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Abstract—In this paper, we propose a dynamic edge node
selection scheme, named as DENSE, for the Safety-as-a-Service
(Safe-aaS) architecture [1]. A Safe-aaS infrastructure provisions
customized safety-related decisions remotely to the registered
end-users. Depending on the time-criticality of data, the static
and mobile sensor nodes sense and transmit data to the edge
nodes. The number of edge nodes present within the proximity
of a mobile sensor node vary with the change in the locations of
the vehicle. Moreover, the distance between the mobile sensor
node and the edge nodes, within its proximity, change with
the variation in the vehicle’s location. Therefore, in such a
situation, dynamic selection of the appropriate edge node for
processing the time-critical data is necessary. To optimally select
the edge node, we use cooperative coalition-based game theo-
retic approach. Further, we apply Karush-Kuhn-Tucker (KKT)
conditions to find the existence of equilibrium. The analytical
results of our proposed scheme, DENSE, shows that the average
utility increases by 11.33% with respect to the available storage
space of the edge nodes. Moreover, the average utility increases
by 50.43% with respect to the average number of tasks executed
per unit time by the edge node.

Keywords—Road transportation, Cooperative coalition game,
Safety-as-a-Service, Edge nodes.

I. INTRODUCTION

The rapid rise in the number of on-road vehicles result in
the upsurge of the road congestion, accidents, and casualties.
However, the prior delivery of prompt and correct safety-
related decisions lead to the improvement in the road safety
conditions. On the other hand, the Internet of Things (IoT)-
based technologies applicable in the industries (Industrial
Internet of Things (IIoT)), enable automation and connectivity
among the devices or things. Specifically, Internet of Vehicles
(IoV), a sub-set of the IIoT-based technologies, are widely
used in the road transportation industry to improve the safety
of on-road vehicles and drivers. Additionally, the development
of IoV-based technologies such as Intelligent Transportation
System (ITS) [2] and Advanced Driver Assistance System
(ADAS), reduce accidents and traffic jams.

The primary focus of this paper is to design a scheme for
the dynamic selection of the edge nodes in a Safe-aaS ar-
chitecture [1]. A Safe-aaS infrastructure provides customized
safety-related virtualized decisions to the multiple registered
end-users simultaneously. The end-users register to the Safe-
aaS architecture through a Web portal and select certain
decision parameters. Thereafter, the generated decisions are
remotely delivered to the registered end-users. As depicted

in Fig. 1(a), heterogeneous type of sensor nodes are present
in the device layer of Safe-aaS which sense and transmit
data to the edge layer or cloud, based on the time-criticality
of data. The static sensor nodes are deployed at a fixed
geographical location, therefore, the set of edge nodes present
within the vicinity of the static sensor node does not vary.
On the other hand, the location of mobile sensor nodes
vary with the mobility of the vehicles as shown in the Fig.
1(b). Consequently, the number and type of neighboring edge
devices of the mobile sensor nodes also changes. Further,
in edge devices, the storage capacity and number of task
execution capability vary, based on their type. Since any
delay in processing the data is unacceptable in the Safe-aaS
architecture, thus, dynamic selection of the appropriate edge
device is necessary. We apply cooperative coalition-based
game-theoretic approach to optimally select the edge node.

On-road safety of the vehicles and drivers is the primary
aspect of concern of a Safe-aaS architecture. The Safe-
aaS infrastructure is based on pay-per-use model, where the
end-users pay for the customized safety-related decisions.
The static and mobile sensor nodes sense and transmit the
time-critical data to the edge layer for primary processing.
Further, the geographical location of the mobile sensor nodes
change with the mobility of the vehicles. Consequently, the
neighboring edge nodes of the mobile sensor node also vary.
On the other hand, based on the type of edge nodes, the
storage space and task execution capability of the edge nodes
vary from one another. As the data is time-critical in nature,
any delay in processing may result in injury, congestion,
and accident. Therefore, there is a requirement of dynamic
selection of the appropriate edge node, which is capable of
processing the time-critical data efficiently. We propose our
scheme, DENSE, which utilize cooperative coalition-based
game-theoretic approach to optimally select the neighboring
edge node among the available ones.

In this work, we focus on the dynamic selection of edge
nodes in road transportation for the processing of time-
sensitive data. The specific contributions of this work are:

1) We propose a dynamic edge node selection scheme,
DENSE. In order to select the appropriate neighboring
edge node of any sensor node, we use cooperative
coalitional game-theoretic approach, while considering
the distance between the sensor node and the edge
node, available storage space, average number of tasks
executed per unit time, and reputation rating of the edge
node.

ruelia
Typewriter
© 2019 IEEE.  Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



2) In order to compute the equilibrium condition, we use
a Mixed-Integer Linear Programming (MILP) approach.
Further, we solve it using Karush-Kuhn-Tucker (KKT)
conditions.

3) We perform an extensive simulation, which shows that
the number of edge nodes present within the vicinity of
any mobile sensor node, as well as the distance between
the mobile sensor node and their neighboring edge nodes
vary randomly with the mobility of the vehicle.

II. RELATED WORK

In the recent years, different research works are explored
in the domain of road transportation, which address the
problems related to road congestion, accidents, and road
safety. Uchimura et al. [3] designed a public transportation
system, LINC, in order to provide door-to-door service to
common people such as public taxi. The proposed system
deliver services in three levels – regional community, inter-
community, and within the community. Further, providing
the safety-related informations in advance to vehicles and
drivers, may reduce the possibility of accidents. In a recent
work, Roy et al. [1] proposed a theoretical model, Safe-
aaS, for the road transportation industry, which provides
customized safety-related decisions remotely to the registered
end-users. Moreover, the authors introduced the concept of
decision virtualization, which enables a single decision to be
shared among multiple end-users. In order to achieve high-
speed and low-latency applications, sensors can be used for
communication among vehicles to reduce traffic jams and air
pollution. Tassi et al. [4] designed a mmWave-based highway
communication network to influence the existing line-of-sight
(LOS) models. The authors considered the heavy vehicles
as blockages, with the assumption that the heavy vehicles
drive only along the parallel lines. Further, the authors also
assumed that the base stations are situated along the road-side.
Considering the heterogeneous nature of the communication
technologies available for vehicular networking, Cespedes et
al. [5] proposed a hybrid global mobility scheme, which
combine the host and network-based mobility in the urban
vehicular scenarios. However, road safety is also a necessary
component in the transportation system.

Considering the presence of edge and fog nodes in the IoT
scenario, certain research problems are addressed. Mohan et
al. [6] proposed an edge-fog cloud framework, which allocate
the tasks for processing the available and participating cloud
resources in the network. Based on the time required to
process the tasks and network costs, the authors designed
an algorithm to assign the task of devices. In another work,
Gusev et al. [7] discussed the emergence of edge computing
from the IoT perspective. Further, in order to reduce the real-
time latency of edge networks, Hogan et al. [8] designed a
path selection technique using portfolio theory. Additionally,
the authors computed and compared the latency applying
various error estimation techniques such as autoregressive
model, moving average model, and autoregressive moving av-
erage (ARMA) model. Considering the maximum allowable
work load and latency constraints, Ali et al. [9] proposed
an optimization problem to jointly select the cloudlet and
minimize latency in a fog network.
Synthesis: In the existing literatures, different research works
explored various aspects of the road transportation industry.
Considering the communication in the vehicular networks,

Tassi et al. [4] and Cespedes et al. [5] proposed com-
munication network for heavy vehicles and urban vehicles
respectively. Further, in the Safe-aaS architecture [1], with
the mobility of vehicles, the location of mobile sensor nodes
change accordingly. In order to process the time-critical data,
problem of dynamic selection of the appropriate edge device
in the presence of heterogeneous sensor nodes and decision
virtualization, is not yet addressed. The existing research
works do not consider decision virtualization. Moreover, the
type of edge nodes also differ from one another in terms
of storage capacity and task execution capability. Hence, the
dynamic selection of appropriate edge nodes is necessary.
Therefore, we formulate the scheme, DENSE, for dynamic
edge node selection in Safe-aaS architecture.

III. PROBLEM DESCRIPTION

A. Problem Scenario

In this work, we consider a Safe-aaS architecture [1],
applicable for the road transportation industry. There are
four principal actors of the Safe-aaS infrastructure – vehicle
owners, sensor owners, safety service provider (SSP), and
end-users. The sensor nodes present in the device layer may
be static or mobile in nature. Further, the sensor nodes
deployed into the vehicles are considered as mobile, while
those deployed at any particular geographical location are
static in nature. Each sensor owner deploy heterogeneous
sensor nodes over different geographical locations. Based
on the type of vehicles owned by the vehicle owners, they
are classified as – active and passive vehicle owner. Active
vehicle owner has inbuilt sensor nodes in their vehicles. On
the other hand, the other sensor owners may deploy sensor
nodes into the vehicles of passive vehicle owners. Safe-aaS
architecture comprise of four layers – device layer, edge
layer, decision layer, and decision virtualization layer, as
illustrated in Fig. 1(a). Heterogeneous physical sensor nodes
are deployed at various geographical locations and vehicles
in the device layer. These sensor nodes sense and transmit
the data to the edge layer/cloud, based on the time-criticality
of data. The primarily processed data are transmitted to the
decision layer for generation of a decision. Further, multiple
decisions are combined to generate a decision. The logical
mapping between the end-users and the decisions generated
are done in the decision virtualization layer. Fig. 1(b) shows
the schematic view of the mobile and static sensor nodes, with
the set of edge nodes. The storage capacity and average task
execution capability is different for each type of edge node.
Moreover, with the mobility of vehicles, the geographical
location of a mobile sensor node changes. The number of
edge nodes present within the communication range of the
mobile sensor node is accordingly modified.

B. Problem Formulation
Let S = {S1, S2, · · · , Sm} be the set of owners (including

sensor and vehicle owner) present in the scenario. Each of
the sensor owner deploy heterogeneous type of sensor nodes
over different geographical locations or on the vehicles. Let,
S = {s1, s2, · · · , sn} be the set of sensor nodes, which are
either static or mobile in nature. Suppose, the number of
static sensor nodes are represented by χsij . On the other hand,
the number of mobile sensor nodes, belonging to active and
passive vehicle owner, at the tth time instant, are denoted
as χma,t

ij and χ
mp,t
ij respectively. Let, the different type of



(a) Layers of Safe-aaS (b) Dynamic selection of edge node

Fig. 1: DENSE: The System Architecture

static and mobile sensor nodes belonging to the owner are
represented by y1 and y2 respectively. The number of sensor
owners, active and passive vehicle owners, present in the
scenario are represented by x1, x2, and x3, respectively. The
total number of sensor nodes, | St |, present in the scenario at
any time instant, t, is mathematically represented in Equation
(1).

| St |=
x1∑
j=1

y1∑
i=1

χsij +

x2∑
j=1

y2∑
i=1

χma,t
ij +

x3∑
j=1

y2∑
i=1

χ
mp,t
ij (1)

The active sensor nodes sense and transmit the time-critical
data to the edge nodes for primary processing. We consider
E = {E1, E2, · · · , Ep} as the set of edge nodes. The number
of active sensor nodes at any time instant, t, be k, which is
mathematically represented as:

Sa = {si : si → (St ∨Mb) | ∃Ej ∨ ψ(Ej)} (2)
where St and Mb represent the static and mobile sensor
nodes. In Equation (2), Ej characterize the nearest edge node
of the active sensor node, si. ψ(Ej) denotes the function,
which compute the set of edge nodes in the neighborhood
of the sensor node, si. Any sensor node, si may be static or
mobile in nature. The static type sensor nodes are activated
mostly for continuous monitoring operation. On the contrary,
the mobile sensor nodes are activated only when the vehicle
is mobile, and their location varies with the mobility of the
vehicle. IV. SOLUTION APPROACH

In a Safe-aaS architecture, the static and mobile sensor
nodes sense and transmit data to the edge layer or cloud,
based on the time-sensitivity of the data. The proposed
scheme, DENSE, dynamically selects the appropriate neigh-
boring edge node of the sensor node. The sensed data is
primarily processed at the edge nodes. Thereafter, the pri-
marily processed data are transmitted to the decision layer to
generate a decision. The edge nodes are selected based on
the following parameters:
Normalized distance (DN

ij ): The normalized distance between
the sensor node and its neighboring edge nodes are computed
using the Euclidean distance formula. We consider Ai =
{Di1, Di2, · · · , Diq} as the set of distances between the ith
sensor node and the edge nodes within their proximity. Each
Dij represents the distance between the ith sensor node to the
jth neighboring edge node. As shown in Equation 2, function
ψ(Ej) computes the set of neighboring edge nodes of any
sensor node. Therefore, normalized distance is represented

as:
DN
ij =

Dij

max(Ai)
(3)

where max(Ai) compute the maximum distance from the set
Ai.
Normalized available storage space (ASj): The normalized
available storage space of the jth edge node is the ratio of
the remaining storage space, ASrj , to the initial storage space,
ASinitj , of the edge node. Mathematically:

ASj =
ASrj
ASinitj

∀j, j = {1, 2, 3, · · · , k} (4)

Similarly, we compute the AS for each neighboring edge
node of the ith sensor node.
Average number of tasks executed per unit time (N avg

j ): We
compute the average number of tasks executed per unit time
of the jth edge node using Simple exponential smoothing
method for time series forecasting [10]. The average number
of tasks initially executed by the edge node (Tτ ), till time
instant τ , is mathematically represented as:

Tτj =
1

τ

τ∑
i=1

Nij (5)

where Nij represents the number of tasks executed during
the ith time period by the jth edge node. The forecast of the
number of tasks (at the (τ +1)th time instant) to be executed
per unit time, F τ+1

j , is represented as F τ+1
j = Tτj . Therefore,

the forecast of number of tasks to be executed after the initial
time instant, F 1

j will be equal to the average number of tasks
initially executed, T0

j . After observing the number of tasks
performed by the edge device in the (t)th time instant, the
expected number of tasks executed till (t)th time period is
mathematically expressed in Equation (6).

Ttj = αN t
ij + (1− α)T(t−1)

j (6)
where α represents the smoothing factor (0 < α < 1).
Therefore, N avg,t+1

j = F t+1
j = Ttj . Similarly, we compute

N avg for each neighboring edge node of the ith sensor node.
Reputation rating (Rj): The reputation [11] of the jth edge

node is computed based on the positive (pdj ) and negative (ndj )
feedback about the jth edge node. This positive or negative
feedback is provided by the decision layer of the Safe-aaS
infrastructure [1]. Depending on the time taken by the jth

edge node to process the sensor data during the past t time



instants, feedback (Fj) provided by the decision layer is:

F tj =

{
pd,tj , if t < tthr

nd,tj , if t > tthr
(7)

where tthr represents the maximum allowable time for com-
putation such that 1 > pd,tj ≥ x, x > nd,tj ≥ 0, and
pd,tj + nd,tj = 1. x denotes the boundary value below which
the feedback is considered as negative, while above the value
of x, the feedback is considered as positive. Therefore, Rj
of the jth edge node at the tth time instant is represented as:

Rtj =
pd,tj − n

d,t
j

pd,tj + nd,tj + 2
(8)

Thus, Rj over a time period, τ , is computed as 1
τ

∑τ
t=1Rtj .

Further, Rj of all the neighboring edge nodes for the ith

sensor node is computed.

A. Game formulation
We use a cooperative coalitional [12] game-theoretic ap-

proach to solve the proposed problem, DENSE. In this game,
the edge node, E, within the proximity of a sensor node, act as
player. Among these edge nodes, the neighboring edge nodes
of a sensor node form a coalition (C) such that each C ⊆ E .
Each of the player in the game receives an utility called the
payoff (v). The coalition game is a transferable utility (TU )
game, which is represented as a pair (E , v), where E represent
the set of players, and v is the payoff received by each of the
players. In a coalition, C ⊆ E , the edge nodes are always
interconnected with each other in the form of a graph. We
consider B = {B1, B2, · · · , Bw} as the set of w possible
disjoint coalitions defined as a partition of the set of edge
nodes, E , such that ∀i 6= j, Bi ∩ Bj = φ, and ∪wi=1Bi = E .
The game is mathematically defined as:

η = {(Ej)(Ej∈E),Ni, (UBi)i∈w} (9)
where Ej represents the jth edge node, which acts as a player.
Ni denotes the neighborhood of the ith sensor node and
comprises of the neighboring edge nodes of the ith sensor
node. UBi

represents the utility of the edge nodes, which are
joined to form the coalition.

Axiom 1. The proposed TU coalition game (E , v) is super-
additive, if and only if,

v(Ci ∪ Cj) ≥ v(Ci) + v(Cj),
∀Ci,Cj ⊂ E , s.t., Ci ∩ Cj = φ

(10)

Justification: In a TU game [12], superadditivity indicates
that in any two disjoint coalitions, Ci and Cj , the payoff
received by the players, in case of coalition Ci ∪Cj is same.
If the players form a large coalition with disjoint coalitions,
the value obtained is not less than the sum of the value of
disjoint coalitions. Mathematically:

v(Ci + Cj) ≥ v(Ci) + v(Cj) (11)
where ∀(Ci,Cj) ⊂ E and Ci ∩ Cj = φ. Since the game is
superadditive, the coalition formed by the edge nodes result
in the formation of the grand coalition.

Any coalition, Ci, is formed using DN
ij , ASj , N avg

j ,
and Rj of the jth edge node at the tth time in-
stant. The utility of Ci is mathematically represented as:

U(Dij ,ASj ,N avg
j ,Rj)Bi . With the increase in distance be-

tween a sensor node and edge node, the utility reduces. On
the contrary, with the increase in reputation, available storage
space, and average number of tasks executed per unit time,
the utility of the edge node increases. Therefore, the utility
function is mathematically represented as:

UBi
= eλ1Rj

(
λ2
DN
ij

(
λ3ASxj + λ4N avg

j

))
(12)

where λ1, λ2, λ3, and λ4 are the weight factors such that
∀λi, 0 < λi ≤ 1. x denotes the power of ASj , which shows
the importance of the available storage space.

Lemma 1. The influential values of the controlled factors
such as available storage space (ASj) is set in such a way
that the effects of the uncontrolled factors such as distance
(DN

ij ), reputation rating (Rj), and average number of tasks
executed per unit time (N avg

j ) are optimized.

Proof: The outcome or response of a process may be
modeled as the function of controllable and uncontrollable
factors [13]. The factors, which can be altered during the
experiment, are said to be controllable. On the other hand, the
factors, which cannot be modified during the experiment, are
known as uncontrollable factors. We assume the utility (UBi

)
as an outcome or, response of the experiment. Therefore,
ASj can be modeled as controllable factor. The other factors
such as DN

ij , Rj , and N avg
j can be modeled as uncontrollable

factors. Mathematically:
UBi

= U(Cf , Cuf )Bi
(13)

where Cf and Cuf represent the controllable and uncon-
trollable factors respectively. The first-order derivative of
Equation (13) gives:

5UBi
=
∂UBi

∂Cf
5Cf +

∂UBi

∂Cuf
5Cuf (14)

Further, equating Equation (14) to zero we get:
∂UBi

∂Cf
5Cf = −∂UBi

∂Cuf
5Cuf (15)

Thus, it is proven that the effects of uncontrolled factors can
be optimized by setting the values of the controlled factors.

B. Existence of Equilibrium
We optimally select the appropriate edge node considering

the amount of available storage space. Thus, in order to
find the optimal value of storage space, at which the utility
attains maximum, we compute the equilibrium condition. The
existence of equilibrium is depicted in the Theorem 1.

Theorem 1. The equilibrium condition of the set of neigh-
boring edge nodes (E) of the sensor nodes to form a coalition
is mathematically represented in Equation (16).
U(DN

ij ,ASxj ,N avg
j ,Rj)Bi ≤ U(Dij ,ASx,∗j ,N avg

j ,Rj)Bi (16)

Proof: In order to attain the optimal solution, we max-
imize Equation (12), subject to certain constraints, as given
in the Equation (18).

argmax
ASj

eλ1Rj

(
λ2
DN
ij

(
λ3ASxj + λ4N avg

j

))
(17)

subject to,
Rj ≥ 0, Dij ≤ rci ,ASrj ≤ ASinitj , and N avg,t

j ≤ Nmax
j (18)

L = −eλ1R
(
λ2
DN
ij

(
λ3ASxj + λ4N avg

))
− µ1R+ µ2

(
DN
ij − rci

)
+ µ3

(
N avg,t
j −Nmax

j

)
+ µ4

(
ASj −ASinitj

)
(19)



where rci represents the communication range of the ith
sensor node. The maximum number of tasks executed per unit
time of the jth edge node is denoted as Nmax

j .

The Lagrangian function of the Equations (17) and (18)
are mathematically represented in Equation (19), where µ1,
µ2, µ3, and µ4 are the Lagrangian multipliers. We ap-
ply Karush-Kuhn-Tucker (KKT) conditions to compute the
optimal solution. The dual feasibility and complementary
slackness conditions for each of the factors is represented
in Equations (20) and (21).

∇ASj
L = −eλ1Rj

(
x
λ2
DN
ij

λ3

)
AS(x−1)j + µ4 = 0 (20)

µi(X) = 0, and µi ≥ 0, ∀i = {1, 2, 3, 4} (21)

where X represents the constraints of the Equation (18). The
Lagrangian multiplier is denoted by µi.

The optimal value of the normalized available storage
space to select the jth edge node is represented as:

ASoptj =

(
µ4D

N
ij

xλ2λ3eλ1Rj

) 1
(x−1)

(22)

Therefore, we find the set of edge nodes among all the
neighboring nodes to form a coalition. After the set of edge
nodes is found, we compute the individual utility for each of
the edge nodes. The edge node with the maximum utility is
selected for processing the raw sensor data.

Algorithm 1 DENSE
INPUTS: E , Ft

j , Ni, rci , and Nmax
j .

OUTPUT: Optimally selected edge node for processing sensor data.
PROCEDURE:
1: for j = 1 to p do . p: Total no. of edge nodes
2: while Ej is in Ni do
3: Compute Dij , Rj , ASj , and Navg

j .
4: if Equation 17 and 18 satisfied then
5: Compute utility (UBi

).
6: else if
7: then Select the nearest edge node in Ni.
8: end if
9: end while

10: if Ubf
Ci
< Uaf

Ci
then . Ubf

Ci
, Uaf

Ci
: Utility before and after coalition

11: Ej merges into Ci

12: else if
13: then Ej splits from the coalition.
14: end if
15: end for
16: Compute the individual U of edge nodes in Bi, Ej with maximum utility is

selected.

V. PERFORMANCE EVALUATION

In this section, we analyze the performance of the pro-
posed scheme, DENSE. The simulation parameters are given
in the Table I. We execute our experiment upto 100 iterations
with 95% confidence interval in the presence of 100-700
sensor nodes and 50-350 edge nodes.

Number of edge nodes: Fig. 2 illustrates the variation in
TABLE I: Simulation Parameters

Parameter Value
Simulation area 10 km × 10 km
Number of types of sensor nodes 5
Number of types of edge nodes 3
Number of sensor nodes 100-700
Number of edge nodes 50-350
Deployment type random

the number of edge nodes in a cluster for different type of
sensor nodes such as sensor type A, B, and C. Along the
x-axis, we vary the number of iterations upto 30. We observe

that the number of edge nodes in a cluster varies randomly
with the iterations. Further, we also observe that with the
increase in the total number of edge nodes in the simulation
area, the number of edge nodes in a cluster increases. One
of the possible reasons behind this is that with the mobility
of the vehicles, the sensor nodes placed in them also become
mobile. Therefore, the number of edge nodes present within
their proximity also changes accordingly.
Distance between sensor node and neighboring edge node:
Fig. 3 depicts the variations in the distance between the sensor
node and the edge nodes within their proximity in a cluster for
sensor type A, B, and C. We vary the time along the x-axis
in the steps of 10. Interestingly, we observe that the distance
between the sensor nodes and their neighboring edge nodes
vary randomly with respect to time. The probable reason is
that with the mobility of vehicles, the location of mobile
sensor nodes change. Consequently, the number and type of
edge nodes present within the proximity of that sensor node
also varies. Therefore, the minimum distance between the
mobile sensor node and its neighboring edge nodes changes
with time. However, the distance between the static sensor
nodes and their neighboring edge nodes remains constant.
The average variation in the distance of the sensor type A,
B and C change.
Average utility: Fig. 4 illustrates the variation in the utility of
the edge nodes with the available storage space, distance, and
average number of tasks executed per unit time. In fig. 4(b),
we vary the distance from 0.1 upto 1, in steps of 0.1, along
the x-axis. Similarly, for Figs. 4(a) and 4(c), along x-axis, we
vary the available storage space and the average number of
tasks executed per unit time in steps of 0.1. In Fig. 4(a), we
observe that with the increase in the available storage space,
the utility of edge node increases. In Fig. 4(b), we observe
that with the increase in distance between the edge node and
sensor node, the utility follows a decreasing trend. In Fig.
4(c), we observe that there exists an increasing trend in the
utility of edge node with respect to the average number of
tasks executed.

VI. CONCLUSION

This work presented an edge node selection scheme for
the Safe-aaS architecture. In a Safe-aaS infrastructure the
presence of both static and mobile sensor nodes are consid-
ered. With the variation in the geographical location of the
vehicles, the number of neighboring edge nodes in the vicinity
of the mobile sensor node vary. Further, the storage capacity
and average number of task execution capability is different
for each type of edge node. Therefore, dynamic selection of
edge node is essential. In order to select the appropriate edge
node, we used cooperative coalition based game-theoretic
approach. We formulated a Mixed Integer Linear Program
(MILP) and solved it using Karush Kuhn Tucker (KKT)
conditions. The simulation results depicted that the number
of neighboring edge nodes of any sensor node vary randomly,
and correspondingly the distance between the sensor node and
edge nodes also varies.

In the future, we plan to explore the dynamic load sharing
mechanism, among the edge nodes. Additionally, we target to
work on the pricing model, among the various actors of the
Safe-aaS architecture.
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Fig. 3: Variation of minimum distance between sensor node and its neighboring edge node
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Fig. 4: Variation of utility with various parameters
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