
Social Computing [CS60017] 2020A
Assignment 2: Calculating Centrality Measures
Deadline for submission: 18 October 2020, 23:59 IST.

General Instructions

1. Read the instructions given in each section carefully.

2. Your codes should print out exactly what is asked, and in the specified format (sample given at
the end). Do NOT output anything extra that isn’t asked for. The results will be evaluated by
an automated checker. There will be a penalty if the specified output format is not followed.

3. Try writing codes into different functions and add several comments. Make sure your code
can be easily read. Illegible codes will be penalised!

4. How and what to submit: Solutions should be uploaded via the CSE Moodle website (see
course website for details). Submit one .zip or .tar.gz file containing a compressed folder that
should contain all source codes, all files to be submitted (as per the task descriptions given
below) and an instructions file (see next point). Name the compressed file the same as your
roll number. Example: name the compressed file “19CS60R00.zip” or “19CS60R00.tar.gz”
if your roll number is 19CS60R00.

5. Along with the source codes and files asked in the tasks, also submit an additional text file
called “instructions.txt” where you should state how to run your codes as well as any addi-
tional information you want to convey, such as the version of Python or C++ compiler. The
instructions.txt file should also contain your name and roll number.

6. We should be able to run your submitted code in a computer with a reasonable configuration
(for instance 2GB or more RAM) by following your submitted instructions. If any part of
your code takes a long time to run (e.g., more than 10 minutes) report that in the instruction
file with an estimate of time required.

7. The assignment should be done individually by each student. You should not copy any code
from one another, or from any web source. Plagiarised codes will be awarded zero for the
whole assignment.

1



Assignment 2 Social Computing

Dataset

For this problem use the edge list of Facebook social circles from the SNAP website:
https://snap.stanford.edu/data/ego-Facebook.html

Task 1: Coding centrality functions [80 points]

Write a code to compute the following centrality metrics for a graph:

1. Closeness centrality for node i, given by Ci =
n−1∑
j
dij

, where dij is the length of the shortest

path from i to j, and n is the number of nodes in the graph. [20 points]

2. Betweenness centrality for node i, given by Bi =
2

(n−1)(n−2)

∑
st

ni
st

gst
, where ni

st is the number

of shortest paths between nodes s and t which pass through i, and gst is the total number of
shortest paths between nodes s and t. [30 points]

3. Biased PageRank for a node i calculated using the standard PageRank power-iteration
method (as discussed in class). Use a non-uniform preference vector biased towards nodes
that have their node IDs divisible by 4. Use damping factor, α = 0.8. [30 points]

Please note the following carefully:

1. Your code file should be named gen centrality.py (or in cpp), and should NOT take any
input arguments. Include the dataset in your submission.

2. It should output a text file each for the centrality measures, which contains a line for each
of the node. Name the output files “closeness.txt”, “betweenness.txt” and “pagerank.txt”.
Generate the files inside a folder called “centralities”.

3. Each line in the output files has the format: nodeID <white space> centrality value.
The centrality values can be up rounded to 6 decimal places. The nodes in each file should
be sorted by the centrality value. (Sample at the end)

4. You can build your code on SNAP (using graph classes etc.).

5. There are already built-in functions in SNAP to calculate all these centralities (example:
“GetBetweennessCentr”). However, you should NOT use these functions. You need to im-
plement these centralities yourself, as extensions to SNAP’s graph framework.

6. In fact you can implement more efficient ways of computing centralities in your code. There
are multiple algorithms, like variation of Floyd Warshall algorithm, Johnson’s algorithm and
Brandes’ algorithm. You can read more about them here: https://en.wikipedia.
org/wiki/Betweenness_centrality#Algorithms .

2

https://snap.stanford.edu/data/ego-Facebook.html
https://en.wikipedia.org/wiki/Betweenness_centrality#Algorithms
https://en.wikipedia.org/wiki/Betweenness_centrality#Algorithms


Assignment 2 Social Computing

Task 2: Using built-in functions [20 points]

Calculate the Closeness centrality, Betweenness centrality, and standard PageRank of all nodes
using the in built functions available in SNAP library. While calculating Betweenness centrality,
set NodeFrac parameter to 0.8 to calculate approximate values (but faster!). Use instructions same
as the Task 1 where applicable.

Your code should be in a file: analyze centrality.py (or in cpp). Use the output files generated in
Task 1 and do the following for each of the centralities:

1. Take the top ranked 100 nodes generated by SNAP for each of the centralities.

2. Take the top ranked 100 nodes generated by your implementation of the corresponding cen-
trality, in Task 1.

3. Calculate and print how many nodes among the top 100 overlap.

Your code should print the following lines in stdout:

#overlaps for Closeness Centrality: <value>
#overlaps for Betweenness Centrality: <value>
#overlaps for PageRank Centrality: <value>

[Note: Replace <value> with the corresponding number of overlaps]

Sample centrality file:

The centrality files should have the format shown below (the numbers below are random). There
should be a line for each of the nodes in the network, sorted by the centrality value.

5 0.756412
1 0.5
3 0.4511
4 0.333333

For any queries regarding the assignment, contact TA Soham Poddar (email id on course website).

3


