end-users at a lower
price such that the quality of service is maintained as well
as the SSP is satisfied? (b) how to select the optimal number
of low price and high price decision parameters to provide
safety services at low prices? The specific contributions of
this work are as follows:

• To maintain the QoS of the decision provided to
the end-users, we design a suggestion-based pricing
scheme. The SSPs suggest decision parameters to the
end-users depending upon their geographical location.
We categorize the decision parameters selected by the
end-users as low-cost and high-cost decision parameters.
Further, we estimate the effective total cost from the
optimal number of selected decision parameters.

• We consider the presence of multiple SSPs in our
scenario. To map the interactions among these SSPs
and the end-users, we apply Non-Cooperative Multiple-
Leader-Multiple-Follower Stackelberg game-theoretic fab-
ric, where the SSPs act as leaders and the end-users act
as followers. Additionally, we prove the existence of
Stackelberg equilibrium in our scenario.

• In Safe-aaS, the end-users possess a tendency to avail
the safety services at a cheaper price, while the SSPs
desire to enjoy higher profit. To satisfy both the SSPs
and the end-users, we formulate the total cost as
an optimization function. Further, we apply the La-
grangian function and the Karush-Kuhn-Tucker (KKT)
conditions to obtain the optimal number of low-cost
and high-cost decision parameters, for which the price

charged by the SSPs is minimum.
• We evaluate and analyze the proposed scheme, Q-

Safe, in Python considering various metrics. Extensive
analysis results of our proposed scheme proved to be
beneficial in terms of the average profit of the service
provider and the utility of the end-user, compared to
the Per-Subscriber model [1], RegPrice [3], and Prime
[2].

2 RELATED WORK

In this section, we discuss some of the existing pricing
mechanisms such as static [12] and dynamic [13] pricing
schemes, resource utilization-based pricing mechanisms for
cloud [1], [14], [15] and pricing schemes for sensor cloud
platform [16]–[18]. Various smart road pricing schemes were
also proposed to prevent toll evasions, optimal traffic flow
management, optimal congestion control pricing, and dy-
namic parking management [19]–[23].

Certain schemes and real-time assistance systems were
proposed to ensure the safety of drivers. A unique platform,
Safety-as-a-Service (Safe-aaS), was proposed by Roy et al.
[3], [8]–[10], [24], which provides customized safety-related
decisions to the end-users. The authors introduced the con-
cept of decision virtualization using which multiple end-
users receive the same decision. Tian et al. [11] studied the
various consequences associated with the detection of the
drivers’ distraction on road and upgrade their safety. The
authors studied the various available data sets to study the
probabilities of crash and near-crash events. On the other
hand, to securely manage the traffic in smart cities and
obstruct toll evasion violations, Bouchelaghem and Omar
[19] proposed a smart road pricing scheme. The proposed
approach works under fully distributed threshold-based
control system. Similarly, Tettamanti et al. [20] designed a
dynamic pricing scheme to optimally manage the traffic.
The authors considered the time-delay effect of traffic fore-
casting and performed simulation on real-world traffic test
networks applying various traffic control methods.

Various pricing schemes were designed by the re-
searchers for WSNs utilizing cloud services [1], [25], at
the network edge for low latency applications [26], and
dynamic pricing in mobile social network [27]. Guijarro et
al. [1] designed a platform, which acts as a broker between
the human users and the WSNs. The proposed scheme
maximizes the profit of both the users and the WSNs. Their
proposed platform acts as a monopolist and circulates the
price charged from the users and paid to the WSNs. Simi-
larly, with the widespread emergence of edge computing for
low-latency applications in the IoT scenario, the appropriate
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allocation of resources has become essential. Baek et al. [26]
proposed three dynamic pricing mechanisms for resource
allocation at the edge of the network. On the other hand,
cloud service providers charge for the resources depending
upon the assigned CPU frequency. Lucanin et al. [28] consid-
ered the CPU frequency, estimated the power dissipated in
a multi-core CPU machine, and proposed a pricing scheme.
On the other hand, in cloud computing the service providers
primarily provide preservation of available resources and
on-demand plans to the consumers. Ardagna et al. [29]
proposed two solution approaches for provisioning services
in the form of generalized Nash game and proved the
existence of equilibrium. Further, there exists heterogeneous
types of sensor nodes and multiple sensor owners in a
sensor cloud platform. Considering such an oligopolistic
market scenario, Chakraborty et al. [16] proposed a dynamic
pricing scheme to impose trust among the sensor owners
to maintain the QoS requirements for provisioning Se-aaS
services. Similarly, Roy et al. [2] proposed a pricing scheme
for provisioning mobile sensors-as-a-service (mSe-aaS) such
that the profit is optimally distributed among the different
actors.

Synthesis: The researchers addressed various problems
related to pricing in the domain of Wireless Sensor Network
(WSN) and cloud platform such as profit maximization
of users and service providers [1], maintenance of QoS
parameters [18], resource allocation [26], dynamic pricing
for revenue maximization [27], and performance-based pric-
ing [28]. However, none of these above pricing schemes
provide customized prices to the end-users. Considering
the road transportation scenario, various pricing schemes
were proposed by researchers for on-road traffic flow man-
agement [20], optimal congestion control [21], and dynamic
parking management [23]. Safe-aaS is a newly developed,
unique platform, which provides customized safety services
dynamically to the end-users. Founded on the concept of de-
cision virtualization, these generated decisions are provided
to multiple end-users simultaneously. Therefore, in case of
Safe-aaS platform, providing customized prices to the end-
users and maintain the QoS is a complicated task.

3 Q-SAFE: THE SYSTEM MODEL

3.1 The System Architecture
Safe-aaS infrastructure is implemented in ITS application
area. Typically, Safe-aaS is a five-layered architecture – de-
vice, edge, decision, decision virtualization, and application,
as illustrated in Fig.1. The device layer comprises heteroge-
neous types of static and mobile sensor nodes, which sense
and transmit their sensed data to the edge/cloud. Static
sensor nodes are deployed at a particular geographical
location, while mobile sensor nodes are placed into the
vehicles. Based on their time-critical nature, these sensed
data are primarily processed at the edge nodes. Further,
these primarily processed data from the edge layer/cloud
are transmitted to the decision layer, where the decision
is generated. Finally, the logical mapping of the decision
parameters requested by the end-users and the decision
generated is done in the decision virtualization layer. On
the other hand, the application layer acts as the interface
between the end-users and the Safe-aaS infrastructure. The

Fig. 1: Q-Safe: The System Architecture

end-users select certain decision parameters, register, and
make payments through the Web portal.

On the other hand, various business entities such as
sensor owners, vehicle owners, end-users, and safety service
providers (SSPs) exist in the Safe-aaS platform, and mone-
tary transactions take place among them. The sensor and ve-
hicle owners rent their sensor nodes and receive an amount
given by the SSPs. Further, the end-users are benefited from
these safety services on pay-per-use basis. Therefore, the
remaining amount from the payment done by the end-users
and the rent paid by the sensor and vehicle owners is the
profit of the SSP. The SSPs possess a tendency to maximize
their profit, while the end-users expect to avail these services
at a lower price. However, as safety-related decisions are
delivered to the end-users, it is important to maintain the
Quality of Service (QoS) of the decisions provided to them.
In this scheme, Q-Safe, the SSPs suggest decision parameters
to the end-users, based on their geographical location. We
classify the decision parameters as low-price and high-price.
The decision parameters whose values does not fluctuate
frequently with time are termed as low-price parameters. On
the other hand, the values of high-price parameters vary with
time. Depending upon the decision parameters selected by
the end-users and modifications done after incorporating
the suggestion of the SSPs as illustrated in Fig. 1, the price
is charged from the end-users. We propose this QoS-aware
pricing scheme, Q-Safe, to minimize the total costs incurred
by the end-users, through the optimal selection of high-price
and low-price decision parameters.

3.2 Problem formulation

Let E = {e1, e2, · · · , en} be the set of n registered end-
users of the Safe-aaS platform. These registered end-users
select certain decision parameters from the set P, where
P = {p1, p2, · · · , pm}. On the other hand, Ns represents
the set of heterogeneous sensor nodes present in the device
layer of Safe-aaS. As discussed in Section 3.1, the SSPs set
the price for each of these decision parameters, based on
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the fluctuation in the value of these parameters with time.
Further, the SSPs maintain a mapping between the decision
parameters and the price. We characterize this mapping
as the one-to-one map. Each of the decision parameters
possesses a unique price. On the other hand, based on
the price of the decision parameters set by the SSPs, we
classify these parameters as – (i) Pl - the set of decision
parameters with low-price, and (ii) Ph - the set of decision
parameters with high-price. Ch is the cost of a high-price
decision parameter, Pi

h. Similarly, Clow be the cost of a low-
price decision parameter, Pi

l . The proposed pricing scheme,
Q-Safe, has two perspectives – (a) End-user/customer and
(b) Safety Service Provider.

End-user’s perspective: Suppose, the number of parame-
ters selected by an end-user is Ps. The properties of these
selected parameters are characterized as follows:

Property 1. Pl ⊂ P and Ph ⊂ P. Therefore, P = Pl ∪ Ph,
where Pl ∩ Ph is not possible, as there are no common parameters
between these two sets.

Property 2. The cost of low-cost decision parameters are always
lower than the cost of high-price decision parameters, such that
Clow < Chigh, and (Clow,Chigh) > 0.

Let Li
a and Hi

b are the number of low- and high-cost
decision parameters selected by the end-users from the
set Pl and Ph, respectively. Therefore, the total number of
parameters selected by the ith end-user is

Pi
s = Li

a +Hi
b (1)

where Li
a andHi

b are the number of parameters from the
set Pl and Ph, respectively.

Safety Service Provider’s perspective: The SSPs are respon-
sible for the estimation of the final price for the end-users
and check the utility of the available resources. The decision
is generated from the data sensed by heterogeneous sensor
nodes. We consider Nl as the number of sensor nodes
involved to provide low-price decision parameters and Nh

for the high-price decision parameters. Therefore, the total
number of sensor nodes utilized for low-cost and high-
cost decision parameter depend upon the selected decision
parameters is described as,

Ntot = Li
a × Nla +Hi

b × Nhb (2)

The SSP maintains a mapping between the decision
parameters and price in Mpp.

Mpp[i][j] =

{
Clow, parameter of Pl

Chigh, parameter of Ph
(3)

The sensor nodes in the device layer are mapped with
the decision parameters using their unique identification
number. This mapping is maintained by the SSPs, which
is mathematically expressed as,

Msp[i][j] =

{
1, if pi is generated from Nsumj

0, otherwise
(4)

Centralized Service Utility: In this proposed approach, we
aim to satisfy both the SSPs and the end-users, such that
both are benefited. The SSPs deliver the generated decisions

to the end-users, and price is charged from them. Based on
the number of active sensor nodes at any time instant, the
effective energy of the jth sensor node is estimated as,

εeffj =
εresij − (εsensej + εtransj )

εinitj

(5)

where εresij , εsensej , εtransj , and εinitj represent the resid-
ual energy, energy consumed for sensing, energy required
for transmission, and the initial energy of the jth sensor
node at any time instant. Therefore, effective energy con-
sumed to deliver safety services to the ith end-user for
n sensor nodes being utilized to generate the decision is
εeffi =

∑n
j=1 ε

eff
i,j . Further, to provide real-time safety

services, any delay may result in a hazardous situation.

Algorithm 1 Q-Safe: Price charged from end-users

INPUTS: 〈source, destination〉 = 〈Si, di〉, Pl, Ph, Li
a, Hi

b.
OUTPUT: Price charged from ith end-user.
PROCEDURE:

1: for i = 1 to n do . n: Number of end-users
2: for j = 1 to k do . k: Number of decision

parameters displayed in the Web portal
3: ith end-user selects decision parameters
4: Pi

s is computed
5: Estimate price charged from ith end-user and

his/er utility
6: while time = τ do . τ : short time duration
7: SSP suggests j parameters to ith end-user,

based on 〈Si, di〉
8: if ith end-user agrees then
9: Price and Utility is estimated

10: Decision generated
11: else
12: Go to Step 5
13: end if
14: end while
15: end for
16: end for

Algorithm 1 provides an overview of the minimum price
charged from the end-users. Steps 3− 5 computes the price
charged by the end-users, as per the decision parameters
selected. In Steps 6− 14, a periodic time is used for price re-
evaluation. During this period, the minimum price charged
from the end-users is estimated by incorporating the deci-
sion parameters suggested by the SSPs, until the optimal
number of high-price and low-price decision parameters is
computed.

The effective time required for this whole process of
computation of price charged from the end-users is math-
ematically represented as,

Teff
i =

Np,i × Tfixed,i + Teval,i + Tr,i

Tcomp,i
(6)

where Np,i is the number of times re-evaluation request
is processed. Tfixed,i is the fixed amount of time required
for each time of re-evaluation. Teval,i is the utility evaluation
time for each period, Tr,i is the response time, and Tcomp,i

represents the total computation time. Therefore, the utility



IEEE TRANSACTIONS ON SERVICES COMPUTING 5

of the safety service to be provided to the ith end-user is
represented as,

Ui = N i
tot ×

(
λ1 × εeffi +

λ2

Teff
i

)
(7)

where λ1 and λ2 represent the constants for the rate of
change of effective energy of the sensor nodes and effective
time, such that 1 > (λ1, λ2) > 0.

3.3 Pricing Strategies
The end-users and the SSPs interact among them and agrees
to the pricing scheme when both are satisfied. The end-
users have the intention to select the low-price parameters,
such that the price charged by the SSPs is minimized. On
the other hand, the SSPs may tend to increase their profit
by suggesting high-price decision parameters to the end-
users. Therefore, the price charged from end-users must
satisfy both the end-users and the SSPs. Considering the
above scenario, we design three cases which are discussed
as follows.
• Case 1: When an end-user selects all low-price param-

eters, the end-user have to compromise with the real-
time safety service, however they have the option to
select other parameters. In such a case, the initial price
charged by the SSP is represented as,

Cinit = La × Clow + Copt + Cp (8)

where Copt represents the optional cost of other deci-
sion parameters selected by the end-users and Cp is the
processing cost.

• Case 2: When an end-user selects mixed parameters
– both low- and high-price parameters. This situation
provides average quality of service to the end-users
within affordable price. In this case, the initial price
charged by the SSP is,

Cinit = La × Clow +Hb × Chigh + Cp (9)

• Case 3: When an end-user selects only high-cost param-
eters, the initial price charged by the SSP is mathemati-
cally represented as,

Cinit = Hb × Chigh + Copt + Cp (10)

After all the above cases, we represent the total price
charged by any SSP from an end-user for these above-
mentioned cases as follows –

Ctotal =
Np∑
j=1

(Cjinit + C
j
r) (11)

where Cir is the re-evaluation cost for Np re-evaluation
requests. To maintain the quality of service (QoS) provided
to the end-users, satisfy the utility of service provided to
them, and select the appropriate number of high- and low-
price decision parameters is an essential aspect of concern.
Therefore, a trade-off is to be maintained between the satis-
faction of the end-users and the price charged by the SSPs.

Citotal = β × Ciinit × Ui + Cir (12)

3.4 Quality of Service (QoS)
Typically, in Safe-aaS, depending upon the decision pa-
rameters selected, the end-users make payment. In Q-Safe,
the SSPs suggest the end-users certain decision parameters.
Further, QoS depends on the efficiency of the heteroge-
neous sensor nodes. In a recent research work, Roy et al.
[2] proposed an optimal pricing scheme considering the
quality of service. The authors designed QoS in terms of
efficiency of sensor nodes. Further, the service return of the
service provider (SCSP) is measured in terms of the type
of end-users and time factor. Motivated by this concept,
we mathematically define the efficiency, Ei, and quality of
service, Qi for ith end user as,

Ei =
εeffj × (Tc,j + Tt,j)

Tr,i
(13)

Therefore, Qi is represented as,
Qi = α× Ei × Ui (14)

where Tc,i and Tt,i are the time required to collect and
transmit data from edge layer by jth sensor node for ith end
user. Tr,i is taken to response to ith end user.

3.5 Game Formulation
In Safe-aaS, the customers register to the platform, select
certain parameters and make payment through the Web
portal. A decision is delivered to them. In our proposed
pricing scheme, we introduce a suggestive method using
which the end-users select their decision parameters. The
SSPs suggest certain decision parameters to the customers,
depending upon their selected source and destination de-
tails. To map the strategic interactions among the end-users
and the SSPs, we apply Non-Cooperative Multiple Leaders
Multiple Followers Stackelberg game-theoretic approach. The
SSPs act as leaders and the end-users act as followers.
Suppose, Ex, such that Ex ⊂ E and (1 ≤ x ≤ n), set of end-
users which act according to the pricing scheme declared by
the SSPs, Zy, 1 ≤ y ≤ q.

Non-Cooperative Stackelberg Game-The Justification: The
end-users first select certain decision parameters, among
the ones displayed in the Web portal. Thereafter, based
on their source and destination details given by the end-
users and to maintain the Quality of Service (QoS), the SSPs
suggest certain decision parameters. The price charged from
the end-users and their utility is estimated during each re-
evaluation. The SSPs possess the intention to increase their
profit as well as satisfy the end-users with the price charged.
Therefore, a dynamic scenario exists, where we map the
interactions among the SSPs and the end-users with a non-
cooperative game. Each of the players, the leaders and the
followers, take their decisions independently in the game.
The leaders first put forth their strategies or suggest the
decision parameters. Based on their strategies or suggested
decision parameters, the followers/end-users select their
decision parameters.

Lemma 1. The event of selection of the decision parameters by
the end-users and those suggested by the SSPs is a pairwise,
dependent event.

Proof. We consider P x as the decision parameters initially
selected by the end-users and P y as those suggested by the
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SSPs. We design the selection of the decision parameters as
an event. Suppose, the probability of occurrence of these
events be denoted as P. Therefore,

P(P y ∩ P x) = P(P x)P(P y|P x) (15)

where P(P y|P x) represents the probability of occur-
rence of the event P y when P x has already occurred.

Therefore, the strategic form of the game is defined as –

ξi = (Zy ∪ Ex)(x∈n,y∈q)), (SyL,S
i
F ,U

y
L,U

i
F )(i∈n,y∈q) (16)

The various parameters of the game are – (i) Zy , set
of leaders/SSPs,(ii) Ex, set of followers/end-users, (iii)SyL,
strategies of the leaders, (iv)SiF , strategies of the followers,
(v) Uy

L, the utility function of the leaders, and (vi) U i
F , the

utility function of the followers.
Strategies of the leaders: The leaders put forth their

strategies depending upon the different pricing strategies,
which are described in Section 3.3. Therefore, strategy
of the leaders is mathematically represented as, SyL =
{Cinit,Clow,Chigh,Cp}.

Strategies of followers: The followers place their strategies,
SiF , depending on the type of decision parameters selected
by them. Therefore, SiF = {La,Hb}.

To satisfy the end-users as well as the SSPs requests, we
aim to minimize the total costs, depending on the optimal
number of low-cost and high-cost decision parameters se-
lected.

Theorem 1. There exists a unique Stackelberg equilibrium, for
the total costs charged by the SSPs from the end-users. To estimate
the total cost, we consider a given re-evaluation cost, effective
residual energy of the sensor nodes, number of sensor nodes used,
and time required for the entire process of decision parameters
selected by the end-users and suggestions provided by the SSPs.

Proof. In our proposed pricing scheme, each of the end-
users requests certain decision parameters, and decision is
provided by the Safe-aaS platform. Further, the SSPs tend to
minimize their utility and increase their profit, such that the
decision is provided to the end-users, utilizing the minimum
number of sensor nodes and their energy consumed, within
a bounded time period. Therefore, the optimization function
is mathematically represented as,

argmin
Li

a,Hi
b

Citotal (17)

subject to, m ≥ (Li
a +Hi

b), Chigh > Clow, Cr ≥ 0, Cp > 0,
N i

tot > 0, and 0 ≤ (εeffi ,Teff
i ) ≤ 1. The maximum number

of decision parameters displayed in the Web portal is repre-
sented as m. In order to simplify the optimization function,
we apply Lagrangian function, which is represented as,

Li = −Citotal − µ1(Li
a +Hi

b −m)− µ2(Clow − Chigh)
− µ3(Cp)− µ4(Cr)− µ5(N j

tot)− µ6(ε
eff
i − 1)

− µ7(Teff
i − 1)

(18)

where µ1, µ2, µ3, µ4, µ5, µ6, and µ7 represent the La-
grangian Multipliers. Further, to solve Equation 18, we use
Karush-Kuhn-Tucker (KKT) conditions. The dual feasibility
and complementary slackness conditions are represented as
follows:

∂Li

∂Li
a

= −(βClow + βLi
aNla) + µ1 = 0 (19a)

µi(X) = 0 and µi ≥ 0,∀i = {1, 2, · · · , 7} (19b)
where X represent the constraints of the Equation 17.

On solving Equation 19, we obtain the optimal value of Li
a.

Similarly, we perform the first order derivative of Equation
18, with respect to Hi

b and applied the KKT conditions, to
obtain the optimal number of high-cost parameters. There-
fore, the optimal value of Li,∗

a and Hi,∗
b are represented as:

Li,∗
a =

1

Nla

(
µ1

βClow
− 1

)
(20a)

Hi,∗
b =

1

Nhb

(
µ1

βChigh
− 1

)
(20b)

Based on the optimal values of Lj,∗
a and Hj,∗

b , we obtain
the minimum total cost charged by the SSP from the end-
users.

4 PERFORMANCE EVALUATION

4.1 Simulation Design

To evaluate and analyze the performance of the proposed
pricing scheme, Q-Safe, we vary the user entities from 0
to 500 and the number of sensor nodes from 200 to 600,
in a simulation area of 10 × 10km2. We randomly deploy
the sensor nodes in the simulation region. The various
simulation parameters used are listed in Table 2.

TABLE 2: Simulation Parameters

Parameters Values
Pl, Ph 10
Nl, Nh 200
Decision parameters 10
Cases for price charged 3
Clow 100− 500
Chigh 501− 1000
Cr 100
λ1, λ1, β 0− 1

4.2 Benchmark Solution

Existing research works discussed various dynamic pricing
schemes to fulfill the demand of both SSP and customers, in
terms of profit of SSP and maintain the quality of service
(QoS). Guijarro et al. [1] proposed a two-sided payment
scheme in a service platform, based on WSNs. Their de-
signed platform acts as a mediator between the consumers
and the WSNs, where both the service providers as well
as consumers post their prices to maximize their profit.
On the other hand, Roy et al. [2] proposed a dynamic
pricing scheme for providing Sensors-as-a-Service (Se-aaS)
in the mobile sensor cloud environment. They considered
the quality of service provided by the sensor nodes in terms
of service return, the price charged by the Sensor Cloud
Service Provider (SCSP). Additionally, we compare another
recent research work on pricing in the Safe-aaS platform
as a benchmark scheme. Considering the type of road in
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different geographical regions and the presence of homoge-
neous sensor nodes, Roy et al. [3] proposed a region-based
pricing scheme. The authors calculated the price charged
from the end-users based on fixed cost, variable cost, and
maintenance cost. We termed the pricing scheme proposed
by Guijarro et al. [1], Roy et al. [2] and Roy et al. [3] as Per-
Subscriber Model, PRIME, and RegPrice. However, none of
these existing schemes consider the quality of service to be
provided to the end-users in terms of their requirement, and
suggestion is not given by the service provider.

We analyze the profit of SSP with the increase in the
number of end-users, as illustrated in Fig. 2. We observe
that the average profit in the proposed scheme, Q-Safe, is
improved by 70.88%, 52%, and 77% compared to the Per-
Subscriber model, PRIME, and Reg-Price in the presence
of 200 sensor nodes. We increase the number of end-users
from 50-500 along the x-axis. The possible reason behind
the increase in the profit of SSPs is the rate of increase in
the demand of safety services by the registered end-users.
Moreover, these end-users select the optimal number of
high- and low-cost decision parameters. We observe that
the profit of the SSPs varies randomly with the increase
in the number of customers. As the price charged to the
customers varies with the number and type of selected
parameters by them, therefore, the average profit of the SSPs
also fluctuates.

Fig.3 demonstrates the variations in the utility of the pro-
posed scheme, Q-Safe with the existing benchmark schemes,
Per-Subscriber, PRIME, and RegPrice. We vary the number
of end-users from 0 upto 500 with an interval of 50, along
the x-axis. Interestingly, we observe that the average utility
of Per-Subscriber model decreases with the increase in the
number of end-users, whereas the utility of Q-Safe increases
in the presence of 200 sensor nodes. We observe that the
value of average utility is reduced by 5%, 16%, and 17%
with respect to PRIME, Per-Subscriber, and RegPrice. One of
the possible reasons behind this trend in the average utility
is that the effective time required to generate a decision
decreases with the increase in the number of end-users. The
possibility of similarities among the decision parameters
selected by the end-users increases with the rate of increase
in their number. Therefore, the time required in processing,
analysis, and generation of the decision reduces.

Fig. 4 illustrates the variations in the average cost of end-
users in the presence of 200 sensor nodes in the environ-
ment. It is studied that the cost or price charged from end-
users using our proposed scheme is quite low compared to
the other existing schemes. The price charged from the end-
users is highest in case of Per-Subscriber model, in contrast
to PRIME and RegPrice. The possible reason behind this is
that the concept of low- and high-price decision parameters
and the suggestion provided by the service provider. Based
on the selected type and number of decision parameters, the
price is charged from the end-users. Further, the decision is
provided to the them accordingly. Fig. 5 demonstrates the
variations in the QoS of the proposed scheme with other ex-
isting schemes, PRIME, RegPrice, and Per-Subscriber model.
It is shown that the QoS values follow raising trend with
the increase in the number of customers. However, the rate
of increment in QoS is comparatively high in Q-Safe with
respect to other benchmark mechanisms. One of the possible

Fig. 2: Profit Analysis

Fig. 3: Utility Analysis

reasons behind such a trend is that the value of utility
and effective energy is high compared to the other existing
schemes, as illustrated in Figs. 3 and 6.

4.3 Result Analysis
In our proposed approach we describe how price is charged
from end users through maintaining the quality of service.
To maintain QoS of the safety services, we consider various
parameters involved in the proposed pricing scheme such
as utility of service, total cost, energy consumed, time, error
characteristics, and optimal number of selected parameters
by the end-users, to characterize it. In this section, we study
and analyze the behavior of these parameters for helping
customers by delivering safety services at an optimal cost.

Effective Energy: Fig. 6 illustrates the variations in the
effective energy consumed, with 200 sensor nodes. We vary
the number of end-users from 20–200 at an interval of 40
along the x-axis. We observe an increasing trend in the
average effective energy, both in case of high- and low-

Fig. 4: Cost Analysis

Fig. 5: QoS Analysis
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-

Fig. 6: Average Effective Energy

cost decision parameters. The probable reason behind this
is that with the increase in the number of end-users, the
number of decision parameters (high- and low-cost) selected
by them increases. Therefore, the total sensor nodes in the
decision generation process also increases. We consider the
energy consumed by used sensor nodes for five iterations.
As a result, the effective energy consumed increases. In
another analysis of Fig. 6, we observe that with respect to the
increase in the number of end-users, the number of sensor
nodes involved in the decision generation correspondingly
increases. As a result, the number of sensor nodes required
to provide the information of the low- and high-cost deci-
sion parameters also increases.

Total Cost: Fig. 7(a) demonstrates the average total cost of
the decision parameters incurred by an end-user at different
iterations during the re-evaluation of the cost before opti-
mization. In our proposed approach, the price is charged
from the end-users, based on their selected decision pa-
rameters. SSP provides two types of parameters- high- and
low-cost. Based on the decision parameters selected by the
end-users, the total cost is estimated. We observe that the
average total cost follows a decreasing pattern for different
iterations and increasing pattern with the increase in the
number of end-users. In Fig. 7(a), the total average cost after
iteration 1 is quite high. It signifies that most of the end-
users select high-cost decision parameters. However, after
iteration 4, the average total cost is quite high compared to
iteration 3. The possible reason behind this is that the end-
users select more high-cost decision parameters than low-
cost parameters in iteration 4. As a result, the utility of the
service to be provided to the end-users changes. Further,
selected parameters varies with the inclusion of decision
parameters suggested by the SSPs. Moreover, as the decision
parameters recommended by the SSPs are incorporated, the
average total cost charged from the end-users decreases,
after each re-evaluation.

Effective Time: Fig. 7(b) illustrates the variations in the
average effective time with the increase in the number of
end-users. We observe that the effective time decreases with
the increase in the number of end-users by 58.12%, in the
presence of 200 sensor nodes. Additionally, the effective
time decreases with different iterations. The possible reason
behind this trend is that the number and type of decision pa-
rameters selected by the end-users may overlap. Therefore,
the time required to evaluate and generate the decision, and
the number of times re-evaluation requests are processed,
are minimized.

Utility: Fig.7(c) demonstrates the variation in the utility
of safety services to be provided to the end-users. We ob-
serve that with the increase in the number of end-users, the

utility of service increases by 34.35%. We estimate the utility
of safety service as per Equation 7. The utility of the services
provided to the end-users increases with the increase in the
number of decision parameters selected and decreases with
the increase in the time required for decision generation.
From Figs. 6 and 7(b), we study that the effective energy
consumption increases and the effective time required for
estimation of total cost decreases with the increase in the
number of end-users. Therefore, as per Equation 7, with the
increase in the effective energy consumed and decrease in
the effective time, the utility of service also increases.

Optimal number of parameters selected: Fig. 8 depicts one
example of the optimal number of high-price and low-price
decision parameters selected by the end-users, such that
the total price charged by the SSPs is minimized.In Fig.
8, we consider the optimum number of high-range and
low-range parameters are selected in the presence of 10
end users. We estimate the optimal value of Lj,∗

a and Hj,∗
b

from the solution of the optimization function, as given in
Equation 20. Therefore, the optimal number of decision pa-
rameters selected by the end-users vary. Fig. 9 demonstrates
the variation of optimal cost and average utility with the
increase in the number of end-users from 20 to 200. We
observe that both the minimum total cost charged by the
SSPs and average utility at different iteration vary randomly
in the presence of 200 and 600 sensor nodes. In comparison
with Fig. 7(a), the total cost is significantly minimized with
every iteration for 200 sensor nodes. However, there exists
a raising trend with the increase in the number of end users.
The possible reason behind this trend is for similar number
of high-range and low-range parameters, the number of end
users are increased.

Error Characterization: Fig. 10 illustrates the characteri-
zation of error in the estimation of energy, utility, time,
total cost, and the optimal number of high-price and low-
price decision parameters selected. We compute the energy
consumed based on selected parameters by the customers
(error estimated in Energy1 graph) and used sensor nodes in
the decision generation (error estimated in Energy2 graph)
process. We observe that the error occurred during different
iterations is significantly low in case of energy consumed,
while the error is quite high in case of utility, effective time,
total cost, and the optimal number of high- and low-cost
decision parameters. Error characterization is required to
provide the clear concept about the trend of variations in
the parameters. We observe the outcome after five iterations
and found that the error is minimum for every parameter.
However, the total cost varies because of different types of
parameters chosen by the customers. From the error char-
acterization graphs, the future behavior of all the decision
parameters can be predicted over the number of end-users.

5 CONCLUSION

In this work, we proposed a QoS-aware dynamic pricing
scheme, Q-Safe, for provisioning customized safety services
to the end-users. This proposed two-way pricing scheme
satisfies both the end-users as well as the SSPs. We intro-
duced the concept of high-price and low-price decision pa-
rameters, as displayed in the Web portal. The end-users first
select certain decision parameters, then the SSPs suggest
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(a) Average Total Cost (b) Effective Time (c) Utility

Fig. 7: Variation in average cost, time, and utility

Fig. 8: Optimized Parameters per User

Fig. 9: Variation of optimum Cost with QoS

them decision parameters depending upon their geograph-
ical location. Therefore, a dynamic scenario exists, which
we map with the non-cooperative Multiple-Leader-Multiple-
Follower Stackelberg game-theoretic approach. Based on the
effective energy consumed, the effective time required for
computation of total cost, and sensor nodes utilized to
create the decision, we design the utility of service to be
provided to the end-users. Further, we estimate the total
cost incurred by the end-users, depending upon the utility
of service and decision parameters selected. We design an
optimization function to minimize the total cost charged
from the end-users for an optimal number of high-cost and

Fig. 10: Error Characterization of Optimization Parameters

low-cost decision parameters, such that the QoS is ensured.
In the future, this pricing mechanism can be extended to

propose another pricing scheme based on communication
ranges of sensor nodes. As safety-related decisions are pro-
vided to the end-users, any form of wrongly sensed data
may result in a hazardous situation. Therefore, we plan
to incorporate the presence of malicious and misbehaving
nodes in the scenario.
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