
1

SensPnP: Seamless Integration of Heterogeneous
Sensors with IoT devices

Sanku Kumar Roy, Student Member, IEEE, Sudip Misra, Senior Member, IEEE, and Narendra Singh Raghuwanshi

Abstract—The increasing growth of Internet of Things (IoT)
applications induces the need for easy integration of third-party
peripherals, which is restricted in present IoT devices. In this pa-
per, we present a novel plug-and-play (PnP) solution for the above
stated problem. The proposed PnP solution, named SensPnP, is
the combination of embedded hardware and firmware that has
the capability of integrating third-party embedded sensors with
the IoT devices without any prior information about the sensors
and the Internet. We present an architecture of a PnP-enabled
IoT device, which supports heterogeneous embedded peripheral
communication protocols. A novel embedded protocol detection
approach for enabling seamless integration of sensor with IoT
device is proposed. To enable sensor communication, we propose
an algorithm for automatic driver management of the connected
sensor with an IoT device. This is achieved through a low-
cost and low power switching and identification hardware with
a light-weight identification and driver management firmware
stack. To show the effectiveness of the proposed solution, we
practically implemented a prototype in a real test-bed. The
analysis of the PnP time, protocol identification time, the memory
footprint, lifetime, and overall cost of the proposed PnP solution
under different operating conditions establishes superiority of
its circuitry and firmware. Experimental results show that
SensPnP requires minimal memory footprint, reduced energy
consumption, and reduced PnP time compared to the existing
solutions. Additionally, the overall cost analysis shows that the
cost of SensPnP is noticeably less compared to existing solutions.
Thus, the cost-efficiency of SensPnP makes it more acceptable to
the consumers when compared with existing solutions.

Index Terms—Internet of Things (IoT), IoT device, Heteroge-
neous, Plug-and-Play, Device Driver, Protocol Identification.

I. INTRODUCTION

INTERNET OF THINGS (IoT) encompasses a dynamic
global infrastructure, in which physical objects interact

with one another, and share their information [1]–[3]. The
objects are physical and virtual such as smartphone, vehicle,
logistic gadget, home appliance, healthcare gadget, epaper, and
ebook. A physical object which is embedded with sensors,
actuators, and network connection, is called an IoT device,
and is shown in Fig. 1 [4]. IoT devices are constrained in
terms of processing capabilities and memory usage and must
operate for long periods of time on a tight energy budget.
In the physical context, there are a variety of devices which
are heterogeneous in terms of hardware design, protocol,
specification, semantics and syntax [3], [5]. Also, the inte-
grated peripherals such as sensors, actuators, and radios are

S. K. Roy and S. Misra are with the Department of Computer Science and
Engineering, Indian Institute of Technology, Kharagpur, 721302, India, Email:
sankukumarroy@gmail.com and smisra@sit.iitkgp.ac.in.

N S Raghuwanshi is with the Department of Agricultural and Food
Engineering, Indian Institute of Technology, Kharagpur, 721302, India, Email:
nsr@agfe.iitkgp.ac.in.

heterogeneous in terms of communication protocol, hardware
design, and driver.

Fig. 1. Block diagram of IoT device

IoT is being applied in real-time, large-scale, and diverse ap-
plication scenarios which urges the integration of various third-
party peripherals with the device. However, peripherals are
traditionally manufactured as proprietary, and the integration
of peripherals with IoT devices is typically vendor-specific.
Addressing PnP integration of heterogeneous peripherals with
low-power and low-processing device is a challenging issue in
IoT. The complexity of heterogeneous peripheral communica-
tion with processor is additionally challenging. The problem
is complex — its solution requires addressing different issues
concerning plugin, identification, driver management, and data
communication.

A. Motivation

The problem of PnP integration of peripherals in main-
stream computing systems has been addressed through stan-
dard hardware interfacing protocols such as Universal Se-
rial Bus (USB) [6]. USB [6] provides standard hardware
connector, high-speed packet-based communication, auto-
configuration, and identification of peripheral devices. How-
ever, the approach is inefficient in terms of energy con-
sumption, computation, and memory usage for the resource-
constrained IoT devices, as the approach focuses on the per-
formance of peripherals for the mainstream computing system.
Moreover, specific and customized chips are required for all
peripherals, which increases the cost and energy consumption
of every IoT device and effects the implementation of large-
scale IoT network of devices. However, there are a number
of standard hardware protocols for peripheral interconnection,
including Analog to Digital Converter (ADC), Serial Periph-
eral Interface (SPI) [7], Inter-Integrated Circuit (I2C) [8], and
Universal Asynchronous Receiver-Transmitter (UART) [9].
However, the approach does not support PnP device integration
and the device type identification lacks the property.

Saswati
Typewriter
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

DOI: 10.1109/TCE.2019.2903351

2

To address the above problem, Yang et al. [10] proposed
µPnP solution, where they discussed the solution of peripheral
identification, device driver management, and device remote
discovery. The µPnP supports existing peripheral intercon-
nection standard protocols, including ADC, I2C [8], SPI [7],
and UART [9]. Using multivibrator circuit, 32 bit unique
identifier (UID) for each peripheral is generated, which maps
to the global µPnP address space. Corresponding to the UID,
the manufacturer uploads the specification and driver of the
peripheral. When the peripheral is plugged to the device, it
generates a 32 bit UID, using which the corresponding driver
is downloaded from their server for starting the peripheral
communication with the IoT device. However, the approach
is a vendor platform specific solution and is not generalized
for the global IoT network. In addition, the process of driver
downloading and installation delays the peripheral commu-
nication, and also consumes more power, which effects the
life-time of the device. Further, there is a requirement of high
bandwidth to download the driver from the server, which may
not be feasible for resource-constrained IoT networks.

However, the issue related to seamless integration of pe-
ripheral with IoT device is crucial in building a global IoT
network of heterogeneous sensors and actuators, which is yet
to be adequately addressed.

B. Contribution

To address the above-discussed issues, we propose a genuine
PnP solution for the integration of an third-party embedded
peripheral with an IoT device. In brief, the contributions in
this manuscript are as follows.

• We propose a novel PnP solution for integration of an
embedded peripheral with an IoT device, which is a
combination of embedded hardware and firmware.

• We present the design of a PnP-enabled IoT device.
• We propose a novel embedded protocol detection tech-

nique for enabling seamless integration of peripherals
with IoT devices.

• To enable PnP, we propose an algorithm for automatic
driver management of an embedded peripheral.

• To show the effectiveness of the proposed solution, we
practically implemented the PnP-enabled IoT device to
evaluate different parameters such as PnP time, identifi-
cation time, memory footprint, lifetime, and overall cost.

The remaining part of this paper is organized as follows.
Section II discusses the current state-of-the-art of periph-
eral interfacing solutions in terms of hardware and software,
while presenting their limitations. Section III presents the
problem scenario and the proposed PnP architecture. Section
IV describes the compatible peripheral protocol identification
technique. The driver management of the connected peripheral
is presented in the Section V, whereas, in Section VI, we
present the implementation of SensPnP. Experimental setup
and results of the designed system are shown in Section VII.
Finally, we conclude the paper and discuss future research
directions of the work in Section VIII.

II. RELATED WORKS

This section summarizes the state-of-the-art existing works
on the seamless integration of heterogeneous peripherals in
IoT. The problem of seamless integration in IoT is categorized
into two parts — a) seamless integration with IoT network
and b) seamless integration of peripherals with low power and
low processing computing devices. The seamless integration
with IoT network endorses different programming platforms
for accessing and connecting heterogeneous IoT peripheral
devices with cyber-physical world [11]. On the other hand,
with the emergence of various vendor-specific peripherals,
there is a need of seamless integration of these peripheral with
the computing devices.

To enable seamless integration with IoT network, re-
searchers proposed different IoT middlewares based on three
architectures, i.e., service-oriented, cloud-based, and actor
model [11]. In the service-oriented architecture [12], [13],
the middleware is augmented with cloud platform to perform
seamless integration between IoT devices and the application.
A model-driven development (MDD) approach based mid-
dleware is proposed in [14] to provide seamless integration
between sensing devices and application layer. However, this
architecture is not suitable for resource constrained device-to-
device communication. In the cloud-based architecture [11],
the cloud-based application programming interface (API) acts
as middleware to provide seamless communication between
IoT peripherals and the application layer. But the IoT periph-
erals can only be controlled or accessed using cloud supported
or vendor provided APIs. The most popular IoT middleware is
the actor model architecture, due to its light-weight framework
and distributed nature [15]. The actor-based middleware is em-
bedded in all the layers of IoT architecture (sensing/actuating,
cloud, and application), which acts as a translator for seamless
communication between heterogeneous devices of different
layers. The presence of actors host/translators in different
layers provide advantages of scalability, latency, and maintain-
ability. In [15], authors proposed a hybrid framework-based
of middleware on the actor model and flow based computing.
It provides an unified programming model and light-weight
running API to enable seamless communication between IoT
peripherals and applications.

On the other hand, Sriskanthan et al. [16] proposed a proto-
col for data transfer through Bluetooth in the home network.
The protocol supports PnP to connect home appliances in
the Bluetooth-based home network. Similarly, Baek el al.
[17] designed an universal PnP (UPnP) bridge to support
communication two different UPnP networks through non-
IP channels. Likewise, a software bridge between Bluetooth
compatible devices and UPnP networks using a virtual agent
is proposed by Jo et al. [18]. The software bridge enables
communication between non-IP Bluetooth devices and IP
based UPnP devices. Therefore, the user can access their
Bluetooth devices data on a UPnP network.

The problem of PnP peripheral device integration for main-
stream computing device was addressed by USB [6]. USB
[6] defines a standard connector and communication protocol
for connection and communication between peripheral and

3

computer. On the other hand, the interconnection technology
provides peripheral type identification, auto-configuration, and
high-speed communication with a computer. Also, the solu-
tion provides a mechanism for peripheral discovery in the
embedded operating system (OS) and automatically install
the necessary driver for the peripheral. Further, USB [6]
supplies more details about the peripheral such as type, man-
ufacturer’s name, and manufacturing date. These information
are manually stored in the special registers of USB during
manufacturing process. This raises extra complexity and cost
for manufacturers. Moreover, even a low power USB host
chip consumes too much power that is inefficient for resource-
constrained IoT network. The USB standard mainly focuses on
the communication performance between peripheral and com-
puter, rather than minimizing energy consumption, memory
usage, and CPU utilization. However, the process of automatic
peripheral configuration is very essential for IoT systems, as
a single IoT network consists of thousands of heterogeneous
peripherals.

On the other hand, the peripheral interfacing protocols for
microcontroller such as UART [9], I2C [8], and SPI [7]
target to minimize energy consumption, memory usage, and
CPU requirement. SPI and I2C bus allow multiple peripher-
als to be connected to a single bus, while UART protocol
allows only single peripheral. SPI, developed by Motorola,
is a synchronous serial communication peripheral interfacing
protocol for short range distance, and follows master-slave
architecture. On the other hand, I2C compatible peripherals
communicate with the bus using 8 bits unique address. UART
is asynchronous serial point-to-point protocol using dedicated
transmitting and receiving channel. To support these protocols,
manufacturers write a manual driver for each peripheral. They
neither provide the peripheral type identification nor allow the
embedded OS to auto-configure providing the necessary driver
of the connected peripheral.

To address the above-mentioned problem, Yang et al. [10]
proposed µPnP for peripheral interfacing in the IoT, where
they discussed peripheral identification, driver management,
and remote discovery. µPnP supports existing peripheral in-
terconnection standard protocols including ADC, I2C [8], SPI
[7], and UART [9]. The authors used multivibrator circuit to
generate a time pulse converting into a unique 32-bit address
for each peripheral, where the value of passive components
such as resistors and capacitors is defined by their online
tool and the unique address is mapped with the global µPnP
address space. During peripheral registration, manufacturers
upload the details of manufacturer and the corresponding
driver, which is downloaded from the server using the Internet
when the peripheral is connected to the µPnP controller board
to start the PnP peripheral communication. The process always
depends on the Internet connectivity which effects the non-
IP communication protocol compatible IoT device to connect
with global IoT network. On the other hand, the approach is
a vendor platform specific solution and is not generalized for
the global IoT network. The process of driver downloading
and installation delays peripheral communication, which is
also inefficient due to increased power consumption. Besides,
there is a requirement of high bandwidth to download the

driver from the server, which may not be feasible for resource-
constrained IoT networks.

Sakamoto et al. [19] proposed a dynamic device connection
method between Web apps and peripheral using Web driver
to support various kinds of devices with multiple OS for
smartphones in the IoT scenario. Further, they demonstrated
the feasibility of the proposed method by implementing it
in the Android OS. In their solution, nearest peripherals are
wirelessly controlled by a smartphone. However, the proposed
scheme is limited to smartphone, where sufficient memory,
CPU, and energy are available along with the Internet.

Synthesis: Critical analysis of the existing works unfold
the existence of a research gap in PnP peripheral interfacing
with IoT device to build a global IoT network. Some of the
existing works [12]–[15] focus on seamless integration of het-
erogeneous peripherals between IoT devices and application
layer, which are not suitable for the seamless integration of
third-party embedded sensors with IoT devices. On the other
hand, some of the existing works [16]–[18] concentrate on
seamless communication among devices, which belong to het-
erogeneous networks, but these are not applicable for seamless
peripheral integration. The existing work [6] primarily focuses
on mainstream computing system, which is inefficient in the
scenario of IoT network. Some of them [10], [19] tried to solve
the problem for IoT, but the solutions are Internet-dependent
and vendor-specific, and are hence not general solutions for
the global IoT network of billion of peripherals. In this paper,
we present a novel PnP solution for the integration of third-
party embedded sensors with IoT devices without any prior
information about the sensors and the Internet. The proposed
PnP solution is the combination of embedded hardware and
firmware.

III. SYSTEM MODEL

A. Problem Scenario
The integration and configuration of a peripheral with a

processor is practically a big challenge to enable PnP in the
IoT device, which is highlighted in Fig. 2. Available hetero-
geneous sensors are mainly compatible with the embedded
interfacing protocols such as SPI, I2C, UART, ADC, and
Digital. These protocols focus on the interfacing of periph-

Fig. 2. Problem Scenario

erals with low-power, low-processing, and low-memory us-
age embedded computing processors such as microcontroller,
Field-Programmable Gate Array (FPGA), and Digital Signal
processing (DSP). But these protocols do not support PnP
communication between the peripheral and the embedded
processor.

4

The reason behind the above stated problem is the dif-
ferent hardware and software requirement of each protocol.
As an example, SPI bus specifies four logical signals, i.e.,
Master Output Slave Input (MOSI), Master Input Slave Output
(MISO), Serial Clock (SCK), and Slave Select (SS) whereas
I2C bus requires two logical signals, i.e., Serial Data Line
(SDA) and Serial Clock Line (SCL). Besides, the complex
configuration of heterogeneous peripherals is also challeng-
ing, and in terms of software, each protocol has different
configuration logic. Also, different peripherals with the same
protocol or similar peripherals with the same protocol but
different manufacturers have different configuration drivers,
which make the integration of the peripherals with IoT device
more complex. Therefore, the integration procedure of each
peripheral is manually configured, which makes the configu-
ration design vendor-specific.

From a consumer point of view, it is non-trivial to configure
and start the communication between the peripheral and the
processor [20]. To start and configure the communication,
consumers should have the knowledge of low-level embedded
coding and hardware circuitry. In addition, consumers may
want to connect different sensors at different time instants in
the same IoT device. For example, at one instant a consumer
may want to monitor room temperature, but in later instant,
his/her mind may change for monitoring light luminosity. But
both of these cases of configuration and connection of different
sensors in the same IoT device at different time instants are
unfavorable from the consumer’s perspective, which affects
the implementation of the global IoT network.

B. Proposed Architecture

In this section, we present the proposed architecture of
SensPnP, while describing the different components, as shown
in Fig. 3. The proposed architecture of SensPnP is divided into
two parts — a) Universal plug-and-play (UniPnP) controller
and b) Plug-and-play (PnP) peripheral module. A detailed
description of each constituent part is presented below.

(a) UniPnP controller (b) PnP peripheral module

Fig. 3. Proposed architecture of SensPnP

1) UniPnP Controller: The UniPnP controller consists of
different hardware units such as protocol bus switching unit,
protocol identification hardware unit, processing unit, wireless
communication unit, and power supply unit, as shown in Fig.
3(a). We separate the sensor/actuator unit from the UniPnP
controller to enable PnP. In this paper, we mainly focus
on the integration of peripherals with an IoT device, apart
from wireless communication and power supply. When a
peripheral is connected to the UniPnP controller, the processor
gets an interrupt signal from the PnP peripheral module.
Thereafter, the processor identifies the compatible protocol of

TABLE I
DIFFERENT PROTOCOL BUS MAPPING TO PNP CONNECTOR

Pin No UART I2C ADC Digital SPI
1 RX SDA NC NC SCK
2 TX SCL NC NC MISO
3 NC NC ADC NC MOSI
4 NC NC NC Digital SS
5 INT INT INT INT INT
6 +VCC +VCC +VCC +VCC +VCC
7 GND GND GND GND GND

the connected peripheral using both the protocol-bus-switching
and protocol identifier units. Once the processor detects the
supporting protocol of the connected peripheral, the processor
starts searching for the corresponding driver of the peripheral
for configuration and initialization. At the end, the processor
starts data collection from the peripheral and sends the data
to the neighbor IoT devices through wireless medium.

2) PnP Peripheral Module: The architecture of the PnP
peripheral module is shown in Fig. 3(b). We use a connector
having 7 pins to connect the peripheral to the PnP controller.
Pins 1-4 of the connector are assigned for data communication
between the processor of the PnP controller and the peripheral.
Pin 5 is used to generate an interrupt signal. On the other
hand, Pins 6 and 7 are assigned for power supply, i.e. Vcc
and ground (GND), respectively. Pins 5 and 6 are directly
connected to generate the rising edge of the interrupt signal.
Table I shows how the PnP connector maps to each embedded
peripheral communication protocol bus, where NC refers to a
not connected pin.

Fig. 4. Software stack of PnP-enabled IoT device

In our design, we propose hierarchical software layers
stack to serve the different functionalities of PnP-enabled
IoT device, as shown in Fig. 4. The bottom most layer of
the stack, protocol bus selection, selects physical path for
different embedded interconnects using multiplexer. On the
other hand, PnP protocol identification software layer identifies
the compatible protocol of the connected peripheral. Similarly,
PnP driver management software layer manages the driver of
the connected peripheral to collect sensor data.

IV. PNP HARDWARE PROTOCOL IDENTIFICATION

A. Protocol Bus Switching

SensPnP supports common microcontroller peripheral pro-
tocols such as SPI, I2C, UART, ADC, and Digital. Each
protocol requires different number of logical signal pins. If we
use dedicated physical path for each peripheral protocol, the
number of pins of a connector will be increased. To minimize
and optimize the number of pins of the connector, we propose
a multiplexer-based protocol bus switching hardware, as shown
in Fig. 5. The procedure of selecting each protocol is described
in Table II, where ‘X’ means ‘Don’t Care’. In the proposed
circuit, a multiplexer (MUX) starts its operation when the
enable pin of the MUX is in ‘Active Low’ condition.

5

TABLE II
TRUTH TABLE OF PROTOCOL BUS SELECTION

Inputs Output
D0 D1 D2 (E0) D5 D6 (E2) D7 D8 (E3) Protocol Bus
0 0 0 X 1 X 1 UART
0 1 0 X 1 X 1 I2C
1 0 0 1 0 1 0 SPI
X X 1 0 0 X 1 ADC
X X 1 X 1 0 0 Digital

B. Protocol Identification

The protocol identification of a peripheral is a big issue
to enable seamless integration with the IoT device, which
does not have any prior information about the peripheral such
as compatible protocol, unique identification number/address,
data format, and device name. We are the first to propose a
novel protocol identification technique for a peripheral without
having any prior information, which enables PnP, so that a
consumer is able to connect any peripheral to a IoT device
without any knowledge of low-level embedded coding and
hardware circuitry.

When a peripheral is connected to UniPnP controller, it
generates an interrupt signal, INR and sets the value of the
interrupt flag (IF) to ‘True’. Accordingly, the processor starts
protocol bus selection with the help of the proposed protocol
bus switching hardware circuitry, as shown in Fig. 5. After the
selection of a protocol bus, the processor identifies the com-
patible protocol of the connected peripheral. The identification
technique of each protocol is discussed below.

1) UART Identification: The UART protocol consists of
two pins, i.e. TX and RX. Fig. 5 shows that the RX pin of
the processor is connected to the TX pin of the peripheral
through the connector and vice versa. The simple UART data
transmission technique helps to identify the compatibility of
the connected peripheral with the UART protocol. When the
UART bus is not transmitting data, it normally holds high
voltage level. To start the transfer of data, the transmitting
UART pulls the transmission line from high to low for
one clock cycle. Before transmitting data, holding high level
voltage at UART bus helps to identify the compatibility of the
connected peripheral with UART. The detailed identification
procedure for UART protocol is described in Algorithm 1. The
first step of Algorithm 1 is used to select UART bus using
Table II. Then, the TX and RX pins need to be configured as
inputs and the initial value of both the pins is logically set as
low (0 volt) . After that, Algorithm 1 checks the digital logic
of both the pins. If TX and RX pins hold high (VCC) logics,
which indicate that the connected peripheral is compatible with
UART protocol.

2) I2C Identification: The I2C bus follows a master-slave
architecture for communication between a processor and a
peripheral and uses two wires: SDA and SCL. In SensPnP,
the processor always works as a master and the peripheral
works as a slave, while considering 7 bit unique address of
each slave device. Therefore, the address of the connected
peripheral should be between 0 to 127. All the slave devices
follow the standard I2C bus protocol for communication. If
the peripheral as a slave replies with an acknowledgment

Fig. 5. Protocol bus switching and identification hardware

Algorithm 1 UART interconnect identification
INPUT:
1: PnP peripheral module

OUTPUT:
1: Udet . UART protocol identification

PROCEDURE:
1: Select UART bus using Table II
2: Configure TX and RX pins as inputs;
3: Initial value of TX and RX ← LOW; . Initial condition
4: Sense TX and RX; . Sensing values after interrupt
5: if TX = HIGH and RX = HIGH then . Digital logic values
6: Udet = True; . connected to UART bus
7: else
8: Udet = False; . Not connected to UART bus

message corresponding to the handshaking message sent by
the master device, the peripheral is connected to the I2C
bus and is compatible with the I2C protocol, as discussed in
Algorithm 2. If the sending address matches the peripheral’s
own address, the peripheral replies with an acknowledgment,
which identifies the address of the connected peripheral with
the compatible protocol. The detailed identification procedure
for I2C protocol is described in Algorithm 2.

Algorithm 2 I2C interconnection identification
INPUT:
1: PnP peripheral module

OUTPUT:
1: Idet, address . I2C protocol identification

PROCEDURE:
1: Select I2C bus using Table II
2: Configure I2C bus;
3: for address = 0 to 127 do
4: if Handshaking(address) = True then . connected to I2C bus
5: Idet = True;
6: Return address;
7: else . Not connected to I2C bus
8: Idet = False;

3) ADC Identification: Fig. 5 shows that resistor R4 is
connected with ADC bus and digital pin D3 of the processor.
When the logic of D3 is high (VCC), the resistor R4 works as
a pullup resistor for the ADC bus. On the other hand, when the

6

logic of D3 is low (0 volt), the resistor R4 works as a pulldown
resistor for the ADC bus. On the basis of pullup/pulldown
resistor, we present an ADC protocol identification algorithm
described in Algorithm 3 to identify the compatibility of the
connected peripheral with ADC bus. Similar to other protocol
identification algorithms, first, Algorithm 3 selects ADC bus
using Table II and configures the bus. Then, resistor R4 is
configured as a pullup and pulldown. If the sensing values
after pullup and pulldown are not equal to VCC and GND,
respectively, the peripheral is connected to the ADC bus and
is compatible with the ADC protocol. Otherwise, sensing value
should be held corresponding to activation condition of R4.

Algorithm 3 ADC interconnection identification
INPUT:
1: PnP peripheral module

OUTPUT:
1: Adet . ADC protocol identification

PROCEDURE:
1: Select ADC bus using Table II
2: ADC Configuration();
3: Activate resistor R4 as a pullup resistor;
4: Sense ADC port of the processor, AU ; . AU is the sensing value

after pullup
5: Activate resistor R4 as a pulldown resistor;
6: Sense ADC port of the processor, AD ; . AD is the sensing value

after pulldown
7: if AU = VCC and AD = GND then . VCC←+5 V and GND←0 V
8: Adet = False; . Not connected to ADC bus
9: else

10: Adet = True; . Connected to ADC bus

4) Digital Identification: We use simple logic to identify
the compatibility of the connected peripheral with digital bus
like ADC identification, as shown in Fig. 5. According to the
value of digital pin D4 of the processor, resistor R3 works
as a pullup/pulldown resistor for the digital bus. On the basis
of this condition, we present an digital protocol identification
technique described in Algorithm 4.

Algorithm 4 Digital interconnection identification
INPUT:
1: PnP peripheral module

OUTPUT:
1: Ddet . Digital interconnect identification

PROCEDURE:
1: Select Digital bus using Table II;
2: Activate resistor R3 as a pullup resistor;
3: Sense Digital port D8, DU ; . DU is the sensing value after

pullup
4: Activate resistor R3 as a pulldown resistor;
5: Sense Digital port D8, DD ; . DD is the sensing value after

pulldown
6: if DU = HIGH and DD = LOW then . Digital logic values
7: Ddet = False; . Not connected to Digital bus
8: else
9: Ddet = True; . Connected to Digital bus

5) SPI Identification: The SPI bus follows master-slave
architecture for communication between a processor and a
peripheral and uses four lines: MOSI, MISO, SCK, and CS. In
this work, all the connected peripherals always work as a slave
and the processor as a master has unidirectional control over
all these peripherals. In SensPnP, SPI follows rising leading
edge and falling trailing edge for transferring data to the
slave device. Algorithm 5 presents the detailed identification
procedure for SPI protocol. After initialization of the SPI bus,
the processor sends a data request to the connected peripheral.

If the processor receives the value less than 255 it indicates
that the peripheral is compatible with SPI bus.

Algorithm 5 SPI interconnection identification
INPUT:
1: PnP peripheral module, CSD

OUTPUT:
1: Sdet . SPI protocol identification

PROCEDURE:
1: Select SPI bus using Table II
2: Configure SPI bus; . Configure SPI bus
3: Begin SPI bus transaction; . Begin SPI bus transaction
4: temp=SPISend(CSD); . Send data request
5: End SPI bus transaction; . End SPI bus transaction
6: if temp < 255 then . Connected to SPI bus
7: Sdet = True;
8: else . Not connected to SPI bus
9: Sdet = False;

V. PNP PERIPHERAL DRIVER MANAGEMENT

To communicate with a peripheral, the processor is ex-
pected to know a specific driving logic and the compatible
interconnection protocol. We first offer a generic and novel
driving algorithm for each protocol, so that any peripheral
can be supported with the UniPnP control. In SensPnP, the
UniPnP control itself manages the corresponding driver for
the connected peripheral without any third party involvement,
any prior information about the peripheral, and the Internet.
Once the processor identifies the compatible protocol, it jumps
to the corresponding protocol’s driver management algorithm.
We consider only heterogeneous sensors as a peripheral in this
proposed PnP solution.

Algorithm 6 UART driver management
INPUT:
1: PnP peripheral module

OUTPUT:
1: SD . Sensor value

PROCEDURE:
1: UART Configuration(DR); . Initial condition
2: while (IF = True) do . Peripheral is connected
3: if Time = ST then . Sensing condition
4: SD = UART Read(); . Reading sensor data

1) UART Driver Management: The driver of UART com-
patible peripheral is presented in Algorithm 6. The commu-
nication of UART compatible peripheral does not depend on
the request of the processor so that the processor receives the
sensor data SD according to the value of sensing time ST ,
where DR is the baud rate.

2) I2C Driver Management: For I2C protocol, we design
a table to find out the value of access configuration CAC ,
continuous conversion CCC , start conversion CSC , and sensor
data reading CSS command corresponding to the address of
the plugged I2C peripheral. The address of the peripheral is
received from Algorithm 2. Algorithm 7 describes the detailed
driver management procedure of I2C bus compatible sensor.

3) ADC Driver Management: We propose a simple algo-
rithm of ADC compatible peripheral in Algorithm 8, where
Vref and R are the reference voltage and resolution of ADC,
respectively. Each ADC compatible peripheral requires differ-
ent calibration equations. Therefore, the proposed algorithm
generates the sensor output SD in standard voltage format. In

7

Algorithm 7 I2C driver management
INPUT:
1: PnP peripheral module, Address, CAC , CCC , CSC , CSS

OUTPUT:
1: SD . Sensor data

PROCEDURE:
1: Configure I2C bus;
2: I2C Configure Peripheral(address,CAC ,CCC); . Configure the

peripheral
3: I2C Start Conversion(address,CSC); . Start conversion
4: while (IF = True) do . Peripheral is connected
5: if Time = ST then . Sensing condition
6: I2C Start Reading(address,CSS); . Start sensing
7: SD = I2C Read(); . Reading sensor data

Algorithm 8 ADC driver management
INPUT:
1: PnP peripheral module,

OUTPUT:
1: SD . Sensor value

PROCEDURE:
1: ADC Configuration(); . Initial condition
2: Pulldown resistor R4;
3: while (IF = True) do . Peripheral is connected
4: if Time = ST then . Sensing condition
5: SD = ADC Read(ADC channel); . Read ADC at ADC_channel
6: SD = (SD*Vref)/2R; . Decimal to voltage conversion

our PnP solution, the resolution R and voltage of ADC Vref
are 10 bits and 5 Volts, respectively.

4) Digital driver management: Algorithm 9 describes the
communication logic of Digital compatible peripheral. The
peripheral always provides binary logical outputs either 1
(high) or 0 (low). Algorithm 9 initially configures D8 pin and
resistor R3 as a digital input and pulldown, respectively. After
that, the microcontroller collects sensor data from the digital
bus based on the sensing time, while the peripheral should be
connected to UniPnP controller. As an example, in the case
of proximity sensor, if any hot blooded object comes in the
area of the sensor, it generates high logic, otherwise always
low logic.

Algorithm 9 Digital driver management
INPUT:
1: PnP peripheral module,

OUTPUT:
1: SD . Sensor value

PROCEDURE:
1: Digital Configuration(); . Initial condition
2: Pulldown resistor R3;
3: while (IF = True) do . Peripheral is connected
4: if Time = ST then . Sensing condition
5: SD = Digital Read(Digitalchannel); . Read digital logic at

digital_channel

5) SPI driver management: Algorithm 10 describes the
communication logic of SPI compatible peripheral. We follow
SPI mode 1, which is discussed in Section IV-B. If the
peripheral is connected to the UniPnP controller and the clock
time of the processor is equal to sensing time ST , the processor
sends a data request instruction to the peripheral. Accordingly,
the peripheral as a slave sends sensing data to the processor.

VI. IMPLEMENTATION

To compute the overall effectiveness of SensPnP, a step-
wise procedure of simulation and implementation is fol-
lowed using different temperature sensors compatible with
I2C, temperature sensor compatible with SPI, light dependent

Algorithm 10 SPI driver management
INPUT:
1: PnP peripheral module, CSD

OUTPUT:
1: SD . Sensor data

PROCEDURE:
1: Configure SPI bus; . Configure SPI bus
2: while (IF = True) do . Peripheral is connected
3: if Time = ST then . Sensing condition
4: Begin SPI bus transaction; . Begin SPI transaction
5: SD=SPISend(CSD); . Send data request
6: End SPI bus transaction; . End SPI transaction

TABLE III
EXPERIMENTAL SETUP

Parameter Value
Processor Low power, RISC-based microcontroller [24]

Clock frequency 8 MHz
Operational voltage 5 Volt

Protocols ADC, Digital, I2C, SPI, and UART
IoT device price 20 unit [26]

Internet Data cost/byte 0.001 unit
Server maintenance charge/year 3 unit [26]

resistor (LDR) sensor with ADC and passive infrared (PIR)
proximity sensor with Digital. For protocol bus switching and
identification, we used 2 × 1 and 4 × 1 high speed com-
plementary metaloxidesemiconductor (CMOS) analog multi-
plexer/demultiplexer [21], [22]. The simulation is done in the
real-time embedded simulator [23] and a prototype is built for
practical implementation. A Reduced Instruction Set Computer
(RISC) architecture-based microcontroller [24] is used in both
the cases.

Fig. 6. Hardware design of protocol bus switching and identification

For the implementation purpose, we used a RISC
architecture-based microcontroller [24], which offers 8 MHz
8-bit core, 32 KB of flash memory/read-only memory (ROM),
and 4 KB of random-access memory (RAM). Fig. 6 shows
the designed low-cost and efficient circuit for protocol bus
switching and identification. The proposed algorithms are
implemented in an embedded C compiler [25]. All the libraries
used in the algorithms are written from scratch to make the
code efficient.

VII. PERFORMANCE EVALUATION

A. Experimental Setup

To evaluate the performance of SensPnP, we conducted
different experiments. The experimental setup is shown in
Table III, while presenting different parameters. The value of

8

IoT device price and server maintenance charge (per year) are
adopted [26].

We use different performance metrics — PnP time, protocol
identification time, the memory footprint, lifetime, and overall
cost for characterizing the performance of SensPnP. The
overall cost is the combination of the cost for buying IoT
device, using the Internet data (per byte), and maintaining
the server (per year). We adopt the linear pricing model to
compute the overall cost, while considering these parameters
[27]. The objective of computing the overall cost is to show
how much cost consumer has to bear for enabling PnP of a
new peripheral apart from the price of IoT device.

B. Results and Discussion

In this section, we present the performance of SensPnP over
µPnP [10] and USB host [28] to show the effectiveness of the
proposed solution. The computations are performed on the data
obtained from the implementation of the prototype.

 0.1

 1

 10

 100

ADC Digital UART SPI I2C

Id
en

tif
ic

at
io

n
T

im
e

(m
s)

Different Protocols

Best Case
Worst Case

Fig. 7. Protocol identification time

 0.1

 1

 10

 100

 1000

 10000

UART ADC I2C

Pn
P

T
im

e
(m

s)

Different protocols

SensPnP µPnP

Fig. 8. PnP time for different protocols

1) PnP Time: Fig. 8 shows the time required for the com-
plete PnP cycle of a newly connected peripheral considering all
the steps starting from plugging in of the peripheral, protocol
identification, driver management, single data collection, to
plugging out of the peripheral. From the figure, it is evident
that the time required for identifying and managing driver
of the peripheral in SensPnP is significantly less compared
to the µPnP due to the offline processing and light-weight
protocol stack. SensPnP is itself capable of identifying the
underlying compatible protocol and driver of the connected
peripheral without any prior information and the Internet.
However, in case of µPnP, the driver management process

of a new peripheral is done using the Internet, which delays
the entire PnP process. In SensPnP, the protocol identification
process serially scans for each protocol. The time required
for the identification process also depends on the order of
arrangement of the protocols are arranged during the scan. It
is evident from Fig. 7 that the difference between the best case
and worst case protocol identification time of I2C is large,
which is due to the time taken for matching the address of
the connected peripheral. As the identification process of I2C
protocol takes more time compared to other protocols such as
ADC, Digital, SPI, and UART, the variation in confidential
interval of ADC and UART is more.

 0

 300

 600

 900

 1200

 1500

 1800

 2100

UART ADC I2C

R
eq

ui
re

d
Fl

as
h

M
em

or
y

(B
yt

es
)

Different Protocols

SensPnP
µPnP

Fig. 9. Memory footprint for different protocols

2) Flash/ROM Requirement: We evaluate the resource re-
quirement of different protocols in terms of flash/Read Only
Memory (ROM), as shown in Fig. 9, while comparing with
µPnP [10]. Fig. 9 shows that the flash memory requirement of
SensPnP for different protocols is significantly less compared
to µPnP. This significant performance is observed due to the
development of all the libraries from scratch, which optimizes
and reduces the requirement of flash memory of different
protocols. For I2C protocol, we design a table to find out
the value of CAC , CCC , CSC , CSS corresponding to the
address of the plugged I2C peripheral. Thus, the flash memory
requirement of I2C protocol is sightly greater than that of
UART and ADC.

 0.01

 0.1

 1

 10

 100

1 5 10

L
if

et
im

e
(y

ea
r)

Rate of changing peripheral (per hour)

SensPnP µPnP USB host

Fig. 10. Lifetime Analysis

3) Lifetime: We evaluated the lifetime of the developed
protocol bus switching and identification (PBSI) circuitry
during protocol identification with respect to the full charge
capacity of a battery. We used a 80 mAh lithium-ion battery for
this purpose. Fig. 10 shows the lifetime of the PBSI circuitry
with respect to the rate of changing peripheral per hour, while

9

 10

 100

 1000

 10000

 2 4 6 8 10 12

O
ve

ra
ll

C
os

t (
in

 u
ni

t)

Time (in month)

SensPnP
(µPnP+UART)

(µPnP+ADC)
(µPnP+I2C)

(a) Rate of changing peripheral (per day) = 1

 10

 100

 1000

 10000

 2 4 6 8 10 12

O
ve

ra
ll

C
os

t (
in

 u
ni

t)

Time (in month)

SensPnP
(µPnP+UART)

(µPnP+ADC)
(µPnP+I2C)

(b) Rate of changing peripheral (per day) = 5

 10

 100

 1000

 10000

 2 4 6 8 10 12

O
ve

ra
ll

C
os

t (
in

 u
ni

t)

Time (in month)

SensPnP
(µPnP+UART)

(µPnP+ADC)
(µPnP+I2C)

(c) Rate of changing peripheral (per day) = 10

Fig. 11. Overall cost analysis

comparing with µPnP [10] and USB host [28]. In case of
µPnP and USB, the energy consumption of the identification
circuit and the USB host controller is computed considering
the minimum and ideal power consumption, respectively. On
the other hand, we consider worst-case energy consumption
for SensPnP. From the figure, it is clear that the lifetime of
PBSI circuitry is significantly more compared to that of µPnP
and USB, even in the worst-case situation. In the identification
process of µPnP, the minimum current rating and identification
time are 3.42 mA and 220 ms. Similar figures are seen for USB
host which asserts that it is a power ravenous device. However,
in the worst-case, the current rate of PBSI circuity is 1.81 mA
and the identification time is maximum 18.23 ms. Due to the
above mentioned factors, our proposed identification solution
operates for longer duration of time compared to µPnP and
USB.

4) Overall Cost Analysis:: We analyze the overall cost of
SensPnP over µPnP [10] from the consumer’s perspective. Fig.
11 presents the overall cost by varying the rate of changing
peripheral per day. We adopted the linear pricing model to
compute the overall cost, while considering the cost for buying
IoT device, using the Internet (per byte), and maintaining
the server (per year) , as mentioned in Section VII-A [27].
Fig. 11 shows that the cost of SensPnP is noticeably less
compared to µPnP due to the offline process of the protocol
identification and driver management in contrast to that of
µPnP. µPnP requires downloading of the corresponding driver
of the peripheral whenever a new device is connected, which
increases the overall cost apart from the hardware cost. In
SensPnP, the cost only depends on the hardware cost of the IoT
device. Thus, the cost-efficiency of the proposed PnP solution
makes it more acceptable to the consumers when compared
with µPnP.

C. Applicability and Expected Benefits for Consumers

IoT has several application domains such as smart home,
smart healthcare, smart farming, smart agriculture, smart in-
dustry, and smart cities, which need different sensors integra-
tion to IoT device. Consumers normally use the IoT devices
for monitoring and controlling different activities of these
applications. The proposed PnP solution helps consumer to
integrate different sensors for their application. In addition, it
provides consumers ease to use the same IoT device for mul-
tiple applications by only changing sensor modules, instead

of purchasing different IoT devices for different applications.
Therefore, SensPnP reduces the overhead cost of purchasing
a new device every time with the change in their needs. Also,
the complete abstraction of underlying technology allows even
a naive consumer to use our PnP solution in the integration
of different sensors on the IoT devices. Further, from Section
VII-B4, it is evident that the cost-efficiency of the proposed
PnP solution makes it more acceptable to the consumers when
compared with µPnP. The proposed solution can be useful
other consumer electronics products such that automatic wash-
ing machine, digital thermometer, soil meter, and refrigerator,
where need to sensor integration.

VIII. CONCLUSION

In this paper, we present a novel PnP solution for the
integration of third-party embedded sensors with the IoT
devices without any prior information about the sensors and
the Internet. SensPnP is the combination of embedded hard-
ware and firmware. We present an architecture of a PnP-
enabled IoT device, which supports heterogeneous embed-
ded peripheral communication protocols. A novel embedded
protocol detection and automatic driver management of the
connected sensor with an IoT device are presented. This is
achieved through a low-cost and low power switching and
identification hardware with a light-weight identification and
driver management firmware stack. To show the effectiveness
of SensPnP, we practically implemented a prototype in a
real test-bed. Experimental results show that SensPnP requires
minimal memory footprint, reduced energy consumption, and
much reduced PnP time compared to the existing solutions.
Additionally, the overall cost analysis shows that the cost of
SensPnP is noticeably less compared to existing solutions.

In this work, we have only considered heterogeneous sen-
sors as a peripheral device, but other peripherals such as actu-
ator and wireless communication device were not considered.
In IoT network, apart from sensor, these peripherals play
an important role to make it global. However, the seamless
integration of third-party actuators and wireless communica-
tion modules is required. The proposed PnP solution can be
extended in future to address this issue.

REFERENCES

[1] S. S. Roy, D. Puthal, S. Sharma, S. P. Mohanty, and A. Y. Zomaya,
“Building a sustainable Internet of Things: Energy-efficient routing using

10

low-power sensors will meet the need,” IEEE Consum. Electron. Mag.,
vol. 7, no. 2, pp. 42–49, Mar. 2018, doi: 10.1109/MCE.2017.2776462.

[2] E. Rubio-Drosdov, D. Dı́az-Sánchez, F. Almenárez, P. Arias-Cabarcos,
and A. Marı́n, “Seamless human-device interaction in the Internet of
Things,” IEEE Trans. Consum. Electron., vol. 63, no. 4, pp. 490–498,
Nov. 2017, doi: 10.1109/TCE.2017.015076.

[3] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”
Computer Networks, vol. 54, no. 15, pp. 2787 – 2805, Oct 2010, doi:
10.1016/j.comnet.2010.05.010.

[4] H. Thapliyal, “Internet of Things-Based Consumer Electronics: Re-
viewing existing consumer electronic devices, systems, and platforms
and exploring new research paradigms,” IEEE Consum. Electron. Mag.,
vol. 7, no. 1, pp. 66–67, Jan. 2018, doi: 10.1109/MCE.2017.2755219.

[5] D. C. Yacchirema and C. E. Palau, “Smart IoT gateway for hetero-
geneous devices interoperability,” IEEE Latin America Trans., vol. 14,
no. 8, pp. 3900–3906, Aug. 2016, doi: 10.1109/TLA.2016.7786378.

[6] “Universal Serial Bus,” USB Implementers Forum, Inc., Accessed: Oct.
2018. [Online]. Available: www.usb.org

[7] “SPI Block Guide v3.06,” Motorola, Inc., Accessed: Oct. 2018.
[Online]. Available: https://web.archive.org/web/20150413003534/http:
//www.ee.nmt.edu/∼teare/ee308l/datasheets/S12SPIV3.pdf

[8] “I2C-Bus,” i2c-bus.org, Accessed: Oct. 2018. [Online]. Available:
www.i2c-bus.org

[9] A. Osborne, An Introduction to Microcomputers : Basic Concepts, 2nd
edition, Ed. McGraw-Hill, 1980.

[10] F. Yang, N. Matthys, R. Bachiller, S. Michiels, W. Joosen, and
D. Hughes, “µPnP: Plug and Play peripherals for the Internet of Things,”
in Proc. of the Tenth European Conf. on Computer Systems, New York,
USA, 2015, pp. 25:1–25:14, doi: 10.1145/2741948.2741980.

[11] A. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal, and Q. Z. Sheng,
“IoT middleware: A survey on issues and enabling technologies,”
IEEE Internet of Things J., vol. 4, no. 1, pp. 1–20, Feb 2017, doi:
10.1109/JIOT.2016.2615180.

[12] M. Eisenhauer, P. Rosengren, and P. Antolin, “A development platform
for integrating wireless devices and sensors into ambient intelligence
systems,” in Proc. 2009 6th IEEE Annu. Commun. Society Conf. on
Sensor, Mesh and Ad Hoc Commun. and Netw. Workshops, June 2009,
pp. 1–3, doi: 10.1109/SAHCNW.2009.5172913.

[13] D. T. Neves, M. Santos, and M. Pinto, “ReActOR: A middle-
ware as a service to interact with objects remotely,” in Proc. 2015
IEEE Int. Conf. Ind. Technol., Mar. 2015, pp. 2433–2439, doi:
10.1109/ICIT.2015.7125456.

[14] H. Khaleel, D. Conzon, P. Kasinathan, P. Brizzi, C. Pastrone, F. Pramu-
dianto, M. Eisenhauer, P. A. Cultrona, F. Rusinà, G. Lukàč, and M. Par-
alic, “Heterogeneous applications, tools, and methodologies in the car
manufacturing industry through an IoT approach,” IEEE Syst. J., vol. 11,
no. 3, pp. 1412–1423, Sept 2017, doi: 10.1109/JSYST.2015.2469681.

[15] P. Persson and O. Angelsmark, “Calvin merging cloud and IoT,”
Procedia Computer Science, vol. 52, pp. 210 – 217, 2015, doi:
10.1016/j.procs.2015.05.059.

[16] N. Sriskanthan, D. Tandon, and K. K. Lee, “Protocol for plug and play
in Bluetooth based home networks,” IEEE Trans. Consum. Electron.,
vol. 50, no. 2, pp. 457–462, May 2004, doi: 10.1109/TCE.2004.1309408.

[17] Y. M. Baek, S. C. Ahn, and Y. Kwon, “Upnp network bridge
for supporting interoperability through non-ip channels,” IEEE Trans.
Consum. Electron., vol. 56, no. 4, pp. 2226–2232, Nov. 2010, doi:
10.1109/TCE.2010.5681094.

[18] T. Jo, Y. You, H. Choi, and H. Kim, “A bluetooth-UPnP
bridge for the wearable computing environment,” IEEE Trans. Con-
sum. Electron., vol. 54, no. 3, pp. 1200–1205, Aug. 2008, doi:
10.1109/TCE.2008.4637607.

[19] T. Sakamoto and K. Nimura, “Dynamic connection management be-
tween web apps and peripheral devices by web driver,” in Proc. 2016
IEEE Int. Conf. on Pervasive Comput. and Commun. Workshops, Mar
2016, pp. 1–6, doi: 10.1109/PERCOMW.2016.7457152.

[20] N. Matthys, F. Yang, W. Daniels, S. Michiels, W. Joosen, D. Hughes,
and T. Watteyne, “µPnP-Mesh: The plug-and-play mesh network for the
Internet of Things,” in Proc. 2015 IEEE 2nd World Forum on Internet
of Things, Dec 2015, pp. 311–315, doi: 10.1109/WF-IoT.2015.7389072.

[21] “Triple 2-channel analog multiplexer/demultiplexer,” nexperia.com,
Accessed: Oct. 2018. [Online]. Available: https://www.nexperia.com/
products/logic/i-o-expansion-logic/analog-switches/

[22] “Dual 4-channel analog multiplexer/demultiplexer,” nexperia.com,
Accessed: Oct. 2018. [Online]. Available: https://www.nexperia.com/
products/logic/i-o-expansion-logic/analog-switches/

[23] “Software for circuit simulation,” labcenter.com, Accessed: Oct. 2018.
[Online]. Available: www.labcenter.com

[24] “Low power microcontroller,” microchip.com, Accessed: Oct. 2018.
[Online]. Available: https://www.microchip.com/design-centers/8-bit

[25] “C compiler for microcontroller,” mikroe.com, Accessed: Oct. 2018.
[Online]. Available: https://www.mikroe.com/mikroc-avr

[26] S. Misra, S. Chatterjee, and M. S. Obaidat, “On theoretical mod-
eling of sensor cloud: A paradigm shift from wireless sensor net-
work,” IEEE Syst. J., vol. 11, no. 2, pp. 1084–1093, June 2017, doi:
10.1109/JSYST.2014.2362617.

[27] C. Zhu, X. Li, V. C. M. Leung, L. T. Yang, E. C. H. Ngai, and L. Shu,
“Towards pricing for sensor-cloud,” IEEE Trans. Cloud Comput., pp.
1–13, Jan 2017, doi: 10.1109/TCC.2017.2649525.

[28] “USB Peripheral/Host Controller with SPI Interface,”
www.maximintegrated.com, Accessed: Oct. 2018. [On-
line]. Available: https://www.maximintegrated.com/en/products/
interface/controllers-expanders.html

Sanku Kumar Roy (S’15) received the B.Tech. de-
gree in electronics and communication engineering
from the Maulana Abul Kalam Azad University of
Technology, India, in 2012. He is presently pursuing
the Master of Science (by Research) degree in the
Department of Computer Science and Engineering,
Indian Institute of Technology (IIT) Kharagpur, In-
dia.

From 2014 to 2017, he was a Junior Research
Fellow at Indian Institute of Technology Kharagpur.
His current research interests include Internet of

Things, Wireless Sensor Networks, and Wireless Body Area Networks.

Sudip Misra (SM’11) received the Ph.D. degree
in Computer Science from Carleton University, in
Ottawa, Canada, in 2005.

He is a Professor in the Department of Computer
Science and Engineering at the Indian Institute of
Technology Kharagpur, India. He has published 9
books in the areas of wireless ad hoc networks,
wireless sensor networks, wireless mesh networks,
communication networks and distributed systems,
and network reliability and fault tolerance, published
by reputed publishers such as Cambridge University

Press, Springer, Wiley, and World Scientific.
Prof. Misra is a fellow of the National Academy of Science (India).

Currently, he is serving as the Associate Editor of the IEEE Transactions
on Mobile Computing, and IEEE Systems Journal. He is also an Editor of
the IEEE Transactions on Vehicular Technology.

Narendra Singh Raghuwanshi received the Ph.D.
degree from University of California, Davis, USA,
in 1994.

He is a Professor in the Department of Agri-
cultural and Food Engineering at Indian Institute
of Technology Kharagpur, India. Currently, he is
the director of National Institute of Technology
(NIT) Bhopal and Indian Institute of Information
Technology, Bhopal. He has published more than
100 peer reviewed papers, 2 book chapters and has
7 copyrights to his credit.

Prof. Raghuwanshi is the recipient of NAAS Recognition Award, Fellow
of INAE, Rotary International Fellowship, Fulbright Nehru Senior Research
Fellowship, and Dr. P. S. Kankhoje Memorial Gold Medal.

