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Abstract—Dense IoT implementations incur heavy data load on
the implemented networks. In this paper, we propose and evaluate
a low-latency method of increasing the packet throughput in agri-
cultural IoT implementations. The proposed method envisions
removal of node identifiers from packets before transmission
and predictive packet-source mapping method within the edge
layer of an agrarian Internet of Things (IoT) implementation.
The edge layer following a master-slave architecture. Pre-trained
lightweight machine learning models at the edge identify the
origin of the incoming packets based on the long-term learned
collective variations of the sensorial values from the slave node.
This reduction in packets significantly frees up time-slots at
the receiving master node, allowing for more simultaneous
connections to it. This intra-edge packet origin mapping scheme is
further compared with the approach of edge node identification
at a remote server to adjudge the tradeoffs between accuracy
and latency of transmission. The proposed method doubles the
amount of sensor data transmitted between the slave to master
nodes with significant energy savings over longer duration and in-
creases the data throughput by approximately 1.5 times between
the master node and the remote server for our implementation.
The proposed method estimates energy savings in the order
of 20 watts for a deployment setup of 100 nodes over a year.
The energy savings over densely deployed IoT networks can be
utilized to accommodate more nodes and increase the lifetime of
the network.

Keywords—IoT, Agriculture, Machine learning, Edge device
processing.

I. INTRODUCTION

The use of IoT in agriculture is rapidly gaining popular
acceptance as is evident from various large multi-organization
and multi-country initiatives to link agriculture and its associ-
ated domains of supply chain management, food processing,
and storage to achieve regional and global food security
[1]. Owing to its constant need with widespread presence
and dependencies, technological and digital intervention in
agriculture is a vast domain, which includes specializations
such as crop, weed and pest monitoring, water manage-
ment, remote sensing, nutrient management, yield forecasting,
storage, and others. Our work is related to the domain of
crop monitoring and water management in agricultural fields
using continuous wireless sensing of field parameters such
as soil moisture, soil temperature, and humidity. Considering
a typical master-slave architecture, a slave node is a node
which senses the data and simply forwards it to the master
node. The master node processes the data and forwards it
to the remote server. However, agricultural implementations

of IoT require a huge number of sensor nodes, spread all
over the agrarian area, which generates large volumes of data.
This large data volume is not only a burden on the master
node’s processing resources but is limited by the network
bandwidth. Considering an available network bandwidth of
β units between the master and a set of n slave nodes
Ni : Ni = {N1, N2, N3, · · · , Nn}. Each slave node consists of
a set of k sensors Sj : Sj = {S1, S2, S3, · · · , Sk} collectively
transmitting |Ni||Sj |×nid bytes (considering 1 byte per sensor
reading) to the master node at each instant of time, where
nid is the data due to the node identifiers from each of the
n slave nodes. Considering Shannon’s channel capacity C
[2] for a noiseless channel transmitting two symbols (0 and
1), C = 2 × B × log22 ≥ 8|Ni||Sj |×nid bits per second.
Accommodation of more nodes or sensors beyond what is
permissible by C for the current setup is achieved by reducing
nid.

Figure 1: The communication and functional scheme of our
implementation.

The constrained processing capabilities of the in-field nodes
and the network throughput demands a solution which in-
creases the efficiency of an existing network in terms of
throughput and latency. In this work, we propose the complete
elimination of nid values logged from the slave nodes to the
master node at each time instant. We deploy a pre-trained
machine learning model at the master node, which is also
the edge device of our communication architecture, to predict
the origin of the incoming identifier-less slave sensor node
values, and sort them accordingly for further transmission to
the remote server via the Internet. This scheme of transmit-
ting identifier-less packets from the slave nodes significantly
increases the total effective sensor data transmitted |Ni||Sj |
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without changing the network characteristics. As the edge de-
vice (master node) used in our implementation is a Raspberry
Pi unit, which has constrained computational resources, we
also evaluate the choice of the machine learning algorithm to
be deployed on the edge. Section IV evaluates the performance
of this identification scheme against the following algorithms –
Decision Trees, Random Forests, Multilayer Perceptrons, and
k-Nearest Neighbor. The proposed model is then compared
against the traditional original data transmission in terms of
throughput achieved for both slave-to-master and master-to-
remote server connection and corresponding energy savings.

The positioning of a pre-trained model at the edge allows for
lower network latencies between the master node and the re-
mote server. The main crux of this work is to estimate whether
it is possible to identify incoming packets based merely on the
combination of sensors and the temporal variations of these
readings, which also includes the erroneous values contained
in these readings. The work can be further extended for other
applications involving dense sensor networks

A. Communication Architecture

We implemented our model on one of our existing IoT-based
wireless agricultural parameter monitoring system, which con-
tinuously senses agricultural field parameters at various lo-
cations and transmits them through the Internet to a remote
server. The on-field implementation of our system, at the edge
layer, follows a master-slave communication architecture as
shown in Fig. 1. An intermediate master node is responsible
for collecting sensed packets from variously deployed slave
node using short-range communication (SRC) radios such as
Zigbee (IEEE 802.15.4). The slave nodes N host a simple
processor, which is powered using solar energy, and are only
responsible for sensing and forwarding field parameters (soil
moisture, soil temperature, humidity, and others) to the master
nodes M . A typical packet of slave node data intended for the
master node in our implementation has an 8-bit data identifier
field (Data ID). This field is followed by 7 consecutive 8-bit
fields for accommodating sensed analog-to-digital conversion
data, and two 32-bit node-specific fields consisting each of
node serial number and node identifiers, which totals to 128-
bits as shown in Fig. 2(a). Provisions have been made at the

(a) Slave node packet (b) Master node packet

Figure 2: The network transmission packet structures for
various agents of our implementation.

master node to enable it to communicate with a remote server

for forwarding the data using long-range communication
(LRC) using IPv4 over LTE, GSM, or Ethernet. The master
nodes and the remote server derive power from a regular power
distribution grid. Similar to many slave nodes communicating
with a single master node, many geographically separated
master nodes connect to a single remote server via the Internet.

Similar to the slave node packets, a typical packet from
the master node (as shown in Fig. 2(b)) to the remote server
has additional 8-bits for timestamp data, which gets added
at the master at the instant of arrival of slave node data.
In continuation, unlike slave node packets, the 64-bit node-
specific fields are accentuated by two fields, each 32-bits long,
which are intended for the IPv4 master node address and the
address of the remote server respectively, totaling to 200 bits
for each packet.

B. Slave Node Implementation

The slave nodes implemented in the agricultural fields are
each equipped with soil moisture sensors, soil temperature
sensor, a solar voltage sensor, and a battery voltage sensor.
The soil moisture sensors are placed distally at four different
vertical depths of 15cm, 30cm, 45cm, and 60cm to capture the
vertical changes in soil moisture at different root zone depths
of the crops. The soil temperature sensor is placed laterally
at a depth of 10cm below the soil surface. The battery and
solar voltage sensors are responsible for updating the changes
in battery and solar voltages respectively and are placed in
the box housing the processor, as shown in Fig. 3B. The slave

Figure 3: The implemented system in the agrarian field – (A)
multiple slave nodes deployed in the field, (B) a single slave
node.

nodes communicate to the master node using a Zigbee S1
radio module (IEEE 802.15.4) attached to the processor. The
processor logs sensor data after every 30 minute and transmits
the packetized data to the master node by appending a data
index (Data ID) to it as shown in Fig. 2(a). Originally, the
slave nodes followed the packet format shown in Fig. 2(a),
however using our proposed scheme, we discarded the two
32-bit slave-specific fields (shaded part in Fig. 2(a)) to enable
the transmission of a reduced packet to the master node. The
implementation was done on a pre-existing network of 4 slave
nodes communicating to a single master node, without making
any physical changes or addition of new nodes to the network.
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(a) Node-1
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(b) Node-2
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(c) Node-3
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(d) Node-4

Figure 4: The soil moisture histogram for 4 months, polled every 30 minute at 4 different levels beneath the soil for various
slave nodes of our implementation.
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(d) Node-4

Figure 5: The soil temperature histogram for 4 months, polled every 30 minute beneath the soil for various slave nodes of our
implementation.

C. Soil and Sensor Heterogeneity as a Unique Identifier

The special nature of agricultural data sensing of soil
moisture and temperature involves a phenomenon called soil
heterogeneity, which insinuates variability in the physical,
chemical, and biological properties of soil from place to place
[3]. This heterogeneity implies a minute, yet unique spatial
footprint of the soil. In continuation, inherent manufacturing
errors in the sensors [4] such as offset and sensitivity errors
provide additional character to the measurement location of
the soil profile as shown in Theorem 1. The histograms of the
soil moisture sensors from 2 of the deployed slave nodes as
shown in Fig. 4 indicate unique distribution patterns from the
nodes during the same season, placed 30m apart. Nodes 2 and
3 (Figs. 4(b)) show a wider spreading as compared to nodes
1 and 4 (Figs. 4(a)) for the sensors with similar specifications
and deployment depths, at similar instants of time. We attribute
this behavior to the variations in irrigation applied to these
locations resulting in the reported spreading. In contrast, we
see from Fig. 5 that nodes 1 and 2 follow a soil temperature
trend which is quite similar to the ones followed by nodes 3
and 4. However, we see a few erroneous readings from nodes
3 and 4, extending to 80, which is not possible. We attribute
this behavior to the wiring and sensor errors.

Theorem 1. The soil parameter measuring sensor combina-
tions, internal sensor errors, and soil heterogeneity provide
a unique identifier for each agrarian sensor node of our
implementation.

Proof. We consider the four soil moisture sensors of our
implementation, first. The soil water content θ, capillary head
ψ, time instant t, and vertical coordinate z which increases
with depth, the 1-D Richard’s equation [5] for an empirically

calculated hydraulic conditioning function k(θ) is given as
∂θ
∂t = ∂

∂z

[
k(θ)

(
∂ψ(θ)
∂z − 1

)]
. This equation highlights the

dependence of θ on t and z, implying that the soil moisture
content measured at each time instant is bound to change,
and the moisture content recorded by our 4 sensors placed
at different depths may have varying readings at the same
time instant. Again, considering the remaining 3 sensors of our
implementation – soil temperature, solar voltage and battery
voltage. Let, each node N with k sensors be represented as
N →

⋃k
1{Sk+εk}, where ε is the minute, yet unique inherent

error due to manufacturing or calibration of the sensors. As
ε1 6= ε2 6= · · · 6= εk, the logged values from different sensors at
the same time instant t for the same location will be different.
Considering Ni(t) =

⋃k
1{Sk+εk} representing the ith sensor

node at the time instant t, Ni(t) − Ni(t − 1) = δ1, and
Ni(t)−Ni−1(t) = δ2. The remnants δ1 and δ2 are very small
and occur due to the inequality between the ε values.

Combining the heterogeneities incurred due to the soil
moisture sensors and the other sensors in our implementation,
we conclude that the combination of these values in a packet
provides unique identifying features for the nodes over a
period.

D. Contributions

This work envisages the discarding of node identifiers
from packet transmission to increase the network throughput
without the change in the network characteristics or the char-
acteristics of the implemented system. The following distinct
contributions have been made in this work:

• An agricultural IoT implementation has been established,
which records agricultural field parameters and transfers
them to a remote server via a master node at the edge.



• A machine learning-based identifier-less packet origin
mapping scheme at the edge layer is hosted on a master
node of a master-slave implementation.

• Performance of various machine learning algorithms is
evaluated on the edge as well as the remote server
to choose the algorithm with the minimum trade-off
between accuracy of classification and execution time on
a resource-constrained processor.

II. RELATED WORK

The advent of IoT has been a boon for sustainable tech-
nologies such as precision agriculture and farm management.
Precision agriculture, which aims to usher-in food security
[1] by making judicious use and balancing the application
of water, fertilizer, and pesticides for increasing crop yield.
Present day agricultural systems are making use of clouds, and
Internet gateways to acquire agronomic data from the fields
[6], smartly monitor and control irrigation systems, predict
and warn farmers about yields and weather using advanced
analytics [7]. Agricultural IoT deployments are characterized
by dense implementations, which generate voluminous data
per unit time. This surge in transmitted data has necessitated
the use of efficient data transmission techniques [8]. Instead
of forwarding data all the way to a cloud, low-computational
analytics are performed locally in fog nodes to achieve faster
results and save energy [9].

Edge computing, commonly used interchangeably with Fog
computing is a promising alternative to cloud-based data
offloading and analytics. These devices connect at the edge
of the network, offering computation and processing power to
the devices at the edge of the network, in between the end
device and the cloud servers [10]. Fog computing is reported
to be more efficient concerning power consumption, service-
latency, and costs involved [11]. Additionally, the benefits of
security, the privacy of data, and selective data processing
based on quality and criticality of the data are also assured.
Edge-based schemes such as inter-edge data offload [12],
and content caching [13] has been shown to reduce network
latency further and is proving beneficial towards managing IoT
network traffic.

Synthesis: Most of the digital agricultural pursuits are
standalone solutions, which often rely on remote servers
and clouds for data storage and analysis of the data, where
network and processing latencies, network throughput and
energy efficiency are seldom addressed. In contrast, works
on the edge-based decrease in network latency, energy usage
optimization, cost optimization and improving user experience
in case of online web services and e-commerce is being widely
pursued. In this work, we show the benefits of edge-based
processing of data and machine learning towards the reduction
of latencies and increase in network throughput for agricultural
IoT, which and can be extended to other domains having dense
IoT deployments.

III. PREDICTIVE IDENTIFICATION OF PACKETS

The predictive identification of identifier-less packets is
performed by making use of a pre-trained machine learning
model placed at the receiving end of the network. We choose
two locations for testing this approach – 1) the edge (or, the
master node), and 2) the remote server. The machine learning
model at the edge node is responsible for identifying the
incoming packets from the slave nodes, whereas the remote
server model is responsible for determining the originator
slave nodes from the master nodes packets. The identification
mechanism is outlined in Algorithm 1. The models are trained
by data collected from the same set of sensor nodes over a
period of 4 months, polled at an interval of 30minutes during
a full cropping season. The machine learning model trained
using this dataset is used for identifying the incoming data
from the next cropping cycle.

As described earlier, the edge device is computationally
constrained, compared to the remote server. The machine
learning models hosted at the remote server may not perform
well on the edge device considering execution time as the
factor. We modify the architectures of the models at the
remote server (which we consider as heavy models) to be
more lightweight to incur lower execution latencies on the
edge device, and refer to these models as light models.

Algorithm 1 Identification of identifier-less packets
Require:

INPUT:
Dt = {S1 ,S2 ,S3 , · · ·Sm} . D : Data incoming from slave
nodes . t : Time instant . S : Sensors
OUTPUT:
max P(Ni) 3 Ni = {N1 ,N2 ,N3 , · · ·Nk} . N : Set of nodes
deployed
Initialize:
Trained Model(M) . M : Trained ML model at the master
node

1: while (Dt) do
2: Predict P (Ni)
3: Return max P (Ni)
4: end while

A. Machine Learning Preliminaries

This section provides an overview of the four implemented
machine learning algorithms.

1) Decision Trees (DT): A decision tree uses a tree-like
structure to arrive at a decision or goal. Decision tree in
machine learning (ML) has been used for classification and
regression modeling. It uses recursive binary splitting to divide
the set of data into different subsets using a cost function.
The attribute selection can be broadly based on calculating
the information gain and Gini index. Entropy is used to find
the randomness in the information contained in the attributes.
In this work, the heavy model of DT has a maximum depth
of 10, whereas the light model has a maximum depth of 5.

2) Random Forests (RF): Random forest method is an
ensemble method for classification and regression, introduced
by Leo Breiman in [14]. It uses an ensemble of decision trees
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(a) Light model on edge
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(b) Heavy model on edge
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(c) Light model on remote server
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(d) Heavy model on remote server

Figure 6: The accuracies of the chosen classifiers on both edge node as well as remote server with both – a) light models, and
b) heavy models.
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(a) Light model on edge
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(b) Heavy model on edge
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(c) Light model on remote server
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(d) Heavy model on remote server

Figure 7: The execution time of the chosen classifiers on both edge node as well as remote server with both – a) light models,
and b) heavy models.

during training to make the final ranking. The idea is to utilize
multiple weak decision trees to reach a stronger decision. This
method helps overcome the over-fitting problem in decision
trees due to the noises present in the training dataset. In this
work, the light RF model has 5 estimators, whereas the heavy
model has 20 estimators.

3) Multilayer Perceptrons (MLP): A Multilayer Perceptron
is a regression model with a deep artificial neural network
where each perceptron classifies the input by separating it
into 2 outputs. It consists of an input layer, an output layer and
hidden layers between the input and output layers. The hidden
layers perform the regression and classification process using
backpropagation. Each layer has multiple nodes or neurons
that are connected to each node with some weight in the
next layer resulting in a high degree of connectivity We use
Regularized Linear Units (ReLU) [15] as the non-linearity
in the hidden layers in conjunction with a Limited Memory
Broyden–Fletcher–Goldfarb–Shanno (LBFGS) [16] solver for
our MLP model. The heavy model in this work consists of 4
hidden layers, each with 64, 128, 5, and 5 neurons respectively,
whereas the light model uses 2 hidden layers with 5 neurons
each.

4) K-Nearest Neighbours (kNN): K-nearest neighbor or
kNN algorithm is a non-parametric method for classification
and regression models.It uses the k nearest object classes
in the feature space for training. As part of the supervised
learning, the unknown classes are classified as per the known
dataset with maximum voting in the defined k value. As kNN
classification works at runtime, its performance degrades with
larger datasets. The kNN heavy model in this work makes use
of 5 neighbors, whereas the light model used 3 neighbors for
classification of the nodes with a leaf size of 30.

IV. PERFORMANCE EVALUATION

This section is divided into three parts – 1) performance of
the machine learning algorithms, 2) network throughput, and
3) energy savings.

A. Performance of Machine Learning Algorithms

Fig. 6 shows the accuracy of node classification of heavy
and lightweight models running on both the edge nodes and the
remote server. The identification of the slave node is carried
out on the packetized sensor values received by the master
node using the four selected algorithms. While an overall
average performance is maintained in both the heavy and
lightweight models at the edge node, there is a significant
difference in the performance of kNN and MLP classifiers for
their corresponding heavy and lightweight models in both the
edge node as well as the remote server.

We attribute this difference to the low computational power
of the edge device and the runtime complexities of the
algorithms. RF and DT give a good and consistent perfor-
mance in both models, which makes them stand out from the
other classifiers concerning training and testing accuracies.
The execution time taken by kNN is the highest, which is
attributed to the runtime processing nature of the algorithm
and is expected to increase with the increasing size of the
dataset. Considering the edge node, the execution time of DT
outperforms RF classification model in both its lightweight
and heavyweight forms as is seen in Fig.7(a) and 7(b). The
same trend for node classification performance is observed at
the remote server. Collectively, it is inferred from Fig. 6 and
7 that DT has better performance for both edge nodes and
the remote server in comparison to the other classifiers. The
performance of DT is closely followed by RF. MLP, although
has lesser accuracies for node classification than kNN but



performs significantly better than kNN concerning execution
times.
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(a) Slave to master link.
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(b) Master to remote server link.

Figure 8: The network throughput for original and identifier-
less packet types during transmission between – a) slave to
master at 9600 bps, and b) master to the remote server at 250
kbps.

B. Throughput

The network throughput, represented in terms of data
packets transmitted per second, is compared for the two
connections – 1) slave to the edge, and 2) edge to the
remote server. Fig.8(a) shows the comparison of the network
throughput at the link between the edge and slave nodes,
obtained with the identifier information intact (original) and
without the identifier in the transmitted packet. The identifier-
less packet data sustain twice the number of connections as
compared to the original data packet. A similar trend is seen
for the edge to the remote server link with a Wi-Fi rate
of 250kbps as summarized in Fig.8(b), where the identifier-
less packets enable an increase in throughput by 1.5 times
in comparison to the original packet type. It is prominent
from the results that the compression of data enables more
substantial data transmission and efficient utilization of the
available bandwidth by removing the redundant data.

C. Energy Savings

The energy savings for our proposed scheme is calculated
and projected for a data transmission interval of every 30
minute for varying duration of 1 day, 4 months (a cropping
cycle), and a year against varying deployment sizes. The
energy saving for the link between the master and slave
nodes, and the link between the master node and remote
server are shown in in Fig. 9. The resulting energy savings
also ensure that our scheme optimizes the implementation,
without changing the actual hardware of the implementation.
Our scheme is able to save additional 20 watts of energy for
a 100 node deployment over a period of a year, simply by
discarding the identifier fields in the transmitted data. The
proposed scheme has the capacity to usher-in more energy
savings for larger and longer-duration deployments.

V. CONCLUSION

The performance of our proposed method on the imple-
mented hierarchical master-slave IoT architecture for agri-
culture enables the support of almost twice the number of

(a) Slave to master (b) Master to remote server

Figure 9: The energy saved for original and identifier-less
packet types during transmission between – a) slave to master,
and b) master to remote server.

slave connections at the master node, in comparison to the
transmission with original packet types, within the same time
interval. The proposed method also enables the support of
almost 1.5 times more data within the same range of time
as compared to original packet type. Upon evaluation of the
performance of the chosen classifiers for our scheme, we
see that the DT classifier outperforms the other classifiers
concerning classification accuracy and execution time for both
locations – remote servers as well as edge nodes for the nature
of the data generated by our implementation. Concerning
classification accuracies, DT is followed by RF, kNN, and
MLP. However, regarding execution times, DT is followed by
RF, MLP, and finally kNN in increasing order. Additionally,
our scheme allows for energy savings in the order of 20
watts for larger deployments over long duration of time,
which is significant considering the nodes and communication
medium used are extremely low-power ones. This signifies the
allowance of more number of nodes or increased lifetime of
the existing network.

The proposed method although capable of increasing the
throughput within the network bandwidth along with notable
energy savings, without the change in infrastructure, however,
is highly location and sensor specific. In the future, we plan
to implement online learning schemes with the edge devices
to remove the dependencies on location and sensor-specific
datasets.
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