

Theory of Generalization – A brief introduction

In ML, we are given a training set (say, of size N). We consider a hypothesis set H = {h1, h2, …}. The
hypothesis set may be infinite as well, e.g., set of all lines in 2-d space.

We use a learning algorithm to select one hypothesis g from H, which we believe is the best one, i.e., its
error on the training set Ein(g) is the least. Note that selecting this ‘best’ hypothesis is analogous to learning
the optimal values of the parameters. You can think that the learning algorithm takes as input (i) the
training examples, and (ii) a hypothesis set, and gives as output the final hypothesis g having particular
values of parameters (see the following diagram).

Once we have learned a hypothesis, we will apply it on the unknown test set. Let Eout(g) be the error that
we get on the test set.

Now, there are two fundamental questions in ML:

(1) How how can we learn a good model, i.e., make Ein(g) ~ 0? – this is the ALGORITHMS part.
(2) Can we guarantee that error on an unknown test set Eout(g) will be close enough to Ein(g)? – this is

the THEORY part. This theory is known as THEORY OF GENERALIZATION.

We need to formalize one error being “close enough” to the other. Formally, we would like to be able to
say probability of { | Ein(g) – Eout(g) | > e } <= a small, finite quantity. The VC inequality provides such a
bound:

[|E (g) − E (g)| > ϵ] ≤ 2 mH(N) e− 2 ϵ2N

[|E (g) − E (g)| > ϵ] ≤ 4 mH(2N) e−
1
8 ϵ2N

⃝ AML

Points to note:
• The bound on the right-hand side is a function of e. The lesser we want e to be, we will have to pay

a higher price in terms of the training data size N. Also note that N appears on the right-hand side in
the exponential part. This implies that, if we want to reduce e, N has to increase exponentially.

• The other unfamiliar term on the right-hand side is a measure of the complexity (or power) of the
hypothesis set H. Let us understand this term in detail.

Let us assume we are given N points x1, x2, …, xN in the training set, and the input space X is the 2-d plane
(i.e., every point has only two features). For simplicity, let us consider a binary classification problem where
classes are -1 and +1.

A hypothesis is a function h: X à {-1, +1}. There may be infinite hypotheses.
We define a dichotomy to be a mapping of the given N points to one of the classes. Mathematically, we
have d: { x1, x2, …, xN } à {-1, +1}. There can be at most 2N dichotomies.

To get a measure of the complexity / power of a hypothesis set H, we ask the following question: For a
given hypothesis set H and N points, how many of the 2N dichotomies can H generate? More specifically, a
configuration of N points is any placement of the N points on the plane. If a hypothesis set H is able to
generate all dichotomies, then the following condition should hold - for some configuration of the N points,
H should be able to, for every possible assignment of +1 and -1 to the points (in that configuration),
perfectly partition the plane such that the positive points are separated from the negative points.

Note that the definition mentions ‘some configuration’, and not ‘any configuration’. In other words, the N
points can be placed as you like – you can configure the points such that you get the greatest number of
dichotomies using the given hypothesis set.

Let us assume any linear model (perceptron, linear SVM, etc.) and N = 3 points. All 8 dichotomies can be
achieved for N = 3 points. A bad choice will be to put all 3 points on a line, but we have the liberty of
placing the points as we want.

However, for N=4 points, not all 16 dichotomies can be generated by a linear model. Only 14 dichotomies
can be generated. If the points are assigned to -1 and +1 alternately, when considered in clockwise / anti-
clockwise order, then we get a dichotomy that no linear model can generate (see figure below).

This observation agrees with the intuition that linear models are not the most powerful. A more powerful
hypothesis set will be able to generate all 16 dichotomies for 4 points.

Going back to the VC inequality, the unfamiliar term on the right-hand side is actually a growth function to
count the most dichotomies that H can generate over N points:

Some terms for characterizing power of a hypothesis set

If a hypothesis set H can generate all 2N dichotomies for N points, we say that H shatters N points.

Breakpoint: if no data set of size k can be shattered by a hypothesis set H, then k is a breakpoint for H. E.g.,
for any linear model, k = 4.

VC dimension of a hypothesis set H is the largest value of N for which H can generate all 2N dichotomies
over N points (over some configuration of N points, not necessarily over any configuration of N points). The
VC dimension is 1 less than a breakpoint. VC dimension of any linear model is 3.

Key result which allows generalization

This key result distinguishes between a hypothesis set having no breakpoint, and a hypothesis set having
any break point:

Applying this result in the VC inequality: if we consider a hypothesis set having at least one break point, for
a large enough N, the negative exponential term on the right-hand side will far exceed the polynomial
term, and thus the right-hand side will ultimately be a small, finite quantity. Then we can argue that Eout(g)
will be sufficiently close to Ein(g) with high probability.

Practical applications of VC dimension

If a model has more parameters, its VC dimension will usually be higher. Actually, VC dimension depends
on the effective number of parameters of a hypothesis set. E.g., for SVM, we discussed that effective
number of parameters is much lesser than actual number of parameters.

If we select a complex hypothesis set (having many parameters), then its VC dimension is likely to be
higher, which implies that much larger training data would be needed to achieve the probability bound
P{ | Ein(g) – Eout(g) | > e. Hence, the hypothesis set should be chosen keeping in mind the amount of
training data available. If you have a relatively small amount of training data, then it is better to choose a
simple hypothesis set having low number of parameters.

Note that VC dimension cannot be used to guarantee performance of a hypothesis set. We cannot claim
things like “if one hypothesis set A has a lower VC dimension than another hypothesis set B, then A will
perform better than B”. VC dimension should only be used to argue about relative power of various
hypothesis sets, to select which hypothesis set to use for a given training set size, etc.

N

mH(N)= max
x1,··· ,xN∈X

|H(x1, · · · ,xN)|

mH(N) ≤ 2N

⃝ AML

=⇒ mH(N) = 2N

=⇒ mH(N) N

⃝ AML

