
Programming and Data Structures Laboratory, 2018-19 Spring semester, Section 6

March 26, 2019: Tutorial and Assignment 8 (Dynamic memory allocation, Structures)

Tutorial (for practice)

Take two integers m and n as input from the user. Dynamically declare (i) a 2-D array of integers iarr, and
(ii) a 2-D character array carr, both of dimension m x n. Print out the address of each element of each of the
arrays. Understand how dynamically allocated arrays are stored in the computer memory.

Assignment (for evaluation – write on machine and submit to Moodle before end of class)

Note for all questions: You should use dynamically allocated arrays and local variables only, as
specified by the questions. Using global variables will be severely penalized. Also, if a question asks to
write a function, writing the whole code within main() will be penalized severely.

1. [20 marks] Define a structure student_info having two fields, an integer namlen and a character pointer
name. Take an integer n as input through keyboard. Dynamically allocate an array of n structures of the
above type. Each structure in that array will correspond to one of n students. For each student, first take the
length of the name of the student as input through the keyboard. Store it in the namlen field of the
corresponding structure. Then take the name of the student as input through the keyboard, and store it in a
dynamically allocated array (of size namlen) pointed to by name. Finally, sort the student information
alphabetically with respect to the names. Display the sorted sequence of names on the screen, with each
name in a different line.

2. [20 marks] Take three integers m, n and p as inputs through the keyboard. Assume that m,n,p<10.
Dynamically allocate two integer arrays A and B, of dimensions m x n and n x p respectively. Fill both
arrays A and B by taking integer inputs through the keyboard. Print both matrices on the screen. Then write a
function Mat-mul() to multiply the two matrices A and B with the following prototype:

int *Mat_mul(int *, int *, int, int, int);

After taking the matrices A and B as inputs, you call the function Mat-mul() exactly once with
appropriate arguments. After the call returns, print the product of matrices A and B computed by Mat-
mul() on the screen.

Sample input / output:

Enter m, n and p: 2 4 3

Enter elements of Matrix A:

Enter entry (1,1): 1

Enter entry (1,2): 3

Enter entry (1,3): -2

Enter entry (1,4): 4

Enter entry (2,1): 6

Enter entry (2,2): 0

Enter entry (2,3): 0

Enter entry (2,4): 9

Enter elements of Matrix B:

Enter entry (1,1): 0

Enter entry (1,2): -20

Enter entry (1,3): 2

Enter entry (2,1): 4

Enter entry (2,2): 9

Enter entry (2,3): 0

Enter entry (3,1): 0

Enter entry (3,2): -2

Enter entry (3,3): -3

Enter entry (4,1): -1

Enter entry (4,2): -12

Enter entry (4,3): 20

Matrix A:

1 3 -2 4

6 0 0 9

Matrix B:

0 -20 2

4 9 0

0 -2 -3

-1 -12 20

Product Matrix:

8 -37 88

-9 -228 192

Submission instructions:

Submit one compressed file, named as <roll number>_A8.tar.gz or <roll number>_A8.zip

The compressed file should contain two source files:

<roll number>_A8_1.c, <roll number>_A8_2.c

