CS 60050 Machine Learning

Support Vector Machines

Some slides taken from course materials of Abu Mostafa

Intuition

- Consider a linearly separable dataset with 2 features
- Many possible separators. Each of the separators shown has 100% accuracy
- Which is the best?
 - In terms of generalization to unseen data?

Intuition

- Many possible separators. Which is the best?
- That one is best which is farthest away from all training points
- Margin: distance from the nearest data point to the separator
- Bigger margin is better \rightarrow better generalization to unknown data
- SVMs guarantee to find the separator with the biggest margin

Finding the decision boundary

- We want to find the decision boundary that not only classifies all the points correctly but also maximizes the margin
- Assume d-dimensional feature space
- Decision boundary in d-dimensional feature space: a (hyper)plane
- We assume data is linearly separable; the separating hyperplane will not touch any point

Notations

- Training set: (x^(j), y^(j)), j = 1, 2, ..., N,
 - Each x^(j) is a vector of d dimensions
 - $Each y^{(j)} = +1 \text{ or } -1$
- Separating plane: w^Tx = 0 (vector notation)
 - Vector w = (w₀, w₁, ..., w_d)
 - w_i are the parameters to learn
- Question: Which w maximizes the margin?

Two preliminary technicalities (to simplify the math)

- Let x_n be the nearest data point to the plane $w^T x = 0$
- (1) Multiplying all w's by any constant factor still gives the same plane. Hence we normalize w such that | w^Tx_n | = 1
 - This normalization does not reduce generality we are not missing any planes

Two preliminary technicalities (to simplify the math)

- Let x_n be the nearest data point to the plane $w^T x = 0$
- (1) Normalize w such that $| w^T x_n | = 1$
- (2) Pull out w₀, so that w = (w₁, ..., w_d). Insert constant
 b= w₀ x₀.
 - Remember: data points are of d dimensions $x_1, x_2, ..., x_d$. x_0 is a dummy dimension added by us
- Plane is now $w^T x + b = 0$, normalized such that $|w^T x_n + b| = 1$

Computing the margin

The distance between \mathbf{x}_n and the plane $\mathbf{w}^{\mathsf{T}}\mathbf{x} + b = 0$ where $|\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b| = 1$

Computing the margin

Proposition: The vector w is orthogonal to the plane in the X space

Computing the margin

Proposition: The vector w is orthogonal to the plane in the X space

Take any two points x' and x'' on the plane.

$$w^{T}x' + b = 0$$
 and $w^{T}x'' + b = 0$
=> $w^{T}(x' - x'') = 0$

Hence w is orthogonal to any vector that lies on the plane => w is orthogonal to the plane

Margin: distance between x_n and the plane

Take any point ${f x}$ on the plane

Projection of $\mathbf{x}_n - \mathbf{x}$ on \mathbf{W} (direction orthogonal to the plane)

$$\hat{\mathbf{w}} = \frac{\mathbf{w}}{\|\mathbf{w}\|} \implies \text{distance} = \left|\hat{\mathbf{w}}^{\mathsf{T}}(\mathbf{x}_n - \mathbf{x})\right|$$

Projection of the vector $x_n - x$ along w computed by taking the vector product of $x_n - x$ with the unit vector in the direction of w

||w|| is the norm of w

Margin: distance between x_n and the plane

distance
$$= \frac{1}{\|\mathbf{w}\|} |\mathbf{w}^{\mathsf{T}} \mathbf{x}_n - \mathbf{w}^{\mathsf{T}} \mathbf{x}| =$$

$$\frac{1}{\|\mathbf{w}\|} |\mathbf{w}^{\mathsf{T}} \mathbf{x}_n + b - \mathbf{w}^{\mathsf{T}} \mathbf{x} - b| = \frac{1}{\|\mathbf{w}\|}$$

 $w^{T}x + b$ is the equation of the plane at a point x on the plane. Hence 0.

 $| w^T x_n + b | = 1$ for the nearest point x_n (due to our normalization)

The optimization problem

The optimization problem

This optimization problem is too complex, because of

- (i) the norm in the objective function, and
- (ii) the minimum term in the constraints

Can we find an equivalent optimization problem that is easier to tackle?

Simplifying the optimization problem

Maximizing 1 / ||w||

Equivalent to

Minimizing $(w^T w)$

Simplifying the optimization problem

Maximize
$$\frac{1}{\|\mathbf{w}\|}$$

subject to $\min_{n=1,2,...,N} |\mathbf{w}^{\mathsf{T}} \mathbf{x}_n + b| = 1$

Notice:
$$|\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b| = y_n (\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b)$$

(assuming all points are classified correctly)

The geometry

The geometry

Equivalent optimization problem

Maximize
$$\frac{1}{\|\mathbf{w}\|}$$

subject to $\min_{n=1,2,...,N} |\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b| = 1$
Notice: $|\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b| = y_n (\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b)$
Minimize $\frac{1}{2} \mathbf{w}^{\mathsf{T}}\mathbf{w}$
subject to $y_n (\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b) \ge 1$ for $n = 1, 2, ..., N$

Final optimization problem

Minimize
$$\frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w}$$

subject to $y_n (\mathbf{w}^{\mathsf{T}} \mathbf{x}_n + b) \ge 1$ for $n = 1, 2, ..., N$
 $\mathbf{w} \in \mathbb{R}^d, \ b \in \mathbb{R}$

Solving the optimization problem

Solving the optimization

Minimize $\frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w}$ subject to $y_n (\mathbf{w}^{\mathsf{T}} \mathbf{x}_n + b) \ge 1$ for n = 1, 2, ..., N $\mathbf{w} \in \mathbb{R}^d, \ b \in \mathbb{R}$

A way of solving constrained optimization problems: take the Lagrangian formulation of the problem

One issue: constraints are inequality constraints - handled by KKT conditions (due to Karush and Kuhn-Tucker)

Details out of scope of this course

Towards Lagrange formulation

For each constraint, consider a 'slack' quantity: difference between the left hand side and right hand side of the constraint

The slack quantities will be multiplied by 'Lagrange multipliers' α_n and will be made part of the objective function

Details out of scope of this course

Lagrange formulation

Note: we have one Lagrange multiplier for each of the n data points

Lagrange formulation

Minimize
$$\mathcal{L}(\mathbf{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} - \sum_{n=1}^{N} \alpha_n (y_n (\mathbf{w}^{\mathsf{T}} \mathbf{x}_n + b) - 1)$$

w.r.t. w and b and maximize w.r.t. each $lpha_n \geq 0$

Let us consider the unconstrained case:

$$\nabla_{\mathbf{w}} \mathcal{L} = \mathbf{w} - \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n = \mathbf{0}$$
 Vector differentiation
$$\frac{\partial \mathcal{L}}{\partial b} = -\sum_{n=1}^{N} \alpha_n y_n = \mathbf{0}$$
 Scalar differentiation

Lagrange formulation

Minimize
$$\mathcal{L}(\mathbf{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} - \sum_{n=1}^{N} \alpha_n (y_n (\mathbf{w}^{\mathsf{T}} \mathbf{x}_n + b) - 1)$$

w.r.t. w and b and maximize w.r.t. each $lpha_n \geq 0$

Substituting

We get

$$\mathcal{L}(\boldsymbol{\alpha}) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} y_n y_m \ \alpha_n \alpha_m \ \mathbf{x}_n^{\mathsf{T}} \mathbf{x}_m$$

Explaining the Lagrange formulation

$$\begin{aligned} \mathcal{L}(w,b,d) &= \frac{1}{2} w^{T}w - \sum_{n=1}^{N} \alpha_{n} \left(y_{n} \left(w^{T}x_{n}+b \right) -1 \right) \\ &= \frac{1}{2} w^{T}w + \sum_{m=1}^{N} \alpha_{n} - \frac{N}{m} \alpha_{n} y_{n} x_{n} w^{T} - \sum_{m=1}^{N} b \alpha_{m} y_{n} \\ &= \sum_{m=1}^{N} \alpha_{n} - b \sum_{m=1}^{N} \alpha_{m} y_{n} + \frac{1}{2} w^{T}w - \sum_{m=1}^{N} \alpha_{m} y_{n} x_{n} w^{T} \\ &\text{Since } \sum_{m=1}^{N} \alpha_{n} y_{m} = 0, \text{ second term vanishes} \\ &\text{Since } w = \sum_{m=1}^{N} \alpha_{m} y_{n} x_{n}, \text{ the last term} \\ &\text{ as actually equivalent to } w^{T}w \\ &\text{Hence we get} \end{aligned}$$

$$= \sum_{m=1}^{N} \alpha_{n} - \frac{1}{2} w^{T}w \\ &\text{Again substituting } w = \sum_{n=1}^{N} \alpha_{n} y_{n} x_{n}, \end{aligned}$$

Final constrained optimization

$$\mathcal{L}(\boldsymbol{\alpha}) = \sum_{n=1}^{N} \boldsymbol{\alpha}_{n} - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} y_{n} y_{m} \ \boldsymbol{\alpha}_{n} \boldsymbol{\alpha}_{m} \mathbf{x}_{n}^{\mathsf{T}} \mathbf{x}_{m}$$

Maximize w.r.t. to lpha subject to

$$lpha_n \geq 0$$
 for $n=1,\cdots,N$ and $\sum_{n=1}^N lpha_n y_n = 0$

Can be solved by Quadratic Programming, which gives us

$$\boldsymbol{\alpha} = \alpha_1, \cdots, \alpha_N$$

Details out of scope of this course

The solution

Solution:
$$\boldsymbol{\alpha} = \alpha_1, \cdots, \alpha_N$$

 $\implies \mathbf{w} = \sum_{n=1}^N \alpha_n y_n \mathbf{x}_n$
KKT condition: For $n = 1, \cdots, N$
 $\alpha_n (y_n (\mathbf{w}^{\mathsf{T}} \mathbf{x}_n + b) - 1) = 0$
slack

For each data point x_n : Either the slack is zero, or the Lagrange multiplier α_n is zero

 α 's for most points will be zero, only for few points α will be positive

$$lpha_n > 0 \implies \mathbf{x}_n$$
 is a support vector

Support vectors

Closest \mathbf{x}_n 's to the plane: achieve the margin

$$\implies y_n(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n+b)=1$$

$$\mathbf{w} = \sum_{\mathbf{x}_n \text{ is SV}} \alpha_n y_n \mathbf{x}_n$$

Solve for b using any SV:

 $y_n\left(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n+b\right)=1$

Hypothesis $g(x) = sign(w^Tx + b)$

Advantage of SVM

- When we started, the number of parameters was the number of components of w vector
- Now, we see the effective number of parameters is the number of SVs, which is much smaller (since most α's are zero)
- SVMs known to perform well over many types of data

Extension of SVMs

- Till now, we considered linearly separable data
 - What we discussed is called "Hard margin SVM"
- What if the data is slightly non-linearly separable?
 - A variant called "Soft margin SVM"
 - Allows for few misclassifications (suitably penalized) in order to achieve large margin
- What if the data is highly non-linearly separable (complex decision boundary)?
 - We go for non-linear transforms

Non-linear transforms

Used when the data is non-linearly separable in the feature space

Nonlinear transforms

Non-linearly separable in original feature space

Linearly separable in some other space (usually higher dimensional)

Nonlinear transforms

- Points transformed from X-space to Z-space
- Optimization problem formulated in Z-space

$$\mathcal{L}(\boldsymbol{\alpha}) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} y_n y_m \alpha_n \alpha_m \mathbf{z}_n^{\mathsf{T}} \mathbf{z}_m$$

- SVs found in Z-space (different Z-spaces can give different SVs)
- Complexity of optimization problem is independent of dimension of Z-space, only depends on number of points (N)

$$\mathcal{L}(\boldsymbol{\alpha}) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} y_n y_m \alpha_n \alpha_m \mathbf{z}_n^{\mathsf{T}} \mathbf{z}_m$$

Constraints: $\alpha_n \ge 0$ for $n = 1, \cdots, N$ and $\sum_{n=1}^N \alpha_n y_n = 0$

$$g(\mathbf{x}) = \operatorname{sign}\left(\mathbf{w}^{\mathsf{T}}\mathbf{z} + b\right)$$

where
$$\mathbf{w} = \sum_{\mathbf{z}_n \text{ is SV}} \alpha_n y_n \mathbf{z}_n$$

and b : $y_m (\mathbf{w}^{\mathsf{T}} \mathbf{z}_m + b) = 1$

$$\mathcal{L}(\boldsymbol{\alpha}) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} y_n y_m \alpha_n \alpha_m \mathbf{z}_n^{\mathsf{T}} \mathbf{z}_m$$

Constraints:
$$\alpha_n \ge 0$$
 for $n = 1, \cdots, N$ and $\sum_{n=1}^N \alpha_n y_n = 0$

$$g(\mathbf{x}) = \operatorname{sign}\left(\mathbf{w}^{\mathsf{T}}\mathbf{z} + b\right)$$

where
$$\mathbf{w} = \sum_{\mathbf{z}_n \text{ is SV}} \alpha_n y_n \mathbf{z}_n$$

and b: $y_m (\mathbf{w}^{\mathsf{T}} \mathbf{z}_m + b) = 1$

need
$$\mathbf{z}_n^{\mathsf{T}}\mathbf{z}$$

$$\mathcal{L}(\boldsymbol{\alpha}) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} y_n y_m \alpha_n \alpha_m \mathbf{z}_n^{\mathsf{T}} \mathbf{z}_m$$

Constraints:
$$\alpha_n \ge 0$$
 for $n = 1, \cdots, N$ and $\sum_{n=1}^N \alpha_n y_n = 0$

$$g(\mathbf{x}) = \operatorname{sign}\left(\mathbf{w}^{\mathsf{T}}\mathbf{z} + b\right)$$

need
$$\mathbf{z}_n^{\mathsf{T}} \mathbf{z}$$

where
$$\mathbf{w} = \sum_{\mathbf{z}_n \text{ is SV}} \alpha_n y_n \mathbf{z}_n$$

and b: $y_m (\mathbf{w}^{\mathsf{T}} \mathbf{z}_m + b) = 1$

need
$$\mathbf{z}_n^{\mathsf{T}} \mathbf{z}_m$$

$$\mathcal{L}(\boldsymbol{\alpha}) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} y_n y_m \alpha_n \alpha_m \mathbf{z}_n^{\mathsf{T}} \mathbf{z}_m$$

Constraints:
$$\alpha_n \ge 0$$
 for $n = 1, \cdots, N$ and $\sum_{n=1}^N \alpha_n y_n = 0$

$$g(\mathbf{x}) = \operatorname{sign} (\mathbf{w}^{\mathsf{T}} \mathbf{z} + b) \qquad \text{need } \mathbf{z}_{n}^{\mathsf{T}} \mathbf{z}$$
where $\mathbf{w} = \sum_{\mathbf{z}_{n} \text{ is } \mathsf{SV}} \alpha_{n} y_{n} \mathbf{z}_{n}$
and $b: \quad y_{m} (\mathbf{w}^{\mathsf{T}} \mathbf{z}_{m} + b) = 1 \qquad \text{need } \mathbf{z}_{n}^{\mathsf{T}} \mathbf{z}_{m}$

Need only inner products of vectors in the Z-space

Inner products in Z-space

- Given two vectors x and x' (in original feature space)
- Which is easier:
 - Getting the transformed vectors z and z' in Z-space
 - Getting the inner product of z and z'

• Can we compute inner products in Z-space without transforming vectors to Z-space?

Kernel function

- A kernel function is a function of x and x', such that the value K(x, x') is an inner product of two vectors in some Z-space
- Given two points $x, x' \in X, z^T z' = K(x, x')$
- Allows computation of the inner product of transformed vectors in the Z-space, without needing to transform the vectors to the Z-space

Kernel function: an example

Assume original feature space X has two dimensions

$$x = (x_1, x_2)$$

 $x' = (x_1', x_2')$

Consider the following function:
Consider
$$K(\mathbf{x}, \mathbf{x}') = (1 + \mathbf{x}^{\mathsf{T}} \mathbf{x}')^2 = (1 + x_1 x'_1 + x_2 x'_2)^2$$

 $= 1 + x_1^2 x'_1^2 + x_2^2 x'_2^2 + 2x_1 x'_1 + 2x_2 x'_2 + 2x_1 x'_1 x_2 x'_2$

Is K a kernel function?

Yes, K is a kernel function

Consider
$$K(\mathbf{x}, \mathbf{x}') = (1 + \mathbf{x}^{\mathsf{T}} \mathbf{x}')^2 = (1 + x_1 x'_1 + x_2 x'_2)^2$$

= $1 + x_1^2 x'_1^2 + x_2^2 x'_2^2 + 2x_1 x'_1 + 2x_2 x'_2 + 2x_1 x'_1 x_2 x'_2$

This is an inner product!

$$x \rightarrow z = (1, x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1x_2)$$

 $x' \rightarrow z' = (1, x'_1^2, x'_2^2, \sqrt{2}x'_1, \sqrt{2}x'_2, \sqrt{2}x'_1x'_2)$

What functions are valid kernel functions?

- For a function to be a valid kernel function, it has to obey several properties
 - Be continuous
 - Be symmetric
 - Obey Mercer's condition
- You can design your own kernel, provided it satisfies the conditions

Several well-known kernels exist

- Polynomial kernel: $K(x, z) = (1 + x^T z)^d$
 - d=1 gives linear kernel
 - d=2 gives quadratic kernel
- Radial Basis Function (RBF) kernel

$$K(\vec{x}, \vec{z}) = e^{-(\vec{x} - \vec{z})^2/(2\sigma^2)}$$

Note: In this particular slide, x and z are vectors in the original feature space (this is different from the rest of the slides, where the symbol z has been used to denote the transformation of x to the Z-space)

Summary: The kernel trick

- Helps to perform the classification in a highdimensional space (as compared to original feature space)
 - Advantage: data may be linearly separable (or at least, easier to separate) in a high-dimensional space
 - Need not pay much of a price in terms of computational complexity, since we do not have to actually transform the vectors to the high-dimensional space
- Z-space can be very high dimensional, even of infinite dimensions (e.g., for the RBF kernels)

THANK YOU

Questions can be mailed to Dr. S. Ghosh (saptarshi@cse.iitkgp.ac.in)