
CS 60050
Machine Learning

Support Vector Machines

Some slides taken from course materials of Abu Mostafa

Intuition

• Consider a linearly separable dataset with 2 features
• Many possible separators. Each of the separators shown has

100% accuracy

• Which is the best?
– In terms of generalization to unseen data?

Intuition

• Many possible separators. Which is the best?
• That one is best which is farthest away from all training points

• Margin: distance from the nearest data point to the separator
• Bigger margin is better à better generalization to unknown data
• SVMs guarantee to find the separator with the biggest margin

Finding the decision boundary

• We want to find the decision boundary that not only
classifies all the points correctly but also maximizes
the margin

• Assume d-dimensional feature space
• Decision boundary in d-dimensional feature space: a

(hyper)plane
• We assume data is linearly separable; the separating

hyperplane will not touch any point

Notations
• Training set: (x(j), y(j)), j = 1, 2, …, N,
– Each x(j) is a vector of d dimensions
– Each y(j) = +1 or -1

• Separating plane: wTx = 0 (vector notation)
– Vector w = (w0, w1, …, wd)
– wj are the parameters to learn

• Question: Which w maximizes the margin?

Two preliminary technicalities
(to simplify the math)

• Let xn be the nearest data point to the plane wTx = 0

• (1) Multiplying all w’s by any constant factor still
gives the same plane. Hence we normalize w such
that | wTxn | = 1
– This normalization does not reduce generality – we are not

missing any planes

• Let xn be the nearest data point to the plane wTx = 0
• (1) Normalize w such that | wTxn | = 1

• (2) Pull out w0, so that w = (w1, …, wd). Insert constant
b= w0 x0.
– Remember: data points are of d dimensions x1, x2, …, xd.

x0 is a dummy dimension added by us

• Plane is now wTx + b = 0, normalized such that | wTxn + b| = 1

Two preliminary technicalities
(to simplify the math)

Computing the margin

Computing the margin

Proposition:
The vector w is orthogonal to
the plane in the X space

Computing the margin

Proposition:
The vector w is orthogonal to
the plane in the X space

Take any two points x’ and x’’ on
the plane.

wTx’ + b = 0 and wTx’’ + b = 0
=> wT (x’ – x’’) = 0

Hence w is orthogonal to any vector that lies on the
plane => w is orthogonal to the plane

Margin: distance between xn and the plane

(direction orthogonal to the plane)

Projection of the vector xn – x along w
computed by taking the vector
product of xn – x with the unit vector
in the direction of w

||w|| is the norm of w

wTx + b is the equation of the plane at a
point x on the plane. Hence 0.

| wTxn + b | = 1 for the nearest point xn
(due to our normalization)

Margin: distance between xn and the plane

The optimization problem

The optimization problem

This optimization problem is too complex, because of
(i) the norm in the objective function, and
(ii) the minimum term in the constraints

Can we find an equivalent optimization problem that is easier
to tackle?

Simplifying the optimization problem

Maximizing 1 / ||w||

Equivalent to

Minimizing (wT w)

(assuming all points are classified correctly)

Simplifying the optimization problem

The geometry

11

corresponding to constraints that hold with equality, gi(w) = 0). Consider
the figure below, in which a maximum margin separating hyperplane is shown
by the solid line.

The points with the smallest margins are exactly the ones closest to the
decision boundary; here, these are the three points (one negative and two pos-
itive examples) that lie on the dashed lines parallel to the decision boundary.
Thus, only three of the αi’s—namely, the ones corresponding to these three
training examples—will be non-zero at the optimal solution to our optimiza-
tion problem. These three points are called the support vectors in this
problem. The fact that the number of support vectors can be much smaller
than the size the training set will be useful later.

Let’s move on. Looking ahead, as we develop the dual form of the prob-
lem, one key idea to watch out for is that we’ll try to write our algorithm
in terms of only the inner product ⟨x(i), x(j)⟩ (think of this as (x(i))Tx(j))
between points in the input feature space. The fact that we can express our
algorithm in terms of these inner products will be key when we apply the
kernel trick.

When we construct the Lagrangian for our optimization problem we have:

L(w, b,α) =
1

2
||w||2 −

m
∑

i=1

αi

[

y(i)(wTx(i) + b)− 1
]

. (8)

Note that there’re only “αi” but no “βi” Lagrange multipliers, since the
problem has only inequality constraints.

Let’s find the dual form of the problem. To do so, we need to first
minimize L(w, b,α) with respect to w and b (for fixed α), to get θD, which

For any point on this side of
the separating plane:
yn = +1
wTxn + b > 0

For the two points nearest
to the plane: wTxn + b = 1
For the further points:
wTxn + b > 1

For any point on this side of
the separating plane:
yn = -1
wTxn + b < 0

For the point nearest to the
plane: wTxn + b = -1
For the further points:
wTxn + b < -1

The geometry

11

corresponding to constraints that hold with equality, gi(w) = 0). Consider
the figure below, in which a maximum margin separating hyperplane is shown
by the solid line.

The points with the smallest margins are exactly the ones closest to the
decision boundary; here, these are the three points (one negative and two pos-
itive examples) that lie on the dashed lines parallel to the decision boundary.
Thus, only three of the αi’s—namely, the ones corresponding to these three
training examples—will be non-zero at the optimal solution to our optimiza-
tion problem. These three points are called the support vectors in this
problem. The fact that the number of support vectors can be much smaller
than the size the training set will be useful later.

Let’s move on. Looking ahead, as we develop the dual form of the prob-
lem, one key idea to watch out for is that we’ll try to write our algorithm
in terms of only the inner product ⟨x(i), x(j)⟩ (think of this as (x(i))Tx(j))
between points in the input feature space. The fact that we can express our
algorithm in terms of these inner products will be key when we apply the
kernel trick.

When we construct the Lagrangian for our optimization problem we have:

L(w, b,α) =
1

2
||w||2 −

m
∑

i=1

αi

[

y(i)(wTx(i) + b)− 1
]

. (8)

Note that there’re only “αi” but no “βi” Lagrange multipliers, since the
problem has only inequality constraints.

Let’s find the dual form of the problem. To do so, we need to first
minimize L(w, b,α) with respect to w and b (for fixed α), to get θD, which

For any point on this side of
the separating plane:
yn = +1
wTxn + b > 0

For the two points nearest
to the plane: wTxn + b = 1
For the further points:
wTxn + b > 1

For any point on this side of
the separating plane:
yn = -1
wTxn + b < 0

For the point nearest to the
plane: wTxn + b = -1
For the further points:
wTxn + b < -1

Equivalent optimization problem

Final optimization problem

Solving the optimization problem

Solving the optimization

A way of solving constrained optimization problems: take the
Lagrangian formulation of the problem

One issue: constraints are inequality constraints - handled by KKT
conditions (due to Karush and Kuhn-Tucker)

Details out of scope of this course

Towards Lagrange formulation

For each constraint, consider a ‘slack’ quantity: difference
between the left hand side and right hand side of the constraint

The slack quantities will be multiplied by ‘Lagrange multipliers’ ⍺n
and will be made part of the objective function

Details out of scope of this course

Lagrange formulation

Note: we have one Lagrange multiplier for each of the n data points

slack

Lagrange formulation

Let us consider the unconstrained case:

Vector differentiation

Scalar differentiation

Lagrange formulation

Substituting

We get

Explaining
the

Lagrange
formulation

Final constrained optimization

Can be solved by Quadratic Programming, which gives us

Details out of scope of this course

The solution

For each data point xn :
Either the slack is zero, or
the Lagrange multiplier ⍺n
is zero

⍺’s for most points will be
zero, only for few points ⍺
will be positive

slack

Support vectors

Hypothesis g(x) = sign(wTx + b)

Support
Vectors

Advantage of SVM

• When we started, the number of parameters was the
number of components of w vector

• Now, we see - the effective number of parameters is
the number of SVs, which is much smaller (since
most ⍺’s are zero)

• SVMs known to perform well over many types of
data

Extension of SVMs

• Till now, we considered linearly separable data
– What we discussed is called “Hard margin SVM”

• What if the data is slightly non-linearly separable?
– A variant called “Soft margin SVM”
– Allows for few misclassifications (suitably penalized) in

order to achieve large margin

• What if the data is highly non-linearly separable
(complex decision boundary)?
– We go for non-linear transforms

Non-linear transforms

Used when the data is non-linearly
separable in the feature space

Nonlinear transforms

Non-linearly separable in
original feature space

Linearly separable in some
other space (usually higher
dimensional)

Nonlinear transforms
• Points transformed from X-space to Z-space
• Optimization problem formulated in Z-space

• SVs found in Z-space (different Z-spaces can give
different SVs)

• Complexity of optimization problem is independent of
dimension of Z-space, only depends on number of
points (N)

What do we need from the Z-space?

What do we need from the Z-space?

What do we need from the Z-space?

What do we need from the Z-space?

Need only inner products of vectors in the Z-space

Inner products in Z-space

• Given two vectors x and x’ (in original feature space)

• Which is easier:
– Getting the transformed vectors z and z’ in Z-space
– Getting the inner product of z and z’

• Can we compute inner products in Z-space without
transforming vectors to Z-space?

Kernel function

• A kernel function is a function of x and x’, such that
the value K(x, x’) is an inner product of two vectors in
some Z-space

• Given two points x, x’ ε X, zTz’ = K(x, x’)

• Allows computation of the inner product of
transformed vectors in the Z-space, without needing
to transform the vectors to the Z-space

Kernel function: an example
Assume original feature space X has two dimensions

x = (x1, x2)
x’ = (x1’ , x2’)

Consider the following function:

Is K a kernel function?

Yes, K is a kernel function

x à z =

x’ à z’ =

What functions are valid kernel functions?

• For a function to be a valid kernel function, it has to
obey several properties
– Be continuous
– Be symmetric
– Obey Mercer’s condition

• You can design your own kernel, provided it satisfies
the conditions

Details out of scope of this course

Several well-known kernels exist

• Polynomial kernel: K(x, z) = (1 + xTz)d

– d=1 gives linear kernel
– d=2 gives quadratic kernel

• Radial Basis Function (RBF) kernel

Online edition (c)�2009 Cambridge UP

15.2 Extensions to the SVM model 333

x⃗T⃗z)d. The case of d = 1 is a linear kernel, which is what we had before the
start of this section (the constant 1 just changing the threshold). The case of
d = 2 gives a quadratic kernel, and is very commonly used. We illustrated
the quadratic kernel in Example 15.2.

The most common form of radial basis function is a Gaussian distribution,
calculated as:

K(x⃗, z⃗) = e−(x⃗−z⃗)2/(2σ2)(15.16)

A radial basis function (rbf) is equivalent to mapping the data into an infi-
nite dimensional Hilbert space, and so we cannot illustrate the radial basis
function concretely, as we did a quadratic kernel. Beyond these two families,
there has been interesting work developing other kernels, some of which is
promising for text applications. In particular, there has been investigation of
string kernels (see Section 15.5).

The world of SVMs comes with its own language, which is rather different
from the language otherwise used in machine learning. The terminology
does have deep roots in mathematics, but it’s important not to be too awed
by that terminology. Really, we are talking about some quite simple things. A
polynomial kernel allows us to model feature conjunctions (up to the order of
the polynomial). That is, if we want to be able to model occurrences of pairs
of words, which give distinctive information about topic classification, not
given by the individual words alone, like perhaps operating AND system or
ethnic AND cleansing, then we need to use a quadratic kernel. If occurrences
of triples of words give distinctive information, then we need to use a cubic
kernel. Simultaneously you also get the powers of the basic features – for
most text applications, that probably isn’t useful, but just comes along with
the math and hopefully doesn’t do harm. A radial basis function allows you
to have features that pick out circles (hyperspheres) – although the decision
boundaries become much more complex as multiple such features interact. A
string kernel lets you have features that are character subsequences of terms.
All of these are straightforward notions which have also been used in many
other places under different names.

15.2.4 Experimental results

We presented results in Section 13.6 showing that an SVM is a very effec-
tive text classifier. The results of Dumais et al. (1998) given in Table 13.9
show SVMs clearly performing the best. This was one of several pieces of
work from this time that established the strong reputation of SVMs for text
classification. Another pioneering work on scaling and evaluating SVMs
for text classification was (Joachims 1998). We present some of his results

Note: In this particular slide, x and z are vectors in the original feature space
(this is different from the rest of the slides, where the symbol z has been used
to denote the transformation of x to the Z-space)

Summary: The kernel trick
• Helps to perform the classification in a high-

dimensional space (as compared to original feature
space)
– Advantage: data may be linearly separable (or at least,

easier to separate) in a high-dimensional space
– Need not pay much of a price in terms of computational

complexity, since we do not have to actually transform the
vectors to the high-dimensional space

• Z-space can be very high dimensional, even of
infinite dimensions (e.g., for the RBF kernels)

THANK YOU

Questions can be mailed to Dr. S. Ghosh (saptarshi@cse.iitkgp.ac.in)

