
CS	60050
Machine	Learning

Clustering

Some material borrowed from course materials of Andrew Ng and Jing Gao



Unsupervised	learning
• Given	a	set	of	unlabeled data	points	/	items
• Find	patterns	or	structure	 in	the	data
• Clustering:	automatically	 group	the	data	points	/	items	

into	groups	of	‘similar’	or	‘related’	points
• Main	challenges

– How	to	measure	similarity?	
– What	is	the	ideal	number	of	clusters?	Few	larger	clusters,	or	

more	number	of	smaller	clusters?



Motivations	for	Clustering

• Understanding	the	data	better
– Grouping	Web	search	results	into	clusters,	each	of	which	
captures	a	particular	aspect	of	the	query

– Segment	the	market	or	customers	of	a	service

• As	precursor	for	some	other	application
– Summarization	and	data	compression
– Recommendation



Different	types	of	clustering
• Partitional

– Divide	set	of	items	into	non-overlapping	 subsets
– Each	item	will	be	member	of	one	subset

• Overlapping
– Divide	set	of	items	into	potentially	overlapping	subsets
– Each	item	can	simultaneously	belong	to	multiple	subsets



Different	types	of	clustering
• Fuzzy

– Every	 item	belongs	to	every	cluster	with	a	membership	
weight	between	 0	(absolutely	does	not	belong)	and	1	
(absolutely	belongs)

– Usual	constraint:	sum	of	weights	for	each	individual	item	
should	be	1

– Convert	to	partitional clustering:	assign	every	 item	to	that	
cluster	for	which	its	membership	weight	is	highest



Different	types	of	clustering
• Hierarchical

– Set	of	nested	clusters,	where	one	larger	cluster	can	contain	
smaller	clusters

– Organized	as	a	tree	(dendrogram):	leaf	nodes	are	singleton	
clusters	containing	individual	items,	each	intermediate	
node	is	union	of	its	children	sub-clusters

– A	sequence	 of	partitional clusterings – cut	the	dendrogram
at	a	certain	level	to	get	a	partitional clustering



An	example	dendrogram



Different	types	of	clustering

• Complete	vs.	partial
– A	complete	clustering	assigns	every	item	to	one	or	more	
clusters

– A	partial	clustering	may	not	assign	some	items	to	any	
cluster	(e.g.,	outliers,	items	that	are	not	sufficiently	similar	
to	any	other	 item)



Types	of	clustering	methods
• Prototype-based

– Each	cluster	defined	by	a	prototype (centroid	or	medoid),	
i.e.,	the	most	representative	point	in	the	cluster

– A	cluster	is	the	set	of	items	in	which	each	item	is	closer	
(more	similar)	to	the	prototype	of	this	cluster,	than	to	the	
prototype	of	any	other	cluster

– Example	method:	K-means



Types	of	clustering	methods
• Density-based

– Assumes	items	distributed	in	a	space	where	‘similar’	items	
are	placed	close	to	each	other	 (e.g.,	feature	space)

– A	cluster	is	a	dense	region	of	items,	that	is	surrounded	by	a	
region	of	low	density

– Example	method:	DBSCAN



Types	of	clustering	methods
• Graph-based

– Assumes	items	represented	as	a	graph/network	where	
items	are	nodes,	and	‘similar’	items	are	linked	via	edges

– A	cluster	is	a	group	of	nodes	having	more	and	/	or	better	
connections	among	its	members,	than	between	 its	
members	and	the	rest	of	the	network

– Also	called	‘community	structure’	in	networks
– Example	method:	Algorithm	by	Girvan	and	Newman



We	are	applying	clustering	
in	this	lecture	itself.

How?



K-means	clustering



K-means
• Prototype-based,	partitioning	technique
• Finds	a	user-specified	number	of	clusters	(K)
• Each	cluster	represented	by	its	centroid	item

• There	have	been	extensions	where	number	of	
clusters	is	not	needed	as	input



Randomly	initialize						cluster	centroids

K-means	algorithm

Repeat	{
for	 =	1	to	

:=	index	(from	1	to	 )	of	cluster	centroid	
closest	to

for				=	1	to	
:=	average	(mean)	of	points	assigned	to	cluster

}

Cluster	
assignment

Move	
centroid















Randomly	initialize						cluster	centroids

K-means	algorithm

Repeat	{
for	 =	1	to	

:=	index	(from	1	to	 )	of	cluster	centroid	
closest	to

for				=	1	to	
:=	average	(mean)	of	points	assigned	to	cluster

}

Cluster	
assignment

Move	
centroid



Optimization	in	K-means
• Consider	data	points	in	Euclidean	space
• A	measure	of	cluster	quality:	Sum	of	Squared	Error	(SSE)

– Error	of	each	data	point:	Euclidean	distance	of	the	point	to	its	
closest	centroid

– SSE:	total	sum	of	the	squared	error	for	each	point
– Will	be	minimized	 if	the	centroid	of	a	cluster	is	the	mean	of	all	
data	points	in	that	cluster

• Steps	of	K-means	minimizes	SSE	(finds	a	local	minima)



Choosing	value	of	K

• Based	on	domain	knowledge	about	suitable	number	of	
clusters	for	a	particular	problem	domain

• Alternatively,	 based	on	some	measure	of	cluster	quality,	e.g.,	
try	for	different	values	of	K	and	choose	that	value	for	which	
SSE	is	minimum



Choosing	initial	centroids
• Can	be	selected	randomly,	but	can	lead	to	poor	clustering
• Perform	multiple	runs,	each	with	a	different	set	of	randomly	

chosen	initial	centroids,	and	select	that	configuration	that	
yields	minimum	SSE

• Use	domain	knowledge	to	choose	centroids,	e.g.,	while	
clustering	search	results,	select	one	search	result	relevant	to	
each	aspect	of	the	query



Importance	of	choosing	initial	centroids	well

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y
Sub-optimal Clustering

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Optimal Clustering

Original Points



Similarity/closeness	between	items

• Measure	of	similarity/closeness	between	 items	depends	on	
the	problem	domain

• Will	be	performed	many	times	over	the	course	of	the	
algorithm,	hence	needs	to	be	efficient

• Examples	
– Points	in	Euclidean	space	à Euclidean	distance
– Text	documents	à cosine	similarity	between	term-vectors



Reducing	SSE	with	post-processing
• Finding	more	clusters	will	reduce	SSE,	but	sometimes	we	want	

to	improve	SSE	without	 increasing	clusters

• K-means	has	found	a	local	minima;	find	another	“nearby”	
clustering	with	lower	SSE	(if	exists)



Reducing	SSE	with	post-processing
• Techniques	used

– Splitting	a	cluster,	e.g.,	the	cluster	with	highest	SSE,	or	the	
cluster	with	highest	standard	deviation	of	a	chosen	feature

– Merging	two	clusters,	e.g.,	 the	clusters	with	the	closest	
centroids



Known	problem	of	K-means

• Sensitive	to	outliers	that	can	change	the	distribution	of	
the	clusters
– A	solution:	K-Mediods:	instead	of	taking	the	mean	value	of	
the	points	in	a	cluster,	use	the	medoid that	is	the	most	
centrally	located	point	in	the	cluster

• Detected	clusters	are	usually	globular	(spherical)	in	
shape;	problems	in	detecting	arbitrary-shaped	clusters



Hierarchical	clustering



Hierarchical	clustering
• Bottom-up	or	Agglomerative	clustering

– Start	considering	each	data	point	as	a	singleton	cluster
– Successively	merge	clusters	if	similarity	is	sufficiently	high	
– Until	all	points	have	been	merged	into	a	single	cluster

• Top-down	or	Divisive	clustering
– Start	with	all	data	points	in	a	single	cluster
– Iteratively	 split	clusters	into	smaller	sub-clusters	if	the	
similarity	between	two	sub-parts	is	low



Both	Divisive	and	Agglomerative	clustering	can	
be	represented	as	a	Dendrogram



Basic	agglomerative	hierarchical	
clustering	algorithm

• Start	with	each	item	in	a	singleton	cluster
• Compute	the	proximity/similarity	matrix	between	clusters
• Repeat

– Merge	the	closest/most	similar	two	clusters
– Update	the	proximity	matrix	to	reflect	proximity	between	
the	new	cluster	and	the	other	clusters

• Until	only	one	cluster	remains



Proximity/similarity	between	clusters
• MIN	similarity	between	two	clusters:	Proximity	(similarity)	

between	 the	closest	(most	similar)	two	points,	one	from	each	
cluster	(minimum	pairwise	distance)

• MAX	similarity	between	two	clusters:	Proximity	between	
the	farthest	two	points,	one	from	each	cluster	(maximum	
pairwise	distance)

• Group	average	similarity:	average	pairwise	proximity	of	all	
pairs	of	points,	one	from	each	cluster



Types	of	hierarchical	clustering
• Complete	linkage

– Merge	in	each	step	the	two	clusters	with	the	smallest	
maximum similarity

• Single	linkage
– Merge	in	each	step	the	two	clusters	with	the	smallest	
minimum similarity		



A	divisive	graph-based	
clustering	algorithm



A	graph-based	hierarchical	clustering	
algorithm

• A	cluster	is	a	group	of	nodes	having	more	and	/	or	
better	connections	among	its	members,	than	between	
its	members	and	the	rest	of	the	network

• Cluster	in	graphs/networks:	also	called	community	
structure

• Algorithm	by	Girvan	and	Newman:	Community 
structure in social and biological networks, PNAS 2002



Girvan-Newman	algorithm

• Focus on edges / links that are most ‘between’ clusters
• Edge	betweennessof	an	edge	e	:	fraction	of	shortest	
paths	between	all	pairs	of	nodes,	which	pass	through	e





Girvan-Newman	algorithm

• Edges	between	clusters/communities	are	likely	to	have	
high	betweenness centrality

• Progressively	remove	edges	having	high	betweenness
centrality,	to	separate	clusters	from	one	another



Girvan-Newman	algorithm



Girvan-Newman	algorithm

1. Compute	betweenness centrality	 for	all	edges
2. Remove	the	edge	with	highest	betweenness centrality
3. Re-compute	betweenness centrality	 for	all	edges	affected	by	

the	removal
4. Repeat	steps	2	and	3	until	no	edges	remain

Results	in	a	hierarchical	clustering	tree	(dendrogram)



Density-based	clustering



Density	based	clustering	methods
• Locates	regions	of	high	density,	that	are	separated	
from	one	another	by	regions	of	low	density



DBSCAN
• DBSCAN:	Density	Based	Spatial	Clustering	of	
Applications	with	Noise
– Proposed	by	Ester	et	al.	in	SIGKDD	1996
– First	algorithm	for	detecting	density-based	 clusters

• Advantages	(e.g.,	over	K-means)
– Can	detect	clusters	of	arbitrary	shapes	(while	clusters	
detected	by	K-means	are	usually	globular)

– Robust	to	outliers



DBSCAN:	intuition
• For	any	point	in	a	cluster,	the	local	point	density	
around	that	point	has	to	exceed	some	threshold

• The	set	of	points	in	one	cluster	is	spatially	connected
• Local	point	density	at	a	point	p defined	by	two	
parameters
• ε : radius	for	the	neighborhood	of	point	p:

Nε (p)	:=	{q in	data	set	|	dist(p,	q)	≤ ε} 
• MinPts :	minimum	number	of	points	in	the	given	

neighborhood	Nε (p)



Neighborhood	of	a	point
• ε-Neighborhood	of	a	point	p	: Points	within	a	radius	
of	ε from	the	point	p

• “High	density”:	if	ε-Neighborhood	of	a	point	contains	
at	least	MinPts number	of	points

q p
εε

ε-Neighborhood of p
ε-Neighborhood of q

Density of p is “high” (MinPts = 4)

Density of q is “low” (MinPts = 4)



Divide	points	into	three	types
• Core	point:	A	point	that	has	more	than	a	specified	number	of	

points	(MinPts)	within	its	ε-Neighborhood (points	that	are	at	
the	interior	of	a	cluster)

• Border	point:	has	fewer	than	MinPts points	within	its	ε-
Neighborhood	 (not	a	core	point),	but	falls	within	the	ε-
Neighborhood	of	a	core	point

• Outlier	point:	any	point	that	is	not	a	core	point	nor	a	border	
point



Density-Reachability
• Directly	density-reachable:	A	point	q is	directly	
density-reachable	from	object	p if	p is	a	core	point	
and	q is	in	p’s	ε-neighborhood.

q p
εε

q is directly density-reachable from p
p is not directly density-reachable from q

Density-reachability is not symmetric
MinPts = 4



Density-Reachability
• Density-reachability	 can	be	direct	or	indirect

– Point	p	is	directly	density-reachable	 from	p2
– p2	is	directly	density-reachable	 from	p1
– p1	is	directly	density-reachable	 from	q
– pßp2ßp1ßq	form	a	chain

p

q

p2
p1

MinPts = 7

p is (indirectly) density-reachable from q
q is not density-reachable from p



DBSCAN	algorithm
Input: The data set D

Parameters: ε, MinPts

for each point p in D
if p is a core point and not processed then 

C = {all points density-reachable from p} 
mark all points in C as processed
report C as a cluster

else 
mark p as outlier

end if

end for



Understanding	the	algorithm
• Arbitrary	select	a	point	p

• Retrieve	all	points	density-reachable	 from	pw.r.t.	 ε and	MinPts

• If	p is	a	core	point,	a	cluster	is	formed

• If	p is	a	border	point,	no	points	are	density-reachable	 from	p
and	DBSCAN	 visits	the	next	point	of	the	database

• Continue	the	process	until	all	of	the	points	have	been	processed	
(each	point	marked	as	either	core	or	border	or	outlier)



When	DBSCAN	works	well

ClustersOriginal	Points

• Resistant	to	noise	/	outliers	(note:	partial	clustering)

• Can	handle	clusters	of	different	 shapes	and	sizes

• Number	of	clusters	identified	automatically



When	DBSCAN	does	not	work	well

• Cannot	identify	clusters	of	varying	densities
• Sensitive	to	parameters



Mathematical	details	of	K-means



Randomly	initialize						cluster	centroids

Recap:	K-means	algorithm

Repeat	{
for	 =	1	to	

:=	index	(from	1	to	 )	of	cluster	centroid	
closest	to

for				=	1	to	
:=	average	(mean)	of	points	assigned	to	cluster

}

Cluster	
assignment

Move	
centroid



Objective	function:	Sum	of	Squared	Errors

K:	number	of	clusters

𝛍k:	centroid	of	cluster	k,	k	=	1	… k

m:	number	of	data	points	xi,	i =	1	… m

wik =	1	if	data	point	xi belongs	to	cluster	k,	0	otherwise



The	situation
• If	the	cluster	centroids	were	known,	it	would	be	easy	
to	find	which	point	belongs	to	which	cluster

• If	which	point	belongs	to	which	cluster	were	known,	
it	would	be	easy	to	find	the	cluster	centroids

• But	neither	is	known	– chicken	&	egg	problem



A general	approach	for	such	situations
• Expectation	Maximization
• General	 algorithm

– Initialize	one	set	of	unknowns	randomly
– E-step:	compute	the	other	set	of	unknowns	with	this	initialization
– M-step:	re-compute	the	first	set	of	unknowns
– Repeat	E-step	and	M-step	until	convergence

• Specifically	 for	K-means:
– Initialize	 cluster	centroids	randomly
– E-step:	assigning	the	data	points	to	the	closest	cluster
– M-step:	re-computing/moving	 the	centroid	of	each	cluster



Randomly	initialize						cluster	centroids

K-means	algorithm

Repeat	{
for	 =	1	to	

:=	index	(from	1	to	 )	of	cluster	centroid	
closest	to

for				=	1	to	
:=	average	(mean)	of	points	assigned	to	cluster

}

Cluster	
assignment

Move	
centroid

E-step

M-step



Minimizing	the	Objective	function

Part	1:	E-step	
Minimize	J	w.r.t.	wik and	treat	𝛍k	 as	constant
Update	cluster	assignments	(wik)

Part	2:	M-step
Minimize	J	w.r.t.	𝛍k	and	treat	wik as	constant
Re-compute	the	centroids	(𝛍k)	based	on	the	new	cluster	assignment	



Minimizing	the	Objective	function

Part	1:	E-step	
Minimize	J	w.r.t.	wik and	treat	𝛍k	 as	constant
Update	cluster	assignments	(wik)

So:	assign	the	data	point	xi to	the	‘closest’	cluster,	 judged	by	its	sum	of	squared	
distance	from	the	cluster’s	centroid



Minimizing	the	Objective	function

Part	2:	M-step
Minimize	J	w.r.t.	𝛍k	and	treat	wik as	constant
Re-compute	the	centroids	(𝛍k)	based	on	the	new	cluster	assignment	



Resources	on	Clustering	(free	on	web)
• Data	Clustering:	Algorithms	and	Applications

– Book	by	Charu Aggarwal,	Chandan Reddy

• Community	Detection	in	graphs
– Survey	paper	by	Santo	Fortunato


