Programming and Data Structures Laboratory, 2018-19 Spring semester, Section 6

March 26, 2019: Tutorial and Assignment 8 (Dynamic memory allocation, Structures)

Tutorial (for practice)

Take two integers m and n as input from the user. Dynamically declare (i) a 2-D array of integers iarr, and (ii) a 2-D character array carr, both of dimension $m \mathrm{x}$ n. Print out the address of each element of each of the arrays. Understand how dynamically allocated arrays are stored in the computer memory.

Assignment (for evaluation - write on machine and submit to Moodle before end of class)

Note for all questions: You should use dynamically allocated arrays and local variables only, as specified by the questions. Using global variables will be severely penalized. Also, if a question asks to write a function, writing the whole code within main() will be penalized severely.

1. [20 marks] Define a structure student_info having two fields, an integer namlen and a character pointer name. Take an integer n as input through keyboard. Dynamically allocate an array of n structures of the above type. Each structure in that array will correspond to one of n students. For each student, first take the length of the name of the student as input through the keyboard. Store it in the namlen field of the corresponding structure. Then take the name of the student as input through the keyboard, and store it in a dynamically allocated array (of size namlen) pointed to by name. Finally, sort the student information alphabetically with respect to the names. Display the sorted sequence of names on the screen, with each name in a different line.
2. [20 marks] Take three integers m, n and p as inputs through the keyboard. Assume that $m, n, p<10$. Dynamically allocate two integer arrays A and B , of dimensions $\mathrm{m} \times \mathrm{n}$ and $\mathrm{n} \times \mathrm{p}$ respectively. Fill both arrays A and B by taking integer inputs through the keyboard. Print both matrices on the screen. Then write a function Mat-mul() to multiply the two matrices A and B with the following prototype:
```
int *Mat_mul(int *, int *, int, int, int);
```

After taking the matrices A and B as inputs, you call the function Mat-mul() exactly once with appropriate arguments. After the call returns, print the product of matrices A and B computed by Matmul() on the screen.

Sample input / output:
Enter m, n and p: 243
Enter elements of Matrix A:
Enter entry (1,1): 1
Enter entry (1,2): 3
Enter entry (1,3): -2
Enter entry (1,4): 4
Enter entry (2,1): 6
Enter entry (2,2): 0
Enter entry (2,3): 0
Enter entry (2,4): 9

Enter elements of Matrix B:
Enter entry (1,1): 0
Enter entry (1,2): -20
Enter entry (1,3): 2
Enter entry (2,1): 4
Enter entry (2,2): 9
Enter entry (2,3): 0
Enter entry (3,1): 0
Enter entry (3,2): -2
Enter entry (3,3): -3
Enter entry (4,1): -1
Enter entry (4,2): -12
Enter entry (4,3): 20

Matrix A:
13-24
6009

Matrix B:
0-20 2
490
$0-2-3$
$-1-1220$

Product Matrix:
8-3788
$-9-228192$

Submission instructions:
Submit one compressed file, named as <roll number>_A8.tar.gz or <roll number>_A8.zip
The compressed file should contain two source files:
<roll number>_A8_1.c, <roll number>_A8_2.c

