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Some slides taken from course materials of Abu Mostafa, Andrew NG



This lecture

• Linear models
• Perceptron – a linear model
• Non-linear models
• Multi Layer Perceptron 
• From perceptron to neuron 
• Neural networks
• Learning using neural networks: the 

Backpropagation algorithm



LINEAR MODELS



Linear models

• The hypothesis function (used for prediction) 
is a linear function

• E.g., for linear regression:



Linear models: a clarification

• The hypothesis function (used for prediction) 
is a linear function in what? 
– Features / variables? Or
– Coefficients of the model? 

Linear in terms of model 
coefficients, but not in terms of 
features / variables

Linear in terms of 
both model 
coefficients and 
features/variables

Both definitions are used by different ML practitioners



What we are considering

• Linear model is one that is linear in terms of 
the features/variables
– A line in 2-d feature space
– A plane in 3-d feature space
– A hyperplane in n-d feature space

• Examples
– Linear regression
– A perceptron



PERCEPTRON



Perceptron

• Inputs x1, x2, …
• One input is a constant (called a bias)
• Each input xi has a weight wi

• Output: weighted sum of inputs = ∑ wi xi

• We assume the convention: 
– For both inputs and output, -ve means logical 0, +ve means logical 1
– Each input takes values in {-1, +1}



Perceptron – another notation
• Inputs x1, x2, …
• Each input xi has a weight wi
• The constant input multiplied by its weight is considered a 

single constant  b that is called bias
• Output: ∑ wi xi + b

• We assume the convention: 
– For both inputs and output, -ve means logical 0, +ve means logical 1
– Each input takes values in {-1, +1}



Using perceptron for logical operation (OR)
Inputs x1, x2, … each take values {-1, +1}
Output: weighted sum of inputs = ∑ wi xi

Convention for both inputs and output: negative means logical 0, 
positive means logical 1



Using perceptron for logical operation (AND)
Inputs x1, x2, … each take values {-1, +1}
Output: weighted sum of inputs = ∑ wi xi

Convention for both inputs and output: negative means logical 0, 
positive means logical 1



Are linear models sufficient?

• Linear models not sufficient for regression / 
classification of complex functions

• We are not making this statement based on 
performance over some selected datasets

• We can theoretically show that linear models 
are not sufficient to model some functions



A function for which linear models 
are not sufficient (assuming two features)

x1

x2

x1

x2

Cannot be separated using a 
perceptron or any linear classifier 
model



• We have seen that non-linear combinations of 
features can be used with linear models

• But not feasible as the number of features increases 
beyond few hundred (e.g., pixels in an image) –
which non-linear combinations to use?

• Need for non-linear models

How to address the limitations of linear models?



NON-LINEAR MODELS



Can we model non-linear functions using multiple
linear models?

A specific version of the question:
Can we model the XOR function using multiple
perceptrons?



Recall from previous slides

We used a single perceptron to model the OR function and the 
AND function



Creating layers of perceptrons to implement more 
complex functions (XOR)



Creating layers of perceptrons to implement more 
complex functions (XOR)



Non-linear classification using perceptrons

x1

x2

x1

x2

Can be separated using a 
Multi Layer Perceptron (MLP)



x1

x2

h1

h2

We need to combine multiple perceptrons suitably

Weights or parameters of each perceptron to be tuned 
based on actual points



A multi-layer perceptron 
for general non-linear classification

Suitable values need to be fixed for the weights w1
and w2 (model parameters), based on the data points



A powerful model – can generate complex decision boundaries 
by combining many linear classifiers 

Multilayer perceptrons, suitably combined, can generate almost 
all functions / decision boundaries



FROM PERCEPTRON TO NEURON



• What we considered for a perceptron:
– Output of perceptron: ∑ wi xi 
– For both inputs and output, -ve means logical 0, +ve means 

logical 1
– Basically, a hard threshold decides the output (logical 0 or 1)

• Optimization becomes difficult with many perceptrons

• We would like to change the input a little and see how 
the output changes (iterative methods)

A problem with perceptron



• Desirable: instead of a hard threshold, a smooth 
function that is efficient to differentiate

• So that we can change the inputs a little, observe the 
corresponding small change in the output, hence 
compute gradient, etc. 

• A perceptron with a smooth non-linear function is 
called a neuron

From perceptron to neuron



• Desirable: a smooth function that is efficient to 
differentiate

• Possible functions
• Logistic (sigmoid) function: range [0,1] 
• tanh function: range [-1, 1]
• Other functions also used in Deep NNs, e.g., RelU

Logistic function

Θ(z) = 

tanh function

Θ(s) = 

From perceptron to a neuron

Task: verify that these functions are easy to differentiate



• Where z = ∑ wi xi
• Essentially implementing a logistic regression 

classifier over the input features xi

Logistic function

Θ(z) = 

One neuron with logistic function
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NEURAL NETWORKS
Algorithms that try to mimic the brain



Idea: To mimic the biological function, first mimic the 
biological structure



Idea: To mimic the biological function, first mimic the 
biological structure

Brain has network of biological 
neurons

Network of artificial neurons 
arranged in layers (similar to MLPs, 
but using neurons)



Brief history of neural networks
• ~1943: a highly simplified model of an artificial 

neuron (already discussed) proposed by McCulloh 
and Pitts

• ~1957: Rosenblatt coined the term “perceptron” as a 
very promising model for AI

• ~1965: First generation multilayer perceptron 
developed by Ivakhnenko et al.

SPRING OF AI



Brief history of neural networks
• 1969: In their famous book “Perceptrons”, Minsky 

and Papert showed that perceptrons cannot even 
learn some very simple functions (e.g., XOR)

• This led to severe criticism of AI and reduced 
interest, till around 1986

• Interestingly, Minsky and Papert themselves said that 
MLPs can implement such functions; but this fact 
was overlooked

WINTER OF AI



• ~1986: Backpropagation algorithm developed, that 
allows efficient training of a neural network
– Will be discussed in detail

• 1989: The Universal Approximation Theorem: A 
multilayer network of neurons with a single hidden 
layer can be used to approximate any continuous 
function to any desired precision

Brief history of neural networks

REGENERATION OF INTEREST IN AI



• In spite of algorithmic advances (Backpropagation) 
still there were practical difficulties in training really 
deep NNs (with many layers)

• 2006: An efficient way to train Deep NNs in practice 
developed by Hinton et al

• Also better hardware infrastructure (e.g., GPUs)

Brief history of neural networks

DEEP LEARNING ERA



Visual projections routed to the auditory pathway in ferrets: 
receptive fields of visual neurons in primary auditory cortex, 
Roe et al, 1992
Auditory cortex, when connected to the eyes, learns to see
=> A neural network can learn various functionalities

Auditory 
Cortex

The “one learning algorithm” hypothesis



A neural network

• Multi-layer network
• Each unit is a neuron, implementing a non-linear 

function (e.g., sigmoid) over the weighted inputs
• Input layer, hidden layer(s), output layer



• Number of layers: L
• Number of neurons in layer l:  d(l)

• Number of neurons in input layer = d(0) = number of 
features in input

A neural network



Our simplified situation
- The neural network architecture we are considering 

is called a “fully connected” (FC) architecture
- Many other architectures are possible

- We consider all neurons  to implement the same 
non-linear function
- Non-linearity in different neurons can be different

- We consider a simple regression model with only one 
neuron in the output layer
- Multiple neurons in output layer are possible



Example neural network for a four-class classifier

Each output neuron conceptually outputs the probability of the 
data point being in each of the 4 classes

Note: number of neurons in different layers depends on the exact 
application



Every link in the neural network has a weight

Weight of the link 
from  i-th neuron in layer (l-1)
to  j-th neuron in layer l



Focusing on 
two layers



Weight of the link from 
i-th neuron in layer (l-1) 
to 
j-th neuron in layer l



Output of the    j-th
neuron in layer l



How the network operates
Assuming all weights are known



How to get the weights?

• Till now what we have discussed – if the weights are 
known, how the neural network operates

• As ML practitioners, our job is to automatically learn 
the weights from training data

• Learning the weights efficiently: Backpropagation 
algorithm



BACKPROPAGATION ALGORITHM



• General setup (should be familiar)
– Apply input xn (with known output yn) to the input layer
– All weights w = { wij

(l) } determine the hypothesis h(xn)
– Compute error e( h(xn), yn )
– Adjust the parameters in w --> compute a gradient for each 

parameter with the error: Δ wij
(l) = - learning rate * gradient 

• What we studied earlier
– Gradient computed based on all training examples (xn, yn):  

“Batch” GD
– Epoch: using all training examples once to compute gradient
– Inefficient for large datasets

Gradient Descent



• Pick one (xn, yn) at a time, apply GD to e( h(xn), yn )
• Idea: When done many times, over many training 

examples, average direction of descent will be the 
same as the “ideal” direction

• Benefits
– Cheaper computation especially for large training sets 

used with neural networks
– Randomization helps escape trivial local minima

• Like batch GD, cannot guarantee reaching global 
minima for non-convex error functions

Stochastic Gradient Descent (SGD)



Applying SGD

• All weights w = { wij
(l) } determine the hypothesis h(x)

• Error on example (xn, yn) is e( h(xn), yn) = e(w) which 
can be squared error or logistic error or others

• To implement SGD, we need the gradient

• Can compute the differentials one by one, analytically 
or numerically, but it will be very inefficient



The solution
• Backpropagation algorithm

• Idea (similar to recursion / induction)
– Start with finding the gradients for the weights in the last 

layer l = L (output layer)
– Assuming all gradients have been computed for layer l, 

devise a mechanism for computing gradients in layer (l-1)

• Gradients flow backwards in the network, giving the 
algorithm its name



Layer (l-1)

Layer l



Layer (l-1)

Layer l

Compute this recursively, starting 
from the last layer backwards



δ for the last (output) layer

Assuming squared error function

tanh function:

x1(L) = output of the only 
neuron in the last layer = h(xn)

yn = known output for the 
input xn

𝛳 = the non-linear function 
(e.g., tanh)



Back propagation of δ - Assuming all δ values of layer l 
have been computed already, how to compute δ for the 
i-th neuron (for any i) in layer (l-1)? 



Back propagation of δ - Assuming all δ values of layer l 
have been computed already, how to compute δ for the 
i-th neuron (for any i) in layer (l-1)? 

Layer l



Recap of chain rule for partial derivatives

• Suppose z is a function of n variables x1, x2, …, xn and each xi is 
in turn a function of m variables t1, t2, …, tm

• Then for any variable ti, i=1, 2, …, m, we have:



Back propagation of δ - Assuming all δ values of layer l 
have been computed already, how to compute δ for the 
i-th neuron (for any i) in layer (l-1)? 

Layer l

Since we assume 𝛳 to be tanh function, the derivative is computed as shown 



Backpropagation algorithm: summary

• We devised a recursive way of computing δ values 
– First we compute δ values for the output layer l = L
– δ values of layer (l-1) are computed based on the δ values of layer l

• So the δ values (and hence the gradient values) propagate 
backwards through the network



Backpropagation algorithm

Note: Each iteration uses only one training sample: SGD

Not guaranteed to reach global minima; will reach a local 
minima depending on initialization, which sample chosen in 
which iteration, etc.



Discussion
• Zero initialization will not work 
– If all weights initialized to zero, either all x’s or all δ’s will 

be zero; hence weights would not be adjusted 
– Weights have to be initialized randomly 

• Intelligent ways of initializing weights can be used to 
ensure faster convergence and better weight values 
– Based on models used earlier for similar tasks
– Called pre-trained models



Discussion
• Many things to decide
– How many layers? How many neurons in each layer?
– What error function? What non-linear function? 
– What learning rate? …

• All these are hyperparameters
– Decide from experience, or 
– Use validation set to determine what values perform well

• Size of network decides the number of parameters 
(weights) – should be decided based on available 
training data



What are the hidden layers doing? 

Hidden layers are learning higher level non-linear transforms of 
the input features
Advantage: we do not need to decide what non-linear transforms 
to learn; the network figures that out
Disadvantage: Interpretability of output is difficult – may not have 
a clear idea of what the hidden layer is learning



THANK YOU

Questions can be mailed to Dr. S. Ghosh (saptarshi@cse.iitkgp.ac.in)


