CS 60050
Machine Learning

Clustering

Some material borrowed from course materials of Andrew Ng and Jing Gao



Unsupervised learning

Given a set of unlabeled data points / items
Find patterns or structure in the data

Clustering: automatically group the data points /items
into groups of ‘similar’ or ‘related’ points

Main challenges

— How to measure similarity?

— What is the ideal number of clusters? Few larger clusters, or
more number of smaller clusters?



Motivations for Clustering

 Understandingthe data better

— Grouping Web search results into clusters, each of which
captures a particular aspect of the query

— Segment the market or customers of a service

e As precursor for some other application
— Summarization and data compression

— Recommendation



Different types of clustering

e Partitional

— Divide set of items into non-overlapping subsets
— Each item will be member of one subset

* Overlapping

— Divide set of items into potentially overlapping subsets
— Each item can simultaneously belong to multiple subsets



Different types of clustering

* Fuzzy

— Every item belongs to every cluster with a membership
weight between 0 (absolutely does not belong) and 1
(absolutely belongs)

— Usual constraint: sum of weights for each individual item
should be 1

— Convert to partitional clustering: assign every item to that
cluster for which its membership weight is highest



Different types of clustering

* Hierarchical

— Set of nested clusters, where one larger cluster can contain
smaller clusters

— Organized as a tree (dendrogram): leaf nodes are singleton

clusters containing individual items, each intermediate
node is union of its children sub-clusters

— A sequence of partitional clusterings — cut the dendrogram
at a certain level to get a partitional clustering



An example dendrogram
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Different types of clustering

* Complete vs. partial

— A complete clustering assigns every item to one or more
clusters

— A partial clustering may not assign some items to any
cluster (e.g., outliers, items that are not sufficiently similar
to any other item)



Types of clustering methods
* Prototype-based

— Each cluster defined by a prototype (centroid or medoid),
i.e., the most representative point in the cluster

— A cluster is the set of items in which each item is closer
(more similar) to the prototype of this cluster, than to the
prototype of any other cluster

— Example method: K-means



Types of clustering methods
* Density-based

— Assumes items distributed in a space where ‘similar’ items
are placed close to each other (e.g., feature space)

— A cluster is a dense region of items, that is surrounded by a
region of low density

— Example method: DBSCAN



Types of clustering methods
* Graph-based

— Assumes items represented as a graph/network where
items are nodes, and ‘similar’ items are linked via edges

— A cluster is a group of nodes having more and / or better
connections among its members, than between its
members and the rest of the network

— Also called ‘community structure’ in networks

— Example method: Algorithm by Girvan and Newman



We are applying clustering
in this lecture itself.

How?



K-means clustering



K-means

Prototype-based, partitioning technique
Finds a user-specified number of clusters (K)

Each clusterrepresented by its centroid item

There have been extensions where number of
clustersis not needed as input



K-means algorithm

Randomly initialize K cluster centroids 1, o, ..., uxg € R™

Repeat {
fori=1tom

Cluster ¢V :=index (from 1 to K) of cluster centroid
aSS|gnment (Z)
closest to x
Move Tork=1toK
centroid Ik = average (mean) of points assigned to cluster k
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Optimization in K-means

* Considerdata pointsin Euclidean space
* A measure of cluster quality: Sum of Squared Error (SSE)

— Error of each data point: Euclidean distance of the point to its
closest centroid

— SSE: total sum of the squared error for each point

— Will be minimized if the centroid of a cluster is the mean of all
data points in that cluster

e Steps of K-means minimizes SSE (finds a local minima)



Choosing value of K

 Based on domain knowledge about suitable number of
clusters for a particular problem domain

e Alternatively, based on some measure of cluster quality, e.g.,
try for different values of K and choose that value for which

SSE is minimum



Choosing initial centroids

Can be selected randomly, but can lead to poor clustering

Perform multiple runs, each with a different set of randomly
chosen initial centroids, and select that configuration that
yields minimum SSE

Use domain knowledge to choose centroids, e.g., while
clustering search results, select one search result relevant to
each aspect of the query



Importance of choosing initial centroids well
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Similarity/closeness between items

Measure of similarity/closeness between items depends on
the problem domain

Will be performed many times over the course of the
algorithm, hence needs to be efficient

Examples
— Points in Euclidean space = Euclidean distance

— Text documents = cosine similarity between term-vectors



Reducing SSE with post-processing

Finding more clusters will reduce SSE, but sometimes we want
to improve SSE without increasing clusters

K-means has found a local minima; find another “nearby”
clustering with lower SSE (if exists)



Reducing SSE with post-processing

* Techniquesused

— Splitting a cluster, e.g., the cluster with highest SSE, or the
cluster with highest standard deviation of a chosen feature

— Merging two clusters, e.g., the clusters with the closest
centroids



Known problem of K-means

* Sensitiveto outliers that can change the distribution of
the clusters

— A solution: K-Mediods: instead of taking the mean value of
the points in a cluster, use the medoid that is the most
centrally located point in the cluster

e Detected clusters are usually globular (spherical) in
shape; problems in detecting arbitrary-shaped clusters



Hierarchical clustering



Hierarchical clustering

* Bottom-up or Agglomerative clustering
— Start considering each data point as a singleton cluster
— Successively merge clusters if similarity is sufficiently high
— Until all points have been merged into a single cluster

 Top-down or Divisive clustering

— Start with all data points in a single cluster

— lteratively split clusters into smaller sub-clusters if the
similarity between two sub-parts is low



Both Divisive and Agglomerative clustering can
be represented as a Dendrogram
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Basic agglomerative hierarchical
clustering algorithm

Start with each item in a singleton cluster

Compute the proximity/similarity matrix between clusters
Repeat

— Merge the closest/most similar two clusters

— Update the proximity matrix to reflect proximity between
the new cluster and the other clusters

Until only one cluster remains



Proximity/similarity between clusters

* MIN similarity between two clusters: Proximity (similarity)
between the closest (most similar) two points, one from each
cluster (minimum pairwise distance)

* MAX similarity between two clusters: Proximity between
the farthest two points, one from each cluster (maximum
pairwise distance)

* Group average similarity: average pairwise proximity of all
pairs of points, one from each cluster



Types of hierarchical clustering

e Completelinkage

— Merge in each step the two clusters with the smallest
maximum similarity

* Single linkage

— Merge in each step the two clusters with the smallest
minimum similarity



A divisive graph-based
clustering algorithm



A graph-based hierarchical clustering

algorithm

e Aclusterisa group of nodes having more and / or
better connectionsamong its members, than between
its members and the rest of the network

e Clusterin graphs/networks: also called community
structure

* Algorithm by Girvan and Newman: Community
structure in social and biological networks, PNAS 2002



Girvan-Newman algorithm

* Focus on edges / links that are most ‘between’ clusters

* Edge betweenness of an edge e : fraction of shortest
paths between all pairs of nodes, which pass throughe




Edge betweenness centrality

Definition

Locates structurally the “well-connected” edges
If it is located on many shortest paths

BC(€)= Z bvw(e)

V, welV bp w

B,. (e) = the number of shortest paths from Vio W
through e
B, = the total number of shortest paths from Vto W

i \ \R“if S. Wasserman and K. Faust. Social Network Analysis: Methods and
NOVA Applications.Number 8 in Structural analysis in the social sciences. Cambridge
University Press, 1 edition, 1994.
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Girvan-Newman algorithm

* Edgesbetween clusters/communitiesare likely to have
high betweenness centrality

* Progressively remove edges having high betweenness
centrality, to separate clusters from one another



Girvan-Newman algorithm




Girvan-Newman algorithm

Compute betweenness centrality for all edges
Remove the edge with highest betweenness centrality

3. Re-compute betweenness centrality for all edges affected by
the removal

4. Repeat steps 2 and 3 until no edges remain

Results in a hierarchical clustering tree (dendrogram)



Density-based clustering



Density based clustering methods

* Locatesregions of high density, that are separated
from one another by regions of low density
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DBSCAN

 DBSCAN: Density Based Spatial Clustering of
Applicationswith Noise

— Proposed by Ester et al. in SIGKDD 1996
— First algorithm for detecting density-based clusters

 Advantages (e.g., over K-means)

— Can detect clusters of arbitrary shapes (while clusters
detected by K-means are usually globular)

— Robust to outliers



DBSCAN: intuition

For any pointin a cluster, the local point density
around that point has to exceed some threshold

The set of points in one clusteris spatially connected

Local point density at a point p defined by two
parameters

* ¢ :radius for the neighborhood of point p:
N, (p) :={qin data set | dist(p, g) < &}

* MinPts : minimum number of points in the given
neighborhood N, (p)



Neighborhood of a point

e-Neighborhood of a pointp : Points within a radius
of £ from the pointp

“High density”: if e-Neighborhood of a point contains
at least MinPts number of points

e-Neighborhood of p
e-Neighborhood of g

Density of p 1s “high” (MinPts = 4)

Density of g 1s “low” (MinPts = 4)



Divide points into three types

Core point: A point that has more than a specified number of
points (MinPts) within its e-Neighborhood (points that are at
the interior of a cluster)

Border point: has fewer than MinPts points within its &-
Neighborhood (not a core point), but falls within the &-
Neighborhood of a core point

Outlier point: any point that is not a core point nor a border
point



Density-Reachability

* Directly density-reachable: A point g is directly
density-reachable from object p if p is a core point
and g isin p’s e-neighborhood.

q 1s directly density-reachable from p

p 1s not directly density-reachable from q

Density-reachability 1s not symmetric

MinPts =4



Density-Reachability

* Density-reachability can be direct or indirect
— Point p is directly density-reachable from p2
— p2 isdirectly density-reachable from p1
— pl isdirectly density-reachable from g
— p&p2<plégform achain

MinPts =7
5% p is (indirectly) density-reachable from ¢
& g is not density-reachable from p

EL



DBSCAN algorithm

Input: The data setD
Parameters: ¢, MinPts

for each pointp in D

if p is a core pointand not processed then
C = {all points density-reachable from p}
mark all points in C as processed
report C as a cluster

else
mark p as outlier

end if

end for




Understanding the algorithm
Arbitrary select a point p
Retrieve all points density-reachable from p w.rt. € and MinPts
If p is a core point, a cluster is formed

If p is a border point, no points are density-reachable from p
and DBSCAN visits the next point of the database

Continue the process until all of the points have been processed
(each point marked as either core or border or outlier)



When DBSCAN works well
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e Resistant to noise / outliers (note: partial clustering)
e Can handle clusters of different shapes and sizes

e Number of clusters identified automatically



When DBSCAN does not work well

 Cannotidentify clusters of varying densities
* Sensitiveto parameters



Mathematical details of K-means



Recap: K-means algorithm

Randomly initialize K cluster centroids 1, o, ..., uxg € R™

Repeat {
fori=1tom

Cluster ¢V :=index (from 1 to K) of cluster centroid
aSS|gnment (Z)
closest to x
Move Tork=1toK
centroid Ik = average (mean) of points assigned to cluster k



Objective function: Sum of Squared Errors

m K

J = Z Z wir ||z — : (1)

=1 k=1

K: number of clusters
I centroid of clusterk, k=1 ...k
m: number of data points x/, i=1..m

w;, = 1 if data point x’ belongs to cluster k, 0 otherwise



The situation

If the clustercentroids were known, it would be easy
to find which point belongs to which cluster

If which point belongsto which cluster were known,
it would be easy to find the clustercentroids

But neitheris known — chicken & egg problem



A general approach for such situations

* Expectation Maximization

* General algorithm
— Initialize one set of unknowns randomly
— E-step: compute the other set of unknowns with this initialization
— M-step: re-compute the first set of unknowns
— Repeat E-step and M-step until convergence

e Specifically for K-means:
— Initialize cluster centroids randomly
— E-step: assigning the data points to the closest cluster
— M-step: re-computing/moving the centroid of each cluster



K-means algorithm

Randomly initialize K cluster centroids 1, o, ..., uxg € R™
Repeat {
fori=1tom
C'“_Ster c(9) .= index (from 1 to K') of cluster centroid E-step
aSS|gnment (’L)
closestto x
Move Tork=1toK
centroid Mk = average (mean) of points assigned to cluster &
M-step



Minimizing the Objective function

m K
J = Z Z 'u?,'kH;l?i — k| 2 (1)

=1 k=1

Part 1: E-step
Minimize J w.r.t. wy and treat p, as constant
Update cluster assignments (w;,)

Part 2: M-step
Minimize J w.r.t. p,and treat w; as constant
Re-compute the centroids (n,) based on the new cluster assignment



Minimizing the Objective function

m K
J = Z Z wir||z" — pr|? (1)

=1 k=1

Part 1: E-step
Minimize J w.r.t. wy and treat n, as constant
Update cluster assignments (w;,)
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0 otherwise.
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So: assign the data point x' to the ‘closest’ cluster, judged by its sum of squared
distance from the cluster’s centroid



Minimizing the Objective function

m K
J = Z Z wir||z" — pr|? (1)

=1 k=1

Part 2: M-step
Minimize J w.r.t. p,and treat w; as constant
Re-compute the centroids (n,) based on the new cluster assignment

W23 wale - ) =0

é)ltk



Resources on Clustering (free on web)

e Data Clustering: Algorithms and Applications
— Book by Charu Aggarwal, Chandan Reddy

* Community Detection in graphs

— Survey paper by Santo Fortunato



