Ubiquitous Computing (CS60055)

Satellite Systems

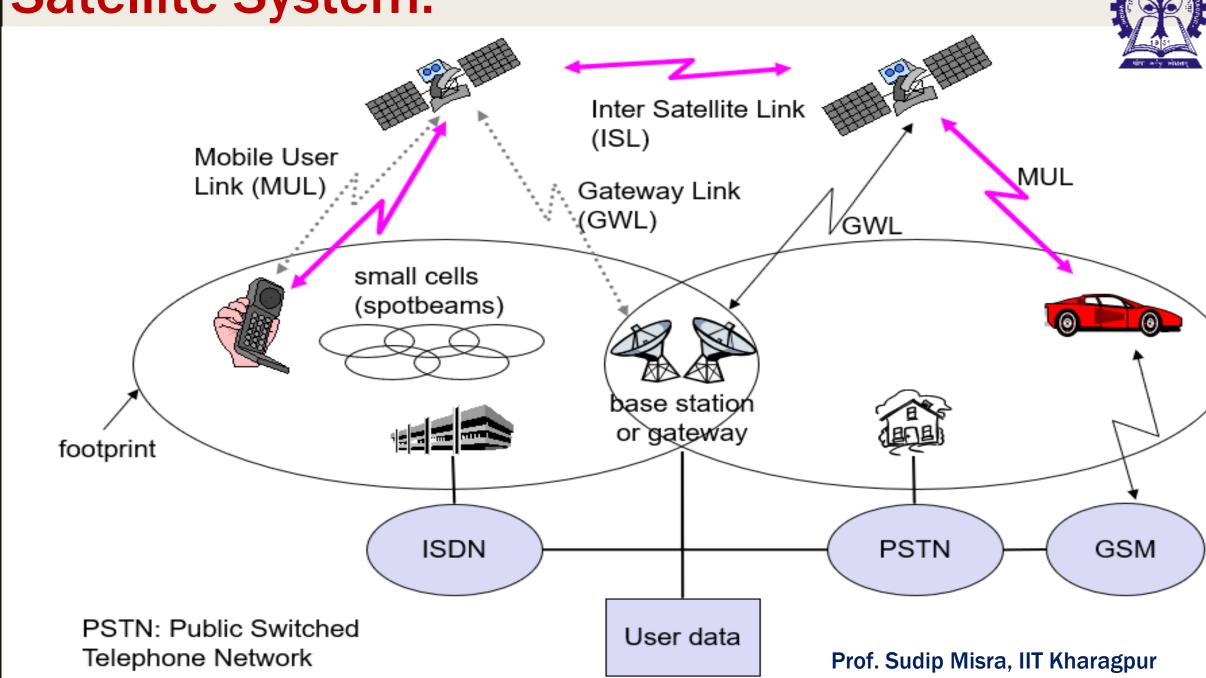
Prof. Sudip Misra

Indian Institute of Technology Kharagpur

Email: smisra@cse.iitkgp.ac.in

Website: http://cse.iitkgp.ac.in/~smisra/

Research Lab: cse.iitkgp.ac.in/~smisra/swan/


Overview

 Communication Satellite can be looked upon as a large microwave repeater.

It contains several transponders which listens to some portion of spectrum) amplifies the incoming signal and broadcasts it in another frequency to avoid interference with incoming signals.

Satellite System:

Types of Satellite Based Networks

GEO – Geostationary Orbits

36000 Km = 22300 Miles, equatorial, High latency

MEO – Medium Earth Orbits

High bandwidth, High power, High latency

LEO – Low Earth Orbits

Low power, Low latency, More Satellites, Small Footprint

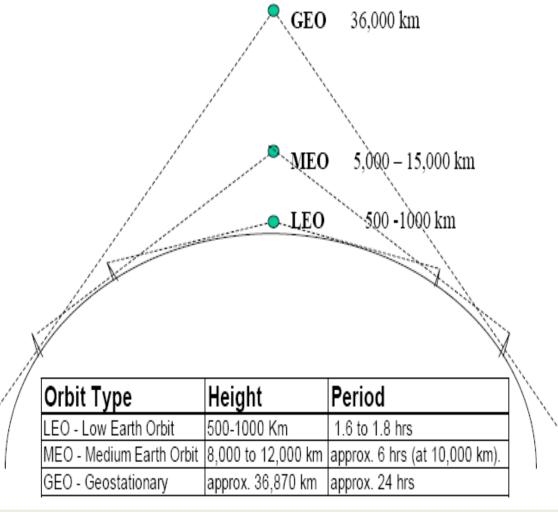
VSAT - Very Small Aperture Satellites

Private WANs

Satellite Orbits

GEO – Geostationary Orbits

36,000 km above Earth, includes commercial and military communications satellites, satellites providing early warning of ballistic missile launch.


MEO – Medium Earth Orbits

5000 to 15000 km, they include navigation satellites (GPS, Galileo)

LEO – Low Earth Orbits

500 to 1000 km above Earth, includes military intelligence satellites, weather satellites.

Advantages of Satellite Communication

- ☐ Can reach over large geographical area
- ☐ Flexible (if transparent transponders)
- ☐ Easy to install new circuits
- ☐ Circuit costs independent of distance
- Can reach over large geographical area
- ☐ Flexible (if transparent transponders)
- ☐ Easy to install new circuits
- ☐ Provision of service to remote or underdeveloped areas

Routing

1951 Hill only sixted

- One solution: inter satellite links (ISL)
 - reduced number of gateways needed
 - forward connections or data packets within the satellite network as long as possible
 - only one uplink and one downlink per direction needed

Problems:

- more complex focusing of antennas between satellites
- high system complexity due to moving routers
- higher fuel consumption
- □ thus shorter lifetime

Localization of Mobile Stations

The section of the se

- Mechanisms similar to GSM
- Gateways maintain registers with user data
 - HLR (Home Location Register): static user data
 - VLR (Visitor Location Register): (last known) location of the mobile station
 - SUMR (Satellite User Mapping Register):
 - satellite assigned to a mobile station
 - positions of all satellites
- Registration of mobile stations
 - Localization of the mobile station via the satellite's position
 - requesting user data from HLR
 - updating VLR and SUMR
- Calling a mobile station
 - localization using HLR/VLR similar to GSM
 - connection setup using the appropriate satellite

Prof. Sudip Misra, IIT Kharagpur

Handover in Satellite Systems

- Several additional situations for handover in satellite systems compared to cellular terrestrial mobile phone networks caused by the movement of the satellites
 - Intra satellite handover
 - handover from one spot beam to another
 - mobile station still in the footprint of the satellite, but in another cell
 - Inter satellite handover
 - handover from one satellite to another satellite
 - mobile station leaves the footprint of one satellite
 - Gateway handover
 - Handover from one gateway to another
 - mobile station still in the footprint of a satellite, but gateway leaves the footprint
 - Inter system handover
 - Handover from the satellite network to a terrestrial cellular network
 - mobile station can reach a terrestrial network again which might be cheaper, has a lower latency etc.

Thank you!