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Some slides taken from course materials of Jure Leskovec



Dimensionality

n Dimensionality = number of features or attributes 
in the data set

n Data can have really large number of features
n In a corpus of text documents, each distinct word can 

be a feature (bag of words model) 
n In an image data set, each of 1024 x 768 pixels can 

be a feature



Dimensionality reduction

n Goal (informal): reduce the number of features, 
such that information loss is not much

n Ultimate goal – good performance in clustering, 
classification, etc.



Why dimensionality reduction?
n Feature space may be very sparsely populated 

nE.g., in case of a text document corpus, each 
individual word may be contained in a very small 
subset of the corpus

n ML models do not perform well on such sparse 
feature space 
nML models statistical in nature – counts observations 

in various regions of feature space
nAs dimensionality grow, fewer observations per region
nCurse of dimensionality - number of training examples 

required increases exponentially with dimensionality



Why dimensionality reduction?
n Some other reasons:

nSome features may be irrelevant, or redundant (e.g., 
highly correlated with other features)

nWe want to visualize high dimensional data



Intuition behind dimensionality 
reduction
n Dimensionality reduction = changing the feature 

space in which the points lie (to a lower 
dimensional space)

n What should be the desirable properties of the 
reduced feature set? 



Ways of dimensionality reduction

n Two broad ways of reducing dimensionality
n (1) Select a subset of the given features

nE.g., for spam email classification: time of day when the 
email comes vs. number of spam-words

nCommonly known as feature selection

n (2) Define a new set of features that is smaller than 
the given feature set
nE.g., given marks of students in 8 subjects (Physics, Chem, 

Maths, English, Hindi, History, Geography, Pol. Sc.), maybe 
most variation can be captured considering three (new) 
dimensions – Science, Social Science, Arts

nCommonly known as feature extraction



Ways of dimensionality reduction

n Supervised
n These methods use both the feature values as well as 

the class labels of the data points
n Unsupervised

n These methods use only the feature values, not the 
class values

n Domain-specific
nE.g. Text:

nRemove stop-words (and, a, the, …)
nStemming (going à go, Tom’s à Tom, …)
nSelect important words based on document frequency



Supervised feature selection
n Usually selects a subset of the original features
n Score each feature based on some suitable 

mechanism (see next slide)

n Forward/Backward elimination
nChoose the feature with the highest/lowest score
nRe-score other features
nRepeat

n If you have lots of features (like in text)
n Just select top K scored features



Supervised feature selection: some 
ways to score features
n Mutual information between feature & class

nMutual info: a measure between two (possibly multi-
dimensional) random variables, that quantifies the 
amount of information obtained about one random 
variable, through the other random variable.

n χ2 independence between feature & class
n Test whether the occurrence of a specific feature value 

and the occurrence of a specific class are independent
n Ablation: How classification accuracy varies if a 

feature is removed

See references for some pointers



Unsupervised feature selection
n Differs from supervised feature selection in two 

ways:
n Instead of choosing subset of original features, create 

new features (dimensions) defined as functions over 
all original features

nDo not consider class labels, just the data points



Unsupervised feature selection
n Idea:

nGiven data points in N-dimensional space, 
nProject into lower dimensional space while preserving 

as much information as possible
nE.g., find best planar approximation to 3D data
nE.g., find best planar approximation to 104D data

n In particular, choose projection that minimizes the 
squared error in reconstructing original data – PCA 



Principal Component Analysis 
(PCA)



PCA: overview

n Say we have a N-dimensional feature space
n We wish to reduce to K dimensions, K << N
n Dimensionality reduction implies information loss; PCA 

preserves as much information as possible by 
minimizing the reconstruction error:



PCA: overview

n PCA transforms a number of (possibly) correlated 
variables into a (smaller) number of uncorrelated variables 
called principal components

n The first principal component 
n Direction of the greatest variability of the data
n Accounts for as much of the variability in the data as possible

n The second principal component
n Perpendicular / orthogonal to the first, captures greatest variability 

of what is left
n Each succeeding component accounts for as much of the 

remaining variability as possible



PCA: overview

n Number of principal components = number of original 
dimensions = N

n We can choose the first K<<N of the principal components 
as the new dimensions

n Change coordinates of every data point to these new 
dimensions (project a point to each new dimension)



How PCA finds suitable dimensions?

n The data is first “centered” to zero or the origin, by 
subtracting the mean from each attribute

n PCA then minimizes the distances between the original 
points and their projections, across all points

n Equivalent to maximizing the distances between the origin 
and the projections, across all points



Background concepts

n Covariance 
n An indication of whether two variables/attributes change 

together, or change in opposite directions

n Positive covariance between two variables => if one 
increases (decreases), the other tends to increase 
(decrease) as well



Background concepts

n Given an N x M data matrix D, 
n whose N rows are the data points, and 
n whose M columns are the features/attributes

n The covariance matrix C of D is a M x M matrix which 
has entries cij = covariance(d*i, d*j)
n cij is the covariance of the i-th and j-th attributes (columns) of the 

data matrix
n cij measures how strongly the attributes vary together
n If i=j, then the covariance is the variance of the attribute.



Covariance matrix considering 5 
features a, b, c, d, e



Covariance matrix: another 
representation (µ1, µ2 are the mean 
of attributes a, b, …)



Background concepts

n Given some data points (vectors in feature space), we 
computed the covariance matrix C

n A property of C: if any of the vectors is multiplied by C, 
the vector is rotated towards the direction of greatest 
variability of the data

n So, what is the direction of greatest variability of data?

n Hint: a vector that is already in the direction of greatest 
variability will not be rotated when multiplied by C



Background concepts

n Given some data points (vectors in feature space), we 
computed the covariance matrix C

n A property of C: if any of the vectors is multiplied by C, 
the vector is rotated towards the direction of greatest 
variability of the data

n Vectors that are not rotated when multiplied by C 
(magnitude of vector may change, but direction does not 
change) à eigenvectors of C



Background concepts

n If the data matrix D is preprocessed so that the mean of 
each attribute is zero, then C = DTD

n Covariance matrices are examples of positive semidefinite
matrices, which have non-negative eigenvalues
nEigenvalues of C can be ordered in decreasing order of 

magnitude
nEigenvectors of C can be ordered so that the i-th

eigenvector corresponds to i-th largest eigenvalue



Geometric interpretation on 2d data
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Geometric interpretation on 2d data
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n PCA projects the data 
along the directions where 
the data varies most 

n A rotation of the 
coordinate system such 
that the axes show a 
maximum of variation 
(covariance) along their 
directions. 

n The directions are 
orthogonal to each other –
these are the new 
attributes (PCs)



Geometric interpretation on 2d data
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n These directions are 
determined by some of the 
eigenvectors of the 
covariance matrix of data 
n Specifically, those 

eigenvectors that correspond 
to the largest eigenvalues

n Magnitude of the eigenvalues 
corresponds to the variance 
of the data along the 
eigenvector directions

n Each new attribute is a 
linear combination of the 
original attributes



PCA - Steps

Suppose x1, x2, ..., xM are N x 1 vectors

1
M

(i.e., center at zero)



PCA - Steps
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How to choose K?

• Choose K using the following criterion:

• In this case, we say that we “preserve” 90% or 95% of the  
information (variance) in the data.

• If K=N, then we “preserve” 100% of the information in the 
data.



Error due to dimensionality reduction

• The original vector x can be reconstructed using its 
principal components:

• PCA minimizes the reconstruction error:

• It can be shown that the reconstruction error is:



Normalization

• The principal components are dependent on the units used 
to measure the original variables as well as on the range of 
values they assume.

• Data should always be normalized prior to using PCA.

• A common normalization method is to transform all the data 
to have zero mean and unit standard deviation:



Benefits of PCA

n Identify the strongest patterns in the data in an 
unsupervised way

n Capture most of the variability of the data by a small 
fraction of the total set of dimensions

n Eliminate much of the noise in the data, making it 
beneficial for classification and other learning algorithms



Problems and limitations
n What if very large dimensional data?

n e.g., Images (d ≥ 104)
n Problem:

nCovariance matrix Σ is size (d2)
n d=104 à |Σ| = 108

n Singular Value Decomposition (SVD)
n efficient algorithms available
n some implementations find just top N eigenvectors



References

n Mutual information-based feature selection 
https://thuijskens.github.io/2017/10/07/feature-selection/

n A Gentle Introduction to the Chi-Squared Test for 
Machine Learning 
https://machinelearningmastery.com/chi-squared-test-
for-machine-learning/

n Feature Selection For Machine Learning in Python 
https://machinelearningmastery.com/feature-selection-
machine-learning-python/
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