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Subgraphs of interest

n Given a (social) network, what are some subgraphs 
of interest?
q From the perspective of an individual user – Egocentric 

networks
q From the perspective of the network as a whole or the 

network administrators – Communities or clusters

n Lots of applications of these subgraphs of interest –
recommendation, summarization, …



Egocentric networks
n Interesting from the perspective of a node (user)
n 1-degree egocentric network: a node and all its 

connections to its neighbors



Egocentric networks
n 1.5-degree egocentric network: a node, all its 

connections to its neighbors, and the connections 
among the neighbors



Egocentric networks
n 2-degree egocentric network: a node, all its 

neighbors, all neighbors of neighbors, and the 
connections among all these nodes



Communities
n Community or network cluster

q Typically a group of nodes having more and / or better 
interactions among its members, than between its members 
and the rest of the network

q No unique formal definition

n Community Detection (CD) -- automatically detecting 
communities in a network 

n Challenging
q Communities are not well-defined
q Number of communities in a network is not known



Different types of CD algorithms
n Detection of disjoint communities

q Each community is a partition of the network
n Detection of overlapping communities

q A node can be members of multiple communities

n CD algorithms that rely only on network structure
n CD algorithms that rely on network structure and 

content (e.g., content posted by users) 



Our focus
n We are primarily focusing on

q Algorithms that rely only on the network structure
q Algorithms for detection of disjoint communities

n A case-study at the end will discuss detection of 
overlapping topical communities on Twitter, utilizing 
both network and content



What is the output of a CD algorithm?
n A community structure – a set of communities

q Communities in this set may be disjoint partitions or 
overlapping
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Figure 1: NCP plot (middle) of a small network (left). NCP of LiveJournal network computed using two different methods.

ent clustering algorithms and objective functions through various
notions of the NCP plot and other kinds of structural metrics of
clusters and how they depend/scale with the size of the cluster.
Moreover, the shape of the NCP is also interesting for a very

different reason. It gives us a powerful way to quantify and sum-
marize the large-scale community structure of networks. We [27,
26] found that the NCP behaves in a characteristic manner for a
range of large social and information networks: when plotted on
log-log scales, the NCP tends to have a universal “V” shape (Fig-
ure 1(right)). Up to a size scale of about 100 nodes, the NCP de-
creases, which means that the best-possible clusters are getting pro-
gressively better with the increasing size. The NCP then reaches
the minimum at around k = 100 and then gradually increases
again, which means that at larger size scales network communities
become less and less community-like. (This should be contrasted
with behavior for mesh-like networks, road networks, common net-
work generation models, and small commonly-studied networks,
for which the NCP is either flat or downward-sloping [27, 26].)
The shape of the NCP can be explained by an onion-like “nested
core-periphery” structure, where the network consists of a large
core (slightly denser and more expander-like than the full graph,
but which itself has a core-periphery structure) and a large number
of small very well-connected communities barely connected to the
core [27, 26]. In this context, it is important to understand the char-
acteristics of various community detection algorithms in order to
make sure that the shape of NCP is a property of the network rather
than an artifact of the approximation algorithm or the function that
formalizes the notion of a network community.

3. COMPARISON OF ALGORITHMS
We compare different clustering algorithms and heuristics. We

focus our analyses on two aspects. First, we are interested in the
quality of the clusters that various methods are able to find. Ba-
sically, we would like to understand how well algorithms perform
in terms of optimizing the notion of community quality (conduc-
tance in this case). Second, we are interested in quantifying the
structural properties of the clusters identified by the algorithms. As
we will see, there are fundamental tradeoffs in network commu-
nity detection—for a given objective function, approximation algo-
rithms are often biased in a sense that they consistently find clusters
with particular internal structure.
We break the experiments into two parts. First, we compare

two graph partitioning algorithms that are theoretically well under-
stood and are based on two very different approaches: a spectral-
based Local Spectral partitioning algorithm, and the flow-based
Metis+MQI. Then we consider several heuristic approaches to net-
work community detection that work well in practice.

3.1 Flow and spectral methods
In this section we compare the Local Spectral Partitioning algo-

rithm [2] with the flow-based Metis+MQI algorithm. The latter is a

surprisingly effective heuristic method for finding low-conductance
cuts, which consists of first using the fast graph bi-partitioning pro-
gram Metis [20] to split the graph into two equal-sized pieces, and
then running MQI, an exact flow-based technique [15, 23] for find-
ing the lowest conductance cut whose small side in contained in
one of the two half-graphs chosen by Metis.
Each of those two methods (Local Spectral and Metis+MQI) was

run repeatedly with randomization on each of our graphs, to pro-
duce a large collection of candidate clusters of various sizes, plus a
lower-envelope curve. The lower-envelope curves for the two algo-
rithms were the basis for the plotted NCP’s in the earlier paper [27].
In the current paper the lower-envelope curves for Local Spectral
and Metis+MQI are plotted respectively as a red line and a green
line in Figure 1(right), and as pairs of black lines in Figure 2(top)
and Figures 4 and 7. Note that the Metis+MQI curves are gener-
ally lower, indicating that this method is generally better than Local
Spectral at the nominal task of finding cuts with low conductance.
However, as we will demonstrate using the scatter plots of Fig-

ure 2, the clusters found by the Local Spectral Method often have
other virtues that compensate for their worse conductance scores.
As an extreme example, many of the raw Metis+MQI clusters are
internally disconnected, which seems like a very bad property for
an alleged community. By contrast, the Local Spectral Method al-
ways returns connected clusters. Acknowledging that this is a big
advantage for Local Spectral, we then modified the collections of
raw Metis+MQI clusters by splitting every internally disconnected
cluster into its various connected components. Then, in all scatter
plots of Figure 2, blue dots represent raw Local Spectral clusters,
which are internally connected, while red dots represent broken-up
Metis+MQI clusters, which are also internally connected.
Let us now consider the top row of scatter plots of Figure 2 which

compares the conductance scores (as a function of cluster size) of
the collections of clusters produced by the two algorithms. The
cloud of blue points (Local Spectral clusters) lies generally above
the cloud of red points (Metis+MQI clusters), again illustrating that
Local Spectral tends to be a weaker method for minimizing con-
ductance score. In more detail, we find that Local Spectral and
Metis+MQI tend to identify similar pieces at very small scales, but
at slightly larger scales a gap opens up between the red cloud and
the blue cloud. At those intermediate size scales, Metis+MQI is
finding lower conductance cuts than Local Spectral.
However, the Local Spectral algorithm returns pieces that are in-

ternally more compact. This is shown in the middle row of Figure 2
where for each of the (connected) pieces for which we plotted a
conductance in the top row, we are now plotting the average short-
est path length between random node pairs in that piece. In these
plots, we see that in the same size range where Metis+MQI is gen-
erating clearly lower conductance connected sets, Local Spectral is
generating pieces with clearly shorter internal paths, i.e., smaller
diameter sets. In other words, the Local Spectral pieces are more
“compact.” This effect is especially pronounced in the DBLP affil-



How to evaluate a CD algorithm?
n Assume a known community structure  X = {x1, x2, …, xI}
n An algorithm finds a community structure Y = {y1, y2, …, yJ}
n How close is Y to X? Note: |X| may be different from |Y|
n Several existing measures

q Purity
q Rand index
q Normalized Mutual Information (NMI)  [has been extended 

to overlapping communities]
n Additional reference:

q Generalized Measures for the Evaluation of Community Detection 
Methods, by Labatut (https://arxiv.org/abs/1303.5441)



AN EARLY COMMUNITY DETECTION 
ALGORITHM

Community structure in social and biological networks 
PNAS, 2002



Algorithm by Girvan & Newman
n Focus on edges that are most “between” 

communities
q Edge betweenness of an edge e : fraction of shortest 

paths between all pairs of vertices, which run through e
q Edges between communities are likely to have high edge 

betweenness centrality

n Idea of this algorithm
q Progressively remove edges having high betweenness 

centrality, to separate communities from one another



Algorithm by Girvan & Newman
n Focus on edges that are most “between” communities



Girvan-Newman algorithm
1. Compute betweenness centrality for all edges
2. Remove the edge with highest betweenness centrality
3. Re-compute betweenness centrality for all edges affected by 

the removal
4. Repeat steps 2 and 3 until no edges remain

What will be the output of this algorithm?  
NOT a single community structure (a set of communities)
Rather, this algorithm outputs many possible community 
structures. We have to choose one of the community structures.



What is a good community structure?
n Community structure of a graph is hierarchical, with 

smaller communities nested within larger ones



Dendrogram

4 relatively 
large 
communities

8 relatively 
small 
communities

n singleton 
communities

• Hierarchical community structure represented as a 
hierarchical clustering tree: dendrogram

• A “slice” through the tree at any level gives a certain 
community structure



What is a good community structure?
n At which level to slice the dendrogram?

q A few large communities, or many small communities?
q Often depends on the end application

n Need an objective function to measure the 
“goodness” of a community structure 



OBJECTIVE FUNCTIONS
FOR COMMUNITY DETECTION

Empirical Comparison of Algorithms for Network 
Community Detection, Leskovec et al., WWW 2010



Objective functions for CD
n Community or network cluster (recap)

q Typically a group of nodes having more and / or better 
interactions among its members, than between its 
members and the rest of the network

n Two criteria of interest for measuring how well a 
particular set S of nodes represents a community
q Number of edges among the nodes within S
q Number of edges between nodes in S and rest of network



Two types of objective functions
n Multi-criterion scores

q Consider both the criteria for measuring quality of set S of 
nodes

q Lower values of f(S) signify a more community-like set S
q Examples: expansion, internal density, cut ratio, 

conductance, …

n Single-criterion scores
q Consider only one of the criteria, usually the number of 

edges among the nodes within S
q Example: Modularity



Notations
n G = (V, E) is the network. 
n n = |V| = number of nodes
n m = |E| = number of edges
n d(u) = ku = degree of node u

n S: set of nodes
n ns = number of nodes in S
n ms = number of edges within S (both nodes in S)
n cs = number of edges on the boundary of S
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Figure 1: NCP plot (middle) of a small network (left). NCP of LiveJournal network computed using two different methods.

ent clustering algorithms and objective functions through various
notions of the NCP plot and other kinds of structural metrics of
clusters and how they depend/scale with the size of the cluster.
Moreover, the shape of the NCP is also interesting for a very

different reason. It gives us a powerful way to quantify and sum-
marize the large-scale community structure of networks. We [27,
26] found that the NCP behaves in a characteristic manner for a
range of large social and information networks: when plotted on
log-log scales, the NCP tends to have a universal “V” shape (Fig-
ure 1(right)). Up to a size scale of about 100 nodes, the NCP de-
creases, which means that the best-possible clusters are getting pro-
gressively better with the increasing size. The NCP then reaches
the minimum at around k = 100 and then gradually increases
again, which means that at larger size scales network communities
become less and less community-like. (This should be contrasted
with behavior for mesh-like networks, road networks, common net-
work generation models, and small commonly-studied networks,
for which the NCP is either flat or downward-sloping [27, 26].)
The shape of the NCP can be explained by an onion-like “nested
core-periphery” structure, where the network consists of a large
core (slightly denser and more expander-like than the full graph,
but which itself has a core-periphery structure) and a large number
of small very well-connected communities barely connected to the
core [27, 26]. In this context, it is important to understand the char-
acteristics of various community detection algorithms in order to
make sure that the shape of NCP is a property of the network rather
than an artifact of the approximation algorithm or the function that
formalizes the notion of a network community.

3. COMPARISON OF ALGORITHMS
We compare different clustering algorithms and heuristics. We

focus our analyses on two aspects. First, we are interested in the
quality of the clusters that various methods are able to find. Ba-
sically, we would like to understand how well algorithms perform
in terms of optimizing the notion of community quality (conduc-
tance in this case). Second, we are interested in quantifying the
structural properties of the clusters identified by the algorithms. As
we will see, there are fundamental tradeoffs in network commu-
nity detection—for a given objective function, approximation algo-
rithms are often biased in a sense that they consistently find clusters
with particular internal structure.
We break the experiments into two parts. First, we compare

two graph partitioning algorithms that are theoretically well under-
stood and are based on two very different approaches: a spectral-
based Local Spectral partitioning algorithm, and the flow-based
Metis+MQI. Then we consider several heuristic approaches to net-
work community detection that work well in practice.

3.1 Flow and spectral methods
In this section we compare the Local Spectral Partitioning algo-

rithm [2] with the flow-based Metis+MQI algorithm. The latter is a

surprisingly effective heuristic method for finding low-conductance
cuts, which consists of first using the fast graph bi-partitioning pro-
gram Metis [20] to split the graph into two equal-sized pieces, and
then running MQI, an exact flow-based technique [15, 23] for find-
ing the lowest conductance cut whose small side in contained in
one of the two half-graphs chosen by Metis.
Each of those two methods (Local Spectral and Metis+MQI) was

run repeatedly with randomization on each of our graphs, to pro-
duce a large collection of candidate clusters of various sizes, plus a
lower-envelope curve. The lower-envelope curves for the two algo-
rithms were the basis for the plotted NCP’s in the earlier paper [27].
In the current paper the lower-envelope curves for Local Spectral
and Metis+MQI are plotted respectively as a red line and a green
line in Figure 1(right), and as pairs of black lines in Figure 2(top)
and Figures 4 and 7. Note that the Metis+MQI curves are gener-
ally lower, indicating that this method is generally better than Local
Spectral at the nominal task of finding cuts with low conductance.
However, as we will demonstrate using the scatter plots of Fig-

ure 2, the clusters found by the Local Spectral Method often have
other virtues that compensate for their worse conductance scores.
As an extreme example, many of the raw Metis+MQI clusters are
internally disconnected, which seems like a very bad property for
an alleged community. By contrast, the Local Spectral Method al-
ways returns connected clusters. Acknowledging that this is a big
advantage for Local Spectral, we then modified the collections of
raw Metis+MQI clusters by splitting every internally disconnected
cluster into its various connected components. Then, in all scatter
plots of Figure 2, blue dots represent raw Local Spectral clusters,
which are internally connected, while red dots represent broken-up
Metis+MQI clusters, which are also internally connected.
Let us now consider the top row of scatter plots of Figure 2 which

compares the conductance scores (as a function of cluster size) of
the collections of clusters produced by the two algorithms. The
cloud of blue points (Local Spectral clusters) lies generally above
the cloud of red points (Metis+MQI clusters), again illustrating that
Local Spectral tends to be a weaker method for minimizing con-
ductance score. In more detail, we find that Local Spectral and
Metis+MQI tend to identify similar pieces at very small scales, but
at slightly larger scales a gap opens up between the red cloud and
the blue cloud. At those intermediate size scales, Metis+MQI is
finding lower conductance cuts than Local Spectral.
However, the Local Spectral algorithm returns pieces that are in-

ternally more compact. This is shown in the middle row of Figure 2
where for each of the (connected) pieces for which we plotted a
conductance in the top row, we are now plotting the average short-
est path length between random node pairs in that piece. In these
plots, we see that in the same size range where Metis+MQI is gen-
erating clearly lower conductance connected sets, Local Spectral is
generating pieces with clearly shorter internal paths, i.e., smaller
diameter sets. In other words, the Local Spectral pieces are more
“compact.” This effect is especially pronounced in the DBLP affil-



Expansion

n Number of edges per node in S, that points outside 
the set S

ns = number of nodes in S
ms = number of edges within S (both nodes in S)
cs = number of edges on the boundary of S



Internal density

n Internal edge density of the set S

ns = number of nodes in S
ms = number of edges within S (both nodes in S)
cs = number of edges on the boundary of S



Cut Ratio

n Fraction of all possible edges leaving the set S

ns = number of nodes in S
ms = number of edges within S (both nodes in S)
cs = number of edges on the boundary of S



Conductance

n Fraction of total edge volume of S that points 
outside the cluster

n Edge volume = sum of node-degrees

ns = number of nodes in S
ms = number of edges within S (both nodes in S)
cs = number of edges on the boundary of S



How to use these objective functions?
n These objective functions measure how good a 

subset of nodes is, as a community
n Given a community structure Y = {y1, y2, …, yJ}

q Use an objective function to measure goodness of every 
community (subset of nodes) yi

q Measure the goodness of Y as a function (e.g., weighted 
linear combination) of the goodness of all yi
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Figure 1: NCP plot (middle) of a small network (left). NCP of LiveJournal network computed using two different methods.

ent clustering algorithms and objective functions through various
notions of the NCP plot and other kinds of structural metrics of
clusters and how they depend/scale with the size of the cluster.
Moreover, the shape of the NCP is also interesting for a very

different reason. It gives us a powerful way to quantify and sum-
marize the large-scale community structure of networks. We [27,
26] found that the NCP behaves in a characteristic manner for a
range of large social and information networks: when plotted on
log-log scales, the NCP tends to have a universal “V” shape (Fig-
ure 1(right)). Up to a size scale of about 100 nodes, the NCP de-
creases, which means that the best-possible clusters are getting pro-
gressively better with the increasing size. The NCP then reaches
the minimum at around k = 100 and then gradually increases
again, which means that at larger size scales network communities
become less and less community-like. (This should be contrasted
with behavior for mesh-like networks, road networks, common net-
work generation models, and small commonly-studied networks,
for which the NCP is either flat or downward-sloping [27, 26].)
The shape of the NCP can be explained by an onion-like “nested
core-periphery” structure, where the network consists of a large
core (slightly denser and more expander-like than the full graph,
but which itself has a core-periphery structure) and a large number
of small very well-connected communities barely connected to the
core [27, 26]. In this context, it is important to understand the char-
acteristics of various community detection algorithms in order to
make sure that the shape of NCP is a property of the network rather
than an artifact of the approximation algorithm or the function that
formalizes the notion of a network community.

3. COMPARISON OF ALGORITHMS
We compare different clustering algorithms and heuristics. We

focus our analyses on two aspects. First, we are interested in the
quality of the clusters that various methods are able to find. Ba-
sically, we would like to understand how well algorithms perform
in terms of optimizing the notion of community quality (conduc-
tance in this case). Second, we are interested in quantifying the
structural properties of the clusters identified by the algorithms. As
we will see, there are fundamental tradeoffs in network commu-
nity detection—for a given objective function, approximation algo-
rithms are often biased in a sense that they consistently find clusters
with particular internal structure.
We break the experiments into two parts. First, we compare

two graph partitioning algorithms that are theoretically well under-
stood and are based on two very different approaches: a spectral-
based Local Spectral partitioning algorithm, and the flow-based
Metis+MQI. Then we consider several heuristic approaches to net-
work community detection that work well in practice.

3.1 Flow and spectral methods
In this section we compare the Local Spectral Partitioning algo-

rithm [2] with the flow-based Metis+MQI algorithm. The latter is a

surprisingly effective heuristic method for finding low-conductance
cuts, which consists of first using the fast graph bi-partitioning pro-
gram Metis [20] to split the graph into two equal-sized pieces, and
then running MQI, an exact flow-based technique [15, 23] for find-
ing the lowest conductance cut whose small side in contained in
one of the two half-graphs chosen by Metis.
Each of those two methods (Local Spectral and Metis+MQI) was

run repeatedly with randomization on each of our graphs, to pro-
duce a large collection of candidate clusters of various sizes, plus a
lower-envelope curve. The lower-envelope curves for the two algo-
rithms were the basis for the plotted NCP’s in the earlier paper [27].
In the current paper the lower-envelope curves for Local Spectral
and Metis+MQI are plotted respectively as a red line and a green
line in Figure 1(right), and as pairs of black lines in Figure 2(top)
and Figures 4 and 7. Note that the Metis+MQI curves are gener-
ally lower, indicating that this method is generally better than Local
Spectral at the nominal task of finding cuts with low conductance.
However, as we will demonstrate using the scatter plots of Fig-

ure 2, the clusters found by the Local Spectral Method often have
other virtues that compensate for their worse conductance scores.
As an extreme example, many of the raw Metis+MQI clusters are
internally disconnected, which seems like a very bad property for
an alleged community. By contrast, the Local Spectral Method al-
ways returns connected clusters. Acknowledging that this is a big
advantage for Local Spectral, we then modified the collections of
raw Metis+MQI clusters by splitting every internally disconnected
cluster into its various connected components. Then, in all scatter
plots of Figure 2, blue dots represent raw Local Spectral clusters,
which are internally connected, while red dots represent broken-up
Metis+MQI clusters, which are also internally connected.
Let us now consider the top row of scatter plots of Figure 2 which

compares the conductance scores (as a function of cluster size) of
the collections of clusters produced by the two algorithms. The
cloud of blue points (Local Spectral clusters) lies generally above
the cloud of red points (Metis+MQI clusters), again illustrating that
Local Spectral tends to be a weaker method for minimizing con-
ductance score. In more detail, we find that Local Spectral and
Metis+MQI tend to identify similar pieces at very small scales, but
at slightly larger scales a gap opens up between the red cloud and
the blue cloud. At those intermediate size scales, Metis+MQI is
finding lower conductance cuts than Local Spectral.
However, the Local Spectral algorithm returns pieces that are in-

ternally more compact. This is shown in the middle row of Figure 2
where for each of the (connected) pieces for which we plotted a
conductance in the top row, we are now plotting the average short-
est path length between random node pairs in that piece. In these
plots, we see that in the same size range where Metis+MQI is gen-
erating clearly lower conductance connected sets, Local Spectral is
generating pieces with clearly shorter internal paths, i.e., smaller
diameter sets. In other words, the Local Spectral pieces are more
“compact.” This effect is especially pronounced in the DBLP affil-



Modularity-based measures
n A set of nodes is a good community if the number 

of edges within the set is significantly more than 
what can be expected by random chance

n Modularity Q = 1/K * ( ms – E(ms) )

q Number of edges ms within set S, minus expected number 
of edges E(ms ) within the set S

q K is a constant, used for normalization



Expected number of edges
n Null model: Erdos-Renyi random network having 

the same node degree sequence as given network

n Randomized realization of a given network, realized 
in practice using Configuration Model
n Cut each edge of the given network into two half-edges or 

stubs
n Randomly connect each stub to any stub
n Expected to have no community structure



Definition of Modularity Q
n For two particular nodes i and j :

q Number of edges existing between the nodes: Aij
q Degrees: ki and kj
q Probability that a particular stub of node i connects to 

some stub of node j:  pij =  kj / 2m
q Expected number of links between i and j: ki kj /2m

n Do the nodes i and j have more edges than 
expected by random chance?

Aij – ki kj /2m



Q for a given community structure

n The delta function is 1 if both nodes i and j are in 
the same community (Ci = Cj), 0 otherwise

n Consider a network with two communities c1, c2
q Q is the fraction of edges within c1 or c2, minus the 

expected number of edges within c1 and c2 for a random 
graph with the same node degree sequence as the given 
network

n More details: “Modularity and community structure 
in networks” by Newman (PNAS 2006)



Using modularity for CD
n Approach 1: use Modularity to decide at which level 

to slice the dendrogram



Using modularity for CD
n Approach 1: use Modularity to decide at which level 

to slice the dendrogram

n Approach 2: Optimize for modularity itself
q Exhaustive maximization is NP-hard 
q Heuristics and approximations used
q Several algorithms have been developed for optimizing 

Modularity



Most popular Q optimization algorithm

n Louvain algorithm:
q https://perso.uclouvain.be/vincent.blondel/research/louvain.html

n Optimization in two steps
q Step 1: look for small communities - optimizing Q locally
q Step 2: aggregate nodes in the same community and 

build a new network whose nodes are the communities
q Repeat iteratively until a maximum of modularity is 

attained and a hierarchy of communities is produced
q Time: approx O(n log n)

https://perso.uclouvain.be/vincent.blondel/research/louvain.html


Additional reference
n Many subsequent works have suggested 

improvements for maximizing modularity

q Reducing time complexity

q Normalizing with number of edges to minimize bias 

towards larger communities

q …

n Read “Community detection in graphs” by 

Fortunato, Physics Reports, 2010.



CASE STUDY: DIFFERENT TYPES OF 
GROUPS IN A SOCIAL NETWORK

Deep Twitter Diving: Exploring Topical Groups in Microblogs at Scale, 
Bhattacharya et al., ACM CSCW 2014



Different methods to identify groups
n Identifying groups based on network structure –

community detection algorithms (what we have 
discussed till now)

n How about identifying groups in a social network 
based on content, e.g., text or profile attributes of 
users?



Identified topical groups in Twitter
Topical Groups = Experts + Seekers

Experts: Users who have expertise on the topic (List-based method
Seekers: Users who are interested in the topic (who follow several 

experts on a topic)

@BarackObama
Expert on Politics

@BarackObama
Seeker on Basketball



Identifying topical groups at scale
n Crawled data for first 38 million users in Twitter

n 88 Million lists, 1.5 Billion social links

n Identified 36 thousand topical groups



Diversity: Topics and Group Size



A Small Number of Very Popular Groups



Thousands of Specialized Niche Groups



Breaking the Twitter stereotype
n Twitter stereotype

q Popular news on few topics such as sports, entertainment, 
politics, technology

q Celebrity gossip, current news, and chatter

n Breaking the stereotype
q Majority of the population discuss few popular topics, but 
q Smaller groups interested in thousands of niche, 

specialized topics 



Detecting topical groups
n We followed content-based approach to identify 

topical groups

n Could community detection algorithms be used to 
detect topical groups?
q Applied BGLL / Louvain algorithm on the Twitter social 

network to identify communities
q Louvain largely unable to detect topical groups, especially 

the smaller ones (on niche topics)



Why do groups/communities form in 
a social network?
n “Common Identity and Bond Theory”

q Prentice et. al. “Asymmetries in Attachments to Groups 
and to Their Members: Distinguishing Between Common-
Identity and Common-Bond Groups”, Personality and 
Social Psychology Bulletin, 1994

n Identity based groups

n Bond based groups



Common Identity and Bond Theory

Identity Based Groups

Low Reciprocity
Low Personal Interactions

High Topicality of discussions

Bond Based Groups

High Reciprocity
High Personal Interactions

Low Topicality of discussions

Examples:
Fans at a football match, 
Attendees at a conference

Examples: 
Family, personal friends 



Detecting topical groups
n Louvain largely unable to detect topical groups, 

especially the smaller ones (on niche topics)

n Communities detected by Louvain fare better on 
structural measures like cut-ratio, conductance

n Topical groups do not have good structural quality
q Poor values for standard community quality metrics such 

as cut-ratio and conductance



Analysis of 50 topical groups
n Low reciprocity among members

n Few one-to-one interactions

n Most tweets posted by experts are related to topic

n à Topical groups are identity-based which are 
difficult to detect via community detection algorithms


