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Word Embeddings
An Application of Neural Networks

Some slides taken from various presentations available on the Web



How to represent a word

• Vocabulary: set of distinct words in a text collection
• Consider a vocabulary of size V
• How to represent each word? 
• Simple representation:

• One-hot representation: a vector of size V, with one 1 and rest zeroes
• Words can be arranged in some order, e.g., alphabetically

dog  

cat

person

[1 0 0 0 0 0 0 0 0 0 ]

[0 1 0 0 0 0 0 0 0 0 ]

[0 0 1 0 0 0 0 0 0 0 ]

1

2

3



Problem of One-Hot representation
• High dimensionality

E.g.) For Google News, V = 13M words

• Very sparse: Only 1 non-zero value
• Many operations are difficult on such sparse vectors

• Shallow representation
motel = [0 0 0 0 0 0 1 0 0 0 0 0 0 0 0] AND
hotel =  [0 0 0 0 1 0 0 0 0 0 0 0 0 0 0]  = 0
• Distance between any two words always the same
• One-hot representations do not capture any semantics



Word embeddings

• A learned representation for text where 
• Every word represented by a low-dimensional vector
• Words that have the same meaning, have a similar representation

• Representations of similar words (e.g., ‘motel’ and ‘hotel’) would 
be similar (will have similar values in every dimension) 

motel = [1.3, -1.4] and hotel = [1.2, -1.5]

• Typical number of dimensions: 300



Word2vec

• word2vec is not a single algorithm
• A software package for representing words as vectors

• Two distinct models
• Continuous bag of words (CBoW)
• Skip-Gram

• Various training methods
• Negative Sampling
• Hierarchical Softmax

• A rich preprocessing pipeline
• Dynamic Context Windows
• Subsampling
• Deleting Rare Words

We will focus on the 
Skip-Gram model



Embeddings capture relational meaning of words

vector(‘king’) - vector(‘man’) + vector(‘woman’)  ≈ vector(‘queen’)

Slide by Dan Jurafsky

What we are seeing:

A projection of the  
300-dimensional      
vector space into 2  
dimensions 
(e.g., using PCA)



Embeddings capture relational meaning of words

What we are seeing:

A projection of the  
300-dimensional      
vector space into 2  
dimensions 
(e.g., using PCA)

vector(‘Paris’) –
vector(‘France’) + 
vector(‘Italy’) 
≈ vector(‘Rome’)



How to learn such word embeddings? 



How to learn such word embeddings ?
• Use context information !!
• Context of a word w ~ other words that frequently appear 

nearby w



Main idea of Word2Vec

• Consider a local window of a target word

• Build a NN to predict neighbors of a target word



Collection of Training samples with a window of size 2X – input word    
into the network. 
(One-Hot represe

ntation)

Y – True label, 
a word that is 
nearby the in

put word.



Key insight: Use running text as implicitly 
supervised training data



Using the samples to train a NN
• From the training documents we first build the vocabulary (assume       

10,000 unique words)
• Represent each word as a one-hot vector (of 10,000 dimensions)

• Given a word in the middle of a sentence (target word, that is input into 
the network), look at the words nearby and pick one at random 

• The output of the network is a single vector (of 10,000 dimensions)       
containing, the probability for every word in our vocabulary of being the 
“nearby word” that we chose

• We will train the NN to predict this probability correctly by feeding it      
word pairs, found in our training documents



Effect of this training
• The network is going to learn the statistics from the number of      

times each word-pair shows up 
• E.g., the network is probably going to get many more training         

samples of (“Soviet”, “Union”) than of (“Soviet”, “Sasquatch”) 

• When the training is finished: 
• if you give it the word “Soviet” as input, then it will output a much highe

r probability for “Union” or “Russia” than it will for “Sasquatch”
• The vectors for “Soviet” and “Russia” will be much more similar, than th

e vectors for “Soviet” and “Sasquatch”



The word2vec skip-gram neural network



Skip-gram Architecture
• V (= vocabulary size) neurons in input layer
• V neurons in output layer
• One hidden layer containing N neurons (dimensions in the word embeddings that will be learned)
• Fully connected architecture

V x N weights N x V weights



Skip-gram Architecture
• No activation function for hidden layer neurons (i.e., linear neurons)

• Output layer neurons use softmax activation (to be explained soon)

V x N weights N x V weights



Skip-gram Architecture
• Given a one-hot vector of a target word as input
• Weights initialized randomly
• Network outputs probabilities of all words in the vocabulary being the context word
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Skip-gram Architecture
• We know the actual context word (from the text)
• Adjust weights through backpropagation, to maximize the probability of the context word
• Repeat over many, many pairs … adjust weights to make the positive pairs more likely
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The input layer



The skip-gram neural network

• Input: one-hot vector of the target word (‘drink’ in our example)
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The hidden layer



The hidden layer
• Assume vocabulary size V = 10,000
• Number of neurons in hidden layer = dimension of the word embeddings = 300 (assume)

• We can represent all the hidden layer by a weight matrix with 10,000 rows (one for every   
word in our vocabulary) and 300 columns (one for each neuron in the hidden layer)

V x N weights N x V weights

Weight 
matrix



The hidden layer

• If you look at the rows of this weight matrix, these are actually    
what will be our word vectors:

• So the end goal is just to learn this hidden layer weight matrix



The hidden layer

• Multiplying a 1 x 10,000 one-hot vector by a 10,000 x 300 matrix,  
will effectively just select the matrix row corresponding to the “1”

• Hence the hidden layer of this model is really just operating as a            
lookup table 

• The output of the hidden layer is just the word vector/embedding    
for the input word (e.g., ‘drink’ in the previous example)



The output layer



The output layer 

• What gets fed to the output layer? The 1x300 word embedding of 
the target word (e.g., ‘drink’) 

• Each output neuron (one per word in our vocabulary), will produce 
an output between 0 and 1; sum of all outputs add up to 1

• Softmax function
• Given a set of numbers (may be negative, more than 1.0, … )
• Convert them to probabilities

a  b  c    à exp(a)  exp(b)  exp(c)    à
exp(a)      exp(b)          exp(c)

∑ exp(i)   ∑ exp(i) ∑ exp(i)
i = a, b, c i = a, b, c i = a, b, c



The output layer
Each output neuron has an associated    
300-dimension weight vector

N = 300
V = 10,000



The output layer
• Each output neuron has a weight vector which it multiplies against the 

word embedding coming from the hidden layer
• Then it applies the function exp(x) to the result. Finally, divide this         

result by the sum of the results from all 10,000 output nodes

out j =
ex

Twj

ex
Twk

k=1

10,000

∑

x : word embedding of the input 
target word (coming from hidden 
layer) 

wj : weight vector of the j-th
neuron in the output layer 

Word embedding
for ‘drink’

Output weights 
for ‘apple’

Probability that if you randomly 
pick a word nearby ‘drink’, that 
it is ‘apple’



Using the output probabilities
• We know the actual context word (from the text)
• Adjust weights through backpropagation, to maximize the probability of the context word
• Repeat over many, many pairs … adjust weights to make the positive pairs more likely
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A point to note

• The task of predicting context words for a target word
• … is actually a dummy task, in which we are not interested

• Our interest is in learning the word representations

• Basically, we will just discard the output layer, and use the      
learned word embeddings



Word2Vec Objective/Cost Function
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Task: understand that the neural network we discussed is actually 
minimizing this cost function



Some optimizations



Problem with Word2vec network
• The skip-gram NN contains a huge number of weights 

• For our example with 300 features and a vocab of 10,000 words, that’s 
3 million weights in the hidden layer and output layer each! 

• Running gradient descent on such a large network will be slow

• Also, need a huge amount of training data in order to tune that      
many weights and avoid over-fitting.

• The designers of Word2vec proposed 3 optimizations to make   
the training more efficient 



Optimizations
(1) Treating common word-pairs or phrases as single words

• A word pair like “Boston Globe” (a newspaper) has a much different mea
ning than the individual words “Boston” and “Globe” 

• So treat “Boston Globe”, wherever it occurs in the text, as a single word  
with its own word vector representation

(2) Subsampling frequent words to decrease the number of training 
samples

• “the” will appear in the context window of many different words
• Sub-sample words whose frequency in the corpus exceeds a threshold,    

e.g., do not include all training samples having ‘the’



Optimizations
(3) Modifying the optimization objective with a technique called            
“Negative Sampling”, which causes each training sample to update 
only a small percentage of the model’s weights

• The idea
• Training a NN means taking a training example and adjusting all weights       

slightly so that it predicts that training sample more accurately
• Each training sample will tweak all of the weights in the NN
• Negative sampling: have each training sample only modify a small fraction 

of the weights, rather than all of them



Negative sampling for Skip-gram
• When training the NN on the word pair (“drink”, “juice”), the correct output of 

the network is a one-hot vector: 
• The output neuron corresponding to “juice” should output a 1, and all of the other           

thousands of output neurons should output a 0
• A “negative” word is one for which network should output 0 and “positive” word is one 

for which network should output 1

• With negative sampling, randomly select just a small number of “negative” 
words (let’s say 5) for which to update the weights 

• We will also update the weights for our “positive” word (“juice”)
• So just update the weights for the positive word, plus the weights for 5 other 

words that we want to output 0. That’s updating a total of 1,800  weights corr
esponding to 6 output neurons (instead of 3 million weights)



How to select the negative samples?
• The “negative samples” (the 5 words that we’ll train to output 0) are chosen   

using a “unigram distribution”
• The probability for selecting a word as a negative sample is related to its frequency, with  

more frequent words being more likely to be selected as negative samples.

• Each word is given a weight equal to its frequency (word count) raised to the 3/4 power.  
Probability for a selecting word wi is its weight divided by the sum of weights for all words:

• The decision to raise the frequency to the 3/4 power appears to be empirical.   
In the original paper, the authors say it outperformed other functions.

• The power makes less frequent words be sampled more often.

p(wi ) =
f (wi )

3
4

( f (wj )
3
4 )

j=0

n

∑



Another architecture of Word2vec
• Continuous bag of words – CBoW

• Skip-gram
• From a central target word, predict a nearby context word

• CBoW
• From the context words, predict the central target word

• See from papers (given on course website)



Many applications of Word2vec embeddings in NLP, IR

What we are seeing:

A projection of the  
300-dimensional      
vector space into 2  
dimensions 
(e.g., using PCA)

vector(‘Paris’) –
vector(‘France’) + 
vector(‘Italy’) 
≈ vector(‘Rome’)



Improvements by using two vectors
For each word w, we actually get two vectors, each of N dimensions 
One vector vin(w) from the input weight matrix (that we discussed); another vector vout(w) from the 
transpose of the output weight matrix
Subsequent research showed that it is usually better to consider the average of the two vectors as 
the representation of w 

V x N weights N x V weights

Input
Weight 
matrix

Output
Weight 
matrix



Thank you
Questions can be mailed to Dr. S. Ghosh (saptarshi@cse.iitkgp.ac.in)


