CS 60050 Machine Learning

Dimensionality Reduction

Some slides taken from course materials of Jure Leskovec

Dimensionality

Dimensionality = number of features or attributes in the data set

Data can have really large number of features
In a corpus of text documents, each distinct word can be a feature (bag of words model)

In an image data set, each of 1024 x 768 pixels can be a feature

Dimensionality reduction

Goal (informal): reduce the number of features, such that information loss is not much

Ultimate goal – good performance in clustering, classification, etc.

Why dimensionality reduction?

- Feature space may be very sparsely populated
 - E.g., in case of a text document corpus, each individual word may be contained in a very small subset of the corpus
- ML models do not perform well on such sparse feature space
 - ML models statistical in nature counts observations in various regions of feature space
 - As dimensionality grow, fewer observations per region
 - Curse of dimensionality number of training examples required increases exponentially with dimensionality

Why dimensionality reduction?

- Some other reasons:
 - Some features may be irrelevant, or redundant (e.g., highly correlated with other features)
 - We want to visualize high dimensional data

Intuition behind dimensionality reduction

Dimensionality reduction = changing the feature space in which the points lie (to a lower dimensional space)

What should be the desirable properties of the reduced feature set?

Ways of dimensionality reduction

Two broad ways of reducing dimensionality

- (1) Select a subset of the given features
 - E.g., for spam email classification: time of day when the email comes vs. number of spam-words
 - Commonly known as feature selection
- (2) Define a new set of features that is smaller than the given feature set
 - E.g., given marks of students in 8 subjects (Physics, Chem, Maths, English, Hindi, History, Geography, Pol. Sc.), maybe most variation can be captured considering three (new) dimensions – Science, Social Science, Arts

Commonly known as feature extraction

Ways of dimensionality reduction

Supervised

These methods use both the feature values as well as the class labels of the data points

Unsupervised

These methods use only the feature values, not the class values

Domain-specific

- E.g. Text:
 - Remove stop-words (and, a, the, …)
 - Stemming (going \rightarrow go, Tom's \rightarrow Tom, ...)
 - Select important words based on document frequency

Supervised feature selection

- Usually selects a subset of the original features
- Score each feature based on some suitable mechanism (see next slide)
- Forward/Backward elimination
 - Choose the feature with the highest/lowest score
 - Re-score other features
 - Repeat
- If you have lots of features (like in text)
 - Just select top K scored features

Supervised feature selection: some ways to score features

Mutual information between feature & class

Mutual info: a measure between two (possibly multidimensional) random variables, that quantifies the amount of information obtained about one random variable, through the other random variable.

χ^2 independence between feature & class

- Test whether the occurrence of a specific feature value and the occurrence of a specific class are independent
- Ablation: How classification accuracy varies if a feature is removed

See references for some pointers

Unsupervised feature selection

- Differs from supervised feature selection in two ways:
 - Instead of choosing subset of original features, create new features (dimensions) defined as functions over all original features
 - Do not consider class labels, just the data points

Unsupervised feature selection

Idea:

Given data points in N-dimensional space,

- Project into lower dimensional space while preserving as much information as possible
 - E.g., find best planar approximation to 3D data
 - E.g., find best planar approximation to 104D data

In particular, choose projection that minimizes the squared error in reconstructing original data – PCA

Principal Component Analysis (PCA)

PCA: overview

- Say we have a N-dimensional feature space
- We wish to reduce to K dimensions, K << N</p>
- Dimensionality reduction implies information loss; PCA preserves as much information as possible by minimizing the reconstruction error:

$$\begin{aligned} \|x - \hat{x}\| & x = a_1 v_1 + a_2 v_2 + \dots + a_N v_N \\ & & & \downarrow \\ \hat{x} = b_1 u_1 + b_2 u_2 + \dots + b_K u_K \end{aligned}$$

PCA: overview

- PCA transforms a number of (possibly) correlated variables into a (smaller) number of uncorrelated variables called principal components
- The first principal component
 - Direction of the greatest variability of the data
 - Accounts for as much of the variability in the data as possible
- The second principal component
 - Perpendicular / orthogonal to the first, captures greatest variability of what is left
- Each succeeding component accounts for as much of the remaining variability as possible

PCA: overview

- Number of principal components = number of original dimensions = N
- We can choose the first K<<N of the principal components as the new dimensions
- Change coordinates of every data point to these new dimensions (project a point to each new dimension)

How PCA finds suitable dimensions?

The data is first "centered" to zero or the origin, by subtracting the mean from each attribute

- PCA then minimizes the distances between the original points and their projections, across all points
- Equivalent to maximizing the distances between the origin and the projections, across all points

Covariance

An indication of whether two variables/attributes change together, or change in opposite directions

Positive covariance between two variables => if one increases (decreases), the other tends to increase (decrease) as well

Given an N x M data matrix D,

- whose N rows are the data points, and
- whose M columns are the features/attributes
- The covariance matrix C of D is a M x M matrix which has entries c_{ij} = covariance(d_{*i}, d_{*j})
 - c_{ij} is the covariance of the i-th and j-th attributes (columns) of the data matrix
 - \Box c_{ij} measures how strongly the attributes vary together
 - If i=j, then the covariance is the variance of the attribute.

Covariance matrix considering 5 features a, b, c, d, e

 $\begin{bmatrix} V_{a} & C_{a,b} & C_{a,c} & C_{a,d} & C_{a,e} \\ C_{a,b} & V_{b} & C_{b,c} & C_{b,d} & C_{b,e} \\ C_{a,c} & C_{b,c} & V_{c} & C_{c,d} & C_{c,e} \\ C_{a,d} & C_{b,d} & C_{c,d} & V_{d} & C_{d,e} \\ C_{a,e} & C_{b,e} & C_{c,e} & C_{d,e} & V_{e} \end{bmatrix}$

Covariance matrix: another representation (μ_1 , μ_2 are the mean of attributes a, b, ...)

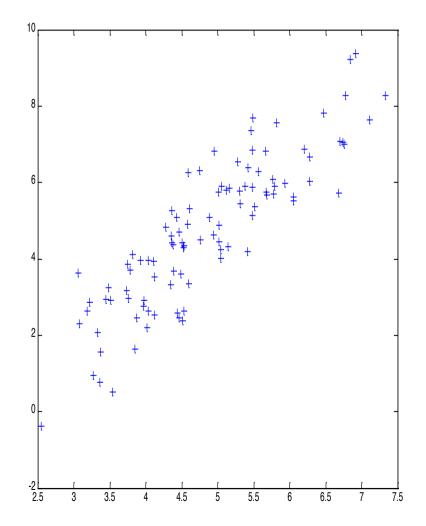
$$\Sigma = \begin{bmatrix} E[(X_1 - \mu_1)(X_1 - \mu_1)] & E[(X_1 - \mu_1)(X_2 - \mu_2)] & \cdots & E[(X_1 - \mu_1)(X_n - \mu_n)] \\ E[(X_2 - \mu_2)(X_1 - \mu_1)] & E[(X_2 - \mu_2)(X_2 - \mu_2)] & \cdots & E[(X_2 - \mu_2)(X_n - \mu_n)] \\ \vdots & \vdots & \ddots & \vdots \\ E[(X_n - \mu_n)(X_1 - \mu_1)] & E[(X_n - \mu_n)(X_2 - \mu_2)] & \cdots & E[(X_n - \mu_n)(X_n - \mu_n)] \end{bmatrix}$$

- Given some data points (vectors in feature space), we computed the covariance matrix C
- A property of C: if any of the vectors is multiplied by C, the vector is rotated towards the direction of greatest variability of the data
 - So, what is the direction of greatest variability of data?
 - Hint: a vector that is already in the direction of greatest variability will <u>not</u> be rotated when multiplied by C

- Given some data points (vectors in feature space), we computed the covariance matrix C
- A property of C: if any of the vectors is multiplied by C, the vector is rotated towards the direction of greatest variability of the data
 - Vectors that are not rotated when multiplied by C (magnitude of vector may change, but direction does not change) → eigenvectors of C

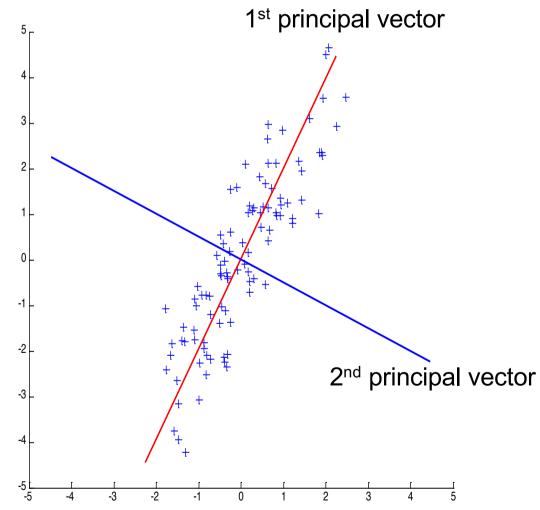
- If the data matrix D is preprocessed so that the mean of each attribute is zero, then $C = D^T D$
- Covariance matrices are examples of positive semidefinite matrices, which have non-negative eigenvalues
 - Eigenvalues of C can be ordered in decreasing order of magnitude
 - Eigenvectors of C can be ordered so that the i-th eigenvector corresponds to i-th largest eigenvalue

Geometric interpretation on 2d data



Geometric interpretation on 2d data

- PCA projects the data along the directions where the data varies most
- A rotation of the coordinate system such that the axes show a maximum of variation (covariance) along their directions.
 - The directions are orthogonal to each other – these are the new attributes (PCs)

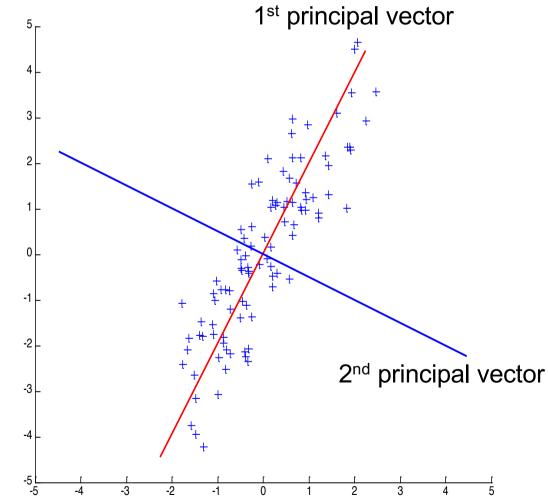


Geometric interpretation on 2d data

These directions are determined by some of the eigenvectors of the covariance matrix of data

- Specifically, those eigenvectors that correspond to the largest eigenvalues
- Magnitude of the eigenvalues corresponds to the variance of the data along the eigenvector directions

Each new attribute is a linear combination of the original attributes



PCA - Steps

Suppose $x_1, x_2, ..., x_M$ are N x 1 vectors

Step 1:
$$\bar{x} = \frac{1}{M} \sum_{i=1}^{M} x_i$$

<u>Step 2</u>: subtract the mean: $\Phi_i = x_i - \overline{x}$ (i.e., center at zero)

<u>Step 3:</u> form the matrix $A = [\Phi_1 \ \Phi_2 \ \cdots \ \Phi_M]$ (NxM matrix), then compute:

$$C = \frac{1}{M} \sum_{n=1}^{M} \Phi_n \Phi_n^T = \frac{1}{M} A^T$$

(sample covariance matrix, NxN, characterizes the scatter of the data)

<u>Step 4:</u> compute the eigenvalues of $C: \mathbf{\lambda}_1 > \mathbf{\lambda}_2 > \cdots > \mathbf{\lambda}_N$

<u>Step 5:</u> compute the eigenvectors of $C: u_1, u_2, \ldots, u_N$

PCA - Steps

an orthogonal basis

- Since C is symmetric, u_1, u_2, \ldots, u_N form a basis, (i.e., any vector x or actually $(x - \overline{x})$, can be written as a linear combination of the eigenvectors):

$$x - \bar{x} = b_1 u_1 + b_2 u_2 + \dots + b_N u_N = \sum_{i=1}^N b_i u_i$$
 where $b_i = \frac{(x - \bar{x}) u_i}{(u_i u_i)}$

Step 6: (dimensionality reduction step) keep only the terms corresponding to the K largest eigenvalues:

$$\hat{x} - \overline{x} = \sum_{i=1}^{K} b_i u_i$$
 where $K \ll N$

- The representation of $\hat{x} - \bar{x}$ into the basis $u_1, u_2, ..., u_K$ is thus

$$\begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_K \end{bmatrix}$$

How to choose K?

• Choose *K* using the following criterion:

$$\frac{\sum_{i=1}^{K} \boldsymbol{\lambda}_{i}}{\sum_{i=1}^{N} \boldsymbol{\lambda}_{i}} > Threshold \quad (e.g., 0.9 \text{ or } 0.95)$$

- In this case, we say that we "preserve" 90% or 95% of the information (variance) in the data.
- If K=N, then we "preserve" 100% of the information in the data.

Error due to dimensionality reduction

• The original vector *x* can be reconstructed using its principal components:

$$\hat{x} - \overline{x} = \sum_{i=1}^{K} b_i u_i \text{ or } \hat{x} = \sum_{i=1}^{K} b_i u_i + \overline{x}$$

• PCA minimizes the reconstruction error:

$$e = ||x - \hat{x}||$$

• It can be shown that the reconstruction error is:

$$e = 1/2 \sum_{i=K+1}^{N} \lambda_i$$

Normalization

- The principal components are dependent on the *units* used to measure the original variables as well as on the *range* of values they assume.
- Data should always be normalized prior to using PCA.
- A common normalization method is to transform all the data to have zero mean and unit standard deviation:

$$\frac{x_i - \mu}{\sigma}$$
 (μ and σ are the mean and standard deviation of x_i 's)

Benefits of PCA

- Identify the strongest patterns in the data in an unsupervised way
- Capture most of the variability of the data by a small fraction of the total set of dimensions
- Eliminate much of the noise in the data, making it beneficial for classification and other learning algorithms

Problems and limitations

What if very large dimensional data?

• e.g., Images (d \geq 10⁴)

Problem:

Covariance matrix Σ is size (d²)

 $\blacksquare d=10^4 \rightarrow |\Sigma| = 10^8$

Singular Value Decomposition (SVD)
efficient algorithms available
some implementations find just top N eigenvectors

References

Mutual information-based feature selection https://thuijskens.github.io/2017/10/07/feature-selection/

A Gentle Introduction to the Chi-Squared Test for Machine Learning <u>https://machinelearningmastery.com/chi-squared-test-for-machine-learning/</u>

Feature Selection For Machine Learning in Python https://machinelearningmastery.com/feature-selectionmachine-learning-python/