
CS 60050
Machine Learning

Neural Networks

Some slides taken from course materials of Abu Mostafa, Andrew NG

This lecture

• Linear models
• Perceptron – a linear model
• Non-linear models
• Multi Layer Perceptron
• From perceptron to neuron
• Neural networks
• Learning using neural networks: the

Backpropagation algorithm

LINEAR MODELS

Linear models

• The hypothesis function (used for prediction)
is a linear function

• E.g., for linear regression:

Linear models: a clarification

• The hypothesis function (used for prediction)
is a linear function in what?
– Features / variables? Or
– Coefficients of the model?

Linear in terms of model
coefficients, but not in terms of
features / variables

Linear in terms of
both model
coefficients and
features/variables

Both definitions are used by different ML practitioners

What we are considering

• Linear model is one that is linear in terms of
the features/variables
– A line in 2-d feature space
– A plane in 3-d feature space
– A hyperplane in n-d feature space

• Examples
– Linear regression
– A perceptron

PERCEPTRON

Perceptron

• Inputs x1, x2, …
• One input is a constant (called a bias)
• Each input xi has a weight wi

• Output: weighted sum of inputs = ∑ wi xi

• We assume the convention:
– For both inputs and output, -ve means logical 0, +ve means logical 1
– Each input takes values in {-1, +1}

Perceptron – another notation
• Inputs x1, x2, …
• Each input xi has a weight wi
• The constant input multiplied by its weight is considered a

single constant b that is called bias
• Output: ∑ wi xi + b

• We assume the convention:
– For both inputs and output, -ve means logical 0, +ve means logical 1
– Each input takes values in {-1, +1}

Using perceptron for logical operation (OR)
Inputs x1, x2, … each take values {-1, +1}
Output: weighted sum of inputs = ∑ wi xi

Convention for both inputs and output: negative means logical 0,
positive means logical 1

Using perceptron for logical operation (AND)
Inputs x1, x2, … each take values {-1, +1}
Output: weighted sum of inputs = ∑ wi xi

Convention for both inputs and output: negative means logical 0,
positive means logical 1

Are linear models sufficient?

• Linear models not sufficient for regression /
classification of complex functions

• We are not making this statement based on
performance over some selected datasets

• We can theoretically show that linear models
are not sufficient to model some functions

A function for which linear models
are not sufficient (assuming two features)

x1

x2

x1

x2

Cannot be separated using a
perceptron or any linear classifier
model

• We have seen that non-linear combinations of
features can be used with linear models

• But not feasible as the number of features increases
beyond few hundred (e.g., pixels in an image) –
which non-linear combinations to use?

• Need for non-linear models

How to address the limitations of linear models?

NON-LINEAR MODELS

Can we model non-linear functions using multiple
linear models?

A specific version of the question:
Can we model the XOR function using multiple
perceptrons?

Recall from previous slides

We used a single perceptron to model the OR function and the
AND function

Creating layers of perceptrons to implement more
complex functions (XOR)

Creating layers of perceptrons to implement more
complex functions (XOR)

Non-linear classification using perceptrons

x1

x2

x1

x2

Can be separated using a
Multi Layer Perceptron (MLP)

x1

x2

h1

h2

We need to combine multiple perceptrons suitably

Weights or parameters of each perceptron to be tuned
based on actual points

A multi-layer perceptron
for general non-linear classification

Suitable values need to be fixed for the weights w1
and w2 (model parameters), based on the data points

A powerful model – can generate complex decision boundaries
by combining many linear classifiers

Multilayer perceptrons, suitably combined, can generate almost
all functions / decision boundaries

FROM PERCEPTRON TO NEURON

• What we considered for a perceptron:
– Output of perceptron: ∑ wi xi
– For both inputs and output, -ve means logical 0, +ve means

logical 1
– Basically, a hard threshold decides the output (logical 0 or 1)

• Optimization becomes difficult with many perceptrons

• We would like to change the input a little and see how
the output changes (iterative methods)

A problem with perceptron

• Desirable: instead of a hard threshold, a smooth
function that is efficient to differentiate

• So that we can change the inputs a little, observe the
corresponding small change in the output, hence
compute gradient, etc.

• A perceptron with a smooth non-linear function is
called a neuron

From perceptron to neuron

• Desirable: a smooth function that is efficient to
differentiate

• Possible functions
• Logistic (sigmoid) function: range [0,1]
• tanh function: range [-1, 1]
• Other functions also used in Deep NNs, e.g., RelU

Logistic function

Θ(z) =

tanh function

Θ(s) =

From perceptron to a neuron

Task: verify that these functions are easy to differentiate

• Where z = ∑ wi xi
• Essentially implementing a logistic regression

classifier over the input features xi

Logistic function

Θ(z) =

One neuron with logistic function

θ

x2

xd

s

θ(s)

h(x)

11 1

x1

x 1 ≤ l < L l = L

θ

θ

θ θ

θ

⃝ AML

NEURAL NETWORKS
Algorithms that try to mimic the brain

Idea: To mimic the biological function, first mimic the
biological structure

Idea: To mimic the biological function, first mimic the
biological structure

Brain has network of biological
neurons

Network of artificial neurons
arranged in layers (similar to MLPs,
but using neurons)

Brief history of neural networks
• ~1943: a highly simplified model of an artificial

neuron (already discussed) proposed by McCulloh
and Pitts

• ~1957: Rosenblatt coined the term “perceptron” as a
very promising model for AI

• ~1965: First generation multilayer perceptron
developed by Ivakhnenko et al.

SPRING OF AI

Brief history of neural networks
• 1969: In their famous book “Perceptrons”, Minsky

and Papert showed that perceptrons cannot even
learn some very simple functions (e.g., XOR)

• This led to severe criticism of AI and reduced
interest, till around 1986

• Interestingly, Minsky and Papert themselves said that
MLPs can implement such functions; but this fact
was overlooked

WINTER OF AI

• ~1986: Backpropagation algorithm developed, that
allows efficient training of a neural network
– Will be discussed in detail

• 1989: The Universal Approximation Theorem: A
multilayer network of neurons with a single hidden
layer can be used to approximate any continuous
function to any desired precision

Brief history of neural networks

REGENERATION OF INTEREST IN AI

• In spite of algorithmic advances (Backpropagation)
still there were practical difficulties in training really
deep NNs (with many layers)

• 2006: An efficient way to train Deep NNs in practice
developed by Hinton et al

• Also better hardware infrastructure (e.g., GPUs)

Brief history of neural networks

DEEP LEARNING ERA

Visual projections routed to the auditory pathway in ferrets:
receptive fields of visual neurons in primary auditory cortex,
Roe et al, 1992
Auditory cortex, when connected to the eyes, learns to see
=> A neural network can learn various functionalities

Auditory
Cortex

The “one learning algorithm” hypothesis

A neural network

• Multi-layer network
• Each unit is a neuron, implementing a non-linear

function (e.g., sigmoid) over the weighted inputs
• Input layer, hidden layer(s), output layer

• Number of layers: L
• Number of neurons in layer l: d(l)

• Number of neurons in input layer = d(0) = number of
features in input

A neural network

Our simplified situation
- The neural network architecture we are considering

is called a “fully connected” (FC) architecture
- Many other architectures are possible

- We consider all neurons to implement the same
non-linear function
- Non-linearity in different neurons can be different

- We consider a simple regression model with only one
neuron in the output layer
- Multiple neurons in output layer are possible

Example neural network for a four-class classifier

Each output neuron conceptually outputs the probability of the
data point being in each of the 4 classes

Note: number of neurons in different layers depends on the exact
application

Every link in the neural network has a weight

Weight of the link
from i-th neuron in layer (l-1)
to j-th neuron in layer l

Focusing on
two layers

Weight of the link from
i-th neuron in layer (l-1)
to
j-th neuron in layer l

Output of the j-th
neuron in layer l

How the network operates
Assuming all weights are known

How to get the weights?

• Till now what we have discussed – if the weights are
known, how the neural network operates

• As ML practitioners, our job is to automatically learn
the weights from training data

• Learning the weights efficiently: Backpropagation
algorithm

BACKPROPAGATION ALGORITHM

• General setup (should be familiar)
– Apply input xn (with known output yn) to the input layer
– All weights w = { wij

(l) } determine the hypothesis h(xn)
– Compute error e(h(xn), yn)
– Adjust the parameters in w --> compute a gradient for each

parameter with the error: Δ wij
(l) = - learning rate * gradient

• What we studied earlier
– Gradient computed based on all training examples (xn, yn):

“Batch” GD
– Epoch: using all training examples once to compute gradient
– Inefficient for large datasets

Gradient Descent

• Pick one (xn, yn) at a time, apply GD to e(h(xn), yn)
• Idea: When done many times, over many training

examples, average direction of descent will be the
same as the “ideal” direction

• Benefits
– Cheaper computation especially for large training sets

used with neural networks
– Randomization helps escape trivial local minima

• Like batch GD, cannot guarantee reaching global
minima for non-convex error functions

Stochastic Gradient Descent (SGD)

Applying SGD

• All weights w = { wij
(l) } determine the hypothesis h(x)

• Error on example (xn, yn) is e(h(xn), yn) = e(w) which
can be squared error or logistic error or others

• To implement SGD, we need the gradient

• Can compute the differentials one by one, analytically
or numerically, but it will be very inefficient

The solution
• Backpropagation algorithm

• Idea (similar to recursion / induction)
– Start with finding the gradients for the weights in the last

layer l = L (output layer)
– Assuming all gradients have been computed for layer l,

devise a mechanism for computing gradients in layer (l-1)

• Gradients flow backwards in the network, giving the
algorithm its name

Layer (l-1)

Layer l

Layer (l-1)

Layer l

Compute this recursively, starting
from the last layer backwards

δ for the last (output) layer

Assuming squared error function

tanh function:

x1(L) = output of the only
neuron in the last layer = h(xn)

yn = known output for the
input xn

𝛳 = the non-linear function
(e.g., tanh)

Back propagation of δ - Assuming all δ values of layer l
have been computed already, how to compute δ for the
i-th neuron (for any i) in layer (l-1)?

Back propagation of δ - Assuming all δ values of layer l
have been computed already, how to compute δ for the
i-th neuron (for any i) in layer (l-1)?

Layer l

Recap of chain rule for partial derivatives

• Suppose z is a function of n variables x1, x2, …, xn and each xi is
in turn a function of m variables t1, t2, …, tm

• Then for any variable ti, i=1, 2, …, m, we have:

Back propagation of δ - Assuming all δ values of layer l
have been computed already, how to compute δ for the
i-th neuron (for any i) in layer (l-1)?

Layer l

Since we assume 𝛳 to be tanh function, the derivative is computed as shown

Backpropagation algorithm: summary

• We devised a recursive way of computing δ values
– First we compute δ values for the output layer l = L
– δ values of layer (l-1) are computed based on the δ values of layer l

• So the δ values (and hence the gradient values) propagate
backwards through the network

Backpropagation algorithm

Note: Each iteration uses only one training sample: SGD

Not guaranteed to reach global minima; will reach a local
minima depending on initialization, which sample chosen in
which iteration, etc.

Discussion
• Zero initialization will not work
– If all weights initialized to zero, either all x’s or all δ’s will

be zero; hence weights would not be adjusted
– Weights have to be initialized randomly

• Intelligent ways of initializing weights can be used to
ensure faster convergence and better weight values
– Based on models used earlier for similar tasks
– Called pre-trained models

Discussion
• Many things to decide
– How many layers? How many neurons in each layer?
– What error function? What non-linear function?
– What learning rate? …

• All these are hyperparameters
– Decide from experience, or
– Use validation set to determine what values perform well

• Size of network decides the number of parameters
(weights) – should be decided based on available
training data

What are the hidden layers doing?

Hidden layers are learning higher level non-linear transforms of
the input features
Advantage: we do not need to decide what non-linear transforms
to learn; the network figures that out
Disadvantage: Interpretability of output is difficult – may not have
a clear idea of what the hidden layer is learning

THANK YOU

Questions can be mailed to Dr. S. Ghosh (saptarshi@cse.iitkgp.ac.in)

