CS 60050 Machine Learning

Linear Regression

Some slides taken from course materials of Andrew Ng

Dataset of living area and price of houses in a city

Living area ($feet^2$)	Price (1000\$s)
2104	400
1600	330
2400	369
1416	232
3000	540
÷	:

This is a training set.

How can we learn to predict the prices of houses of other sizes in the city, as a function of their living area?

Dataset of living area and price of houses in a city

Living area ($feet^2$)	Price (1000\$s)
2104	400
1600	330
2400	369
1416	232
3000	540
÷ :	:

Example of supervised learning problem.

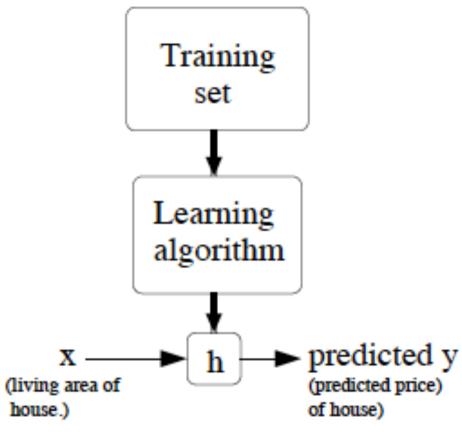
When the target variable we are trying to predict is continuous, regression problem.

Dataset of living area and price of houses in a city

Living area ($feet^2$)	Price (1000\$s)
2104	400
1600	330
2400	369
1416	232
3000	540
:	:

```
m = number of training examples
x's = input variables / features
y's = output variables / "target" variables
(x,y) - single training example
(x<sup>i</sup>, y<sup>i</sup>) - specific example (i<sup>th</sup> training example)
i is an index to training set
```

How to use the training set?



Learn a function h(x), so that h(x) is a good predictor for the corresponding value of y

h: hypothesis function

How to represent hypothesis h?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 θ_i are parameters

- θ_0 is zero condition
- θ₁ is gradient
- θ: vector of all the parameters

We assume y is a linear function of x
Univariate linear regression
How to learn the values of the parameters?

Digression: Multivariate linear regression

Living area (feet ²)	#bedrooms	Price (1000\$s)
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540
:	:	:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

How to represent hypothesis h?

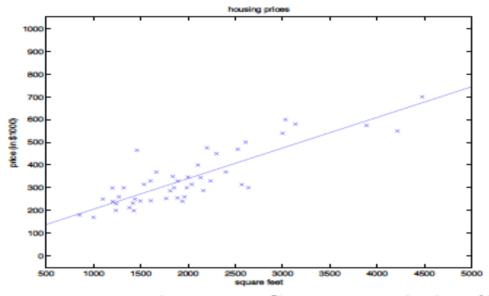
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 θ_i are parameters

- θ_0 is zero condition
- θ_1 is gradient

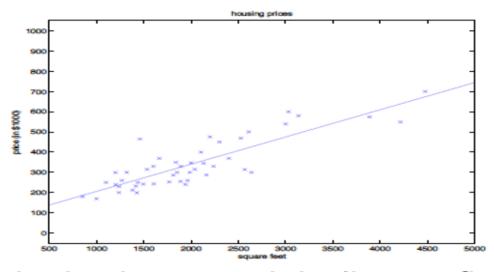
We assume y is a linear function of x Univariate linear regression How to learn the values of the parameters θ_i ?

Intuition of hypothesis function



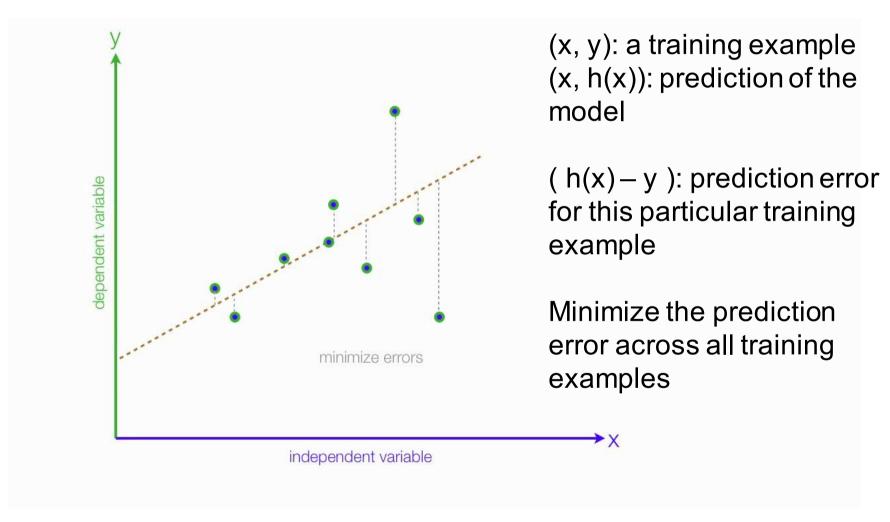
- We are attempting to fit a straight line to the data in the training set
- Values of the parameters decide the equation of the straight line
- Which is the best straight line to fit the data?

Intuition of hypothesis function



- Which is the best straight line to fit the data?
- How to learn the values of the parameters θ_i?
- Choose the parameters such that the prediction is close to the actual y-value for the training examples

How good is the prediction given by the straight line?



Cost function

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

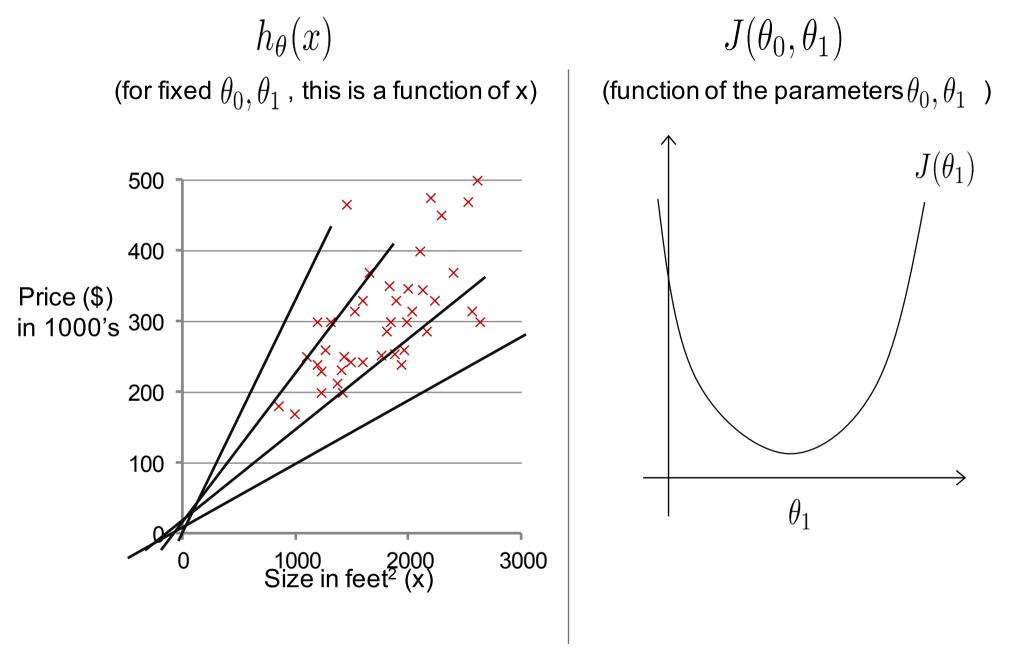
- Measure of how close the predictions are to the actual y-values
- Average over all the m training instances
- Squared error cost function J(θ)
- Choose parameters θ so that J(θ) is minimized

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

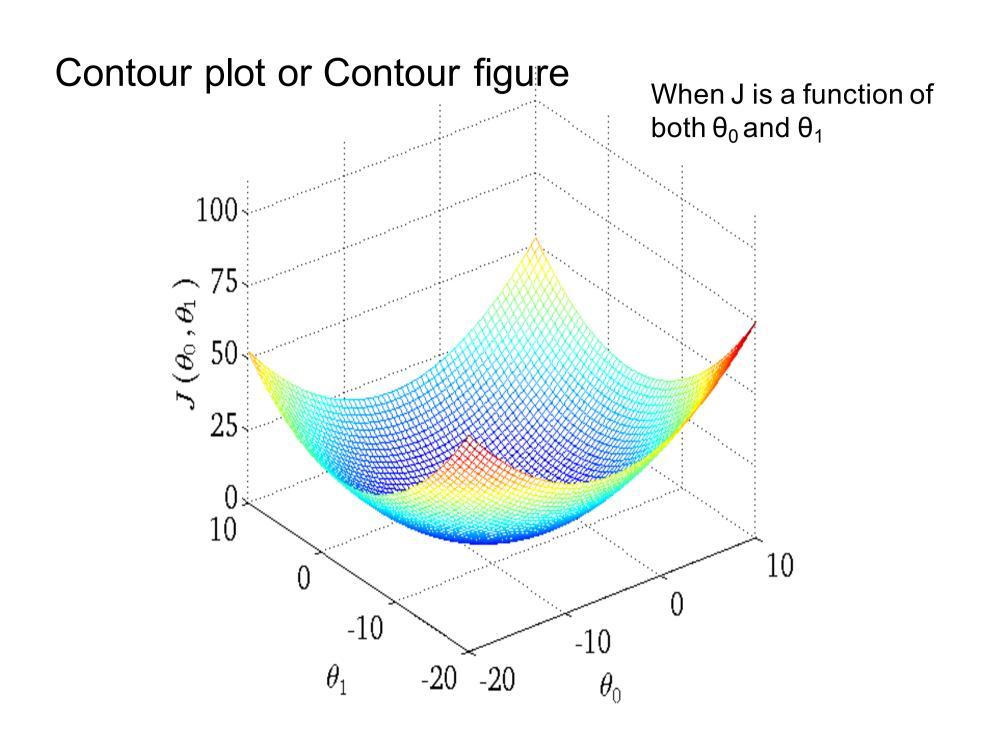
Parameters: θ_0, θ_1

Cost Function: $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

Goal: $\min_{\theta_0, \theta_1} \text{minimize } J(\theta_0, \theta_1)$



For simplicity, assume Θ_0 is a constant



Minimizing a function

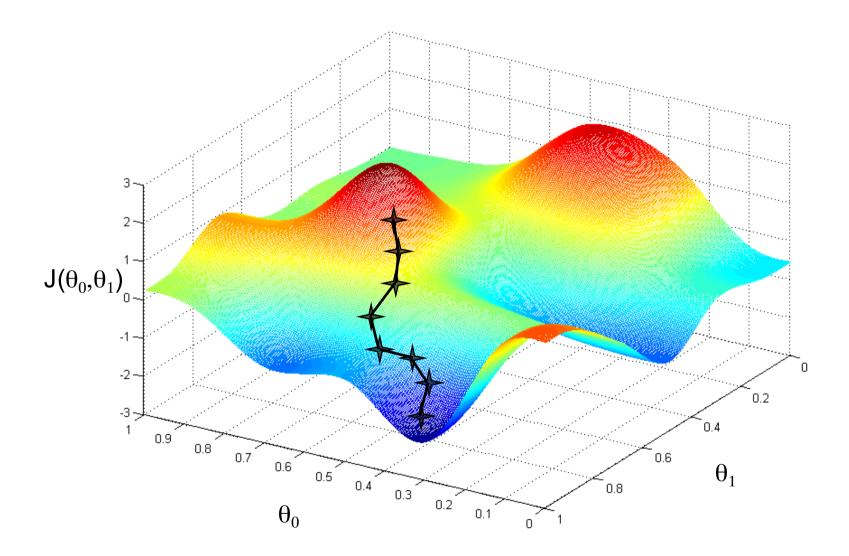
- For now, let us consider some arbitrary function (not necessarily a cost function)
- Analytical minimization not scalable to complex functions of hundreds of parameters
- Algorithm called gradient descent
 - Efficient and scalable to thousands of parameters
 - Used in many applications of minimizing functions

Have some function $J(\theta_0, \theta_1)$

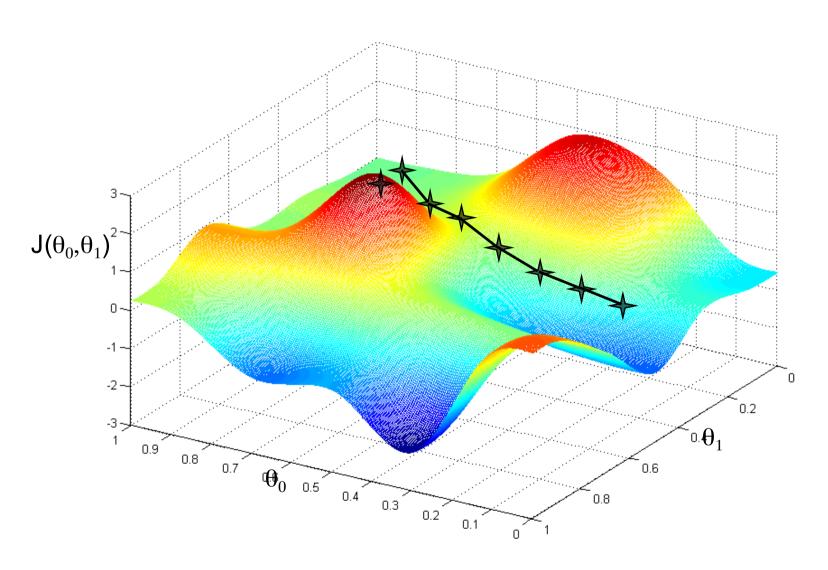
Want
$$\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$$

Outline:

- Start with some θ_0, θ_1
- Keep changing θ_0, θ_1 to reduce $J(\theta_0, \theta_1)$ until we hopefully end up at a minimum
- Iterative method, similar to Newton-Raphson method for solving equations



If the function has multiple local minima, where one starts can decide which minimum is reached



Gradient descent algorithm

```
repeat until convergence { \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \qquad \begin{subarray}{c} (\text{simultaneously update} \\ j = 0 \text{ and } j = 1) \end{subarray} }
```

α is the learning rate – more on this later

Gradient descent algorithm

repeat until convergence {
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{(for } j = 0 \text{ and } j = 1)$$
 }

Correct: Simultaneous update

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$\theta_1 := temp1$$

Incorrect:

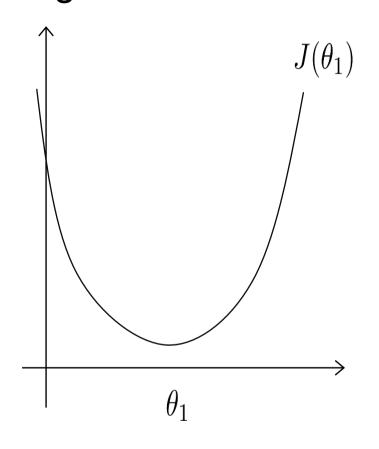
$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_1 := temp1$$

For simplicity, let us first consider a function of a single variable



$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If the derivative is positive, reduce value of θ_1

If the derivative is negative, increase value of θ_1

The learning rate

- Do we need to change learning rate over time?
 - No, Gradient descent can converge to a local minimum, even with the learning rate α fixed
 - Step size adjusted automatically
- But, value needs to be chosen judiciously
 - If α is too small, gradient descent can be slow to converge
 - If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

Gradient descent for univariate linear regression

Gradient descent algorithm

repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

$$(\text{for } j = 1 \text{ and } j = 0)$$

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient descent for univariate linear regression

repeat until convergence {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}$$
 update
$$\theta_0 \text{ and } \theta_1$$
 simultaneously

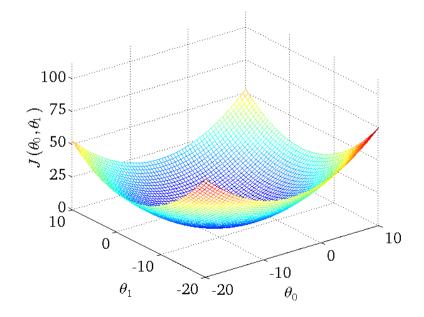
"Batch" Gradient Descent

"Batch": Each step of gradient descent uses all the training examples.

There are other variations like "stochastic gradient descent" (used in learning over huge datasets)

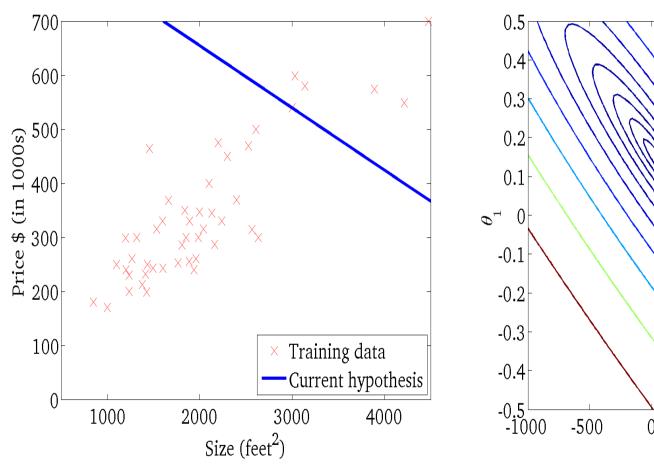
What about multiple local minima?

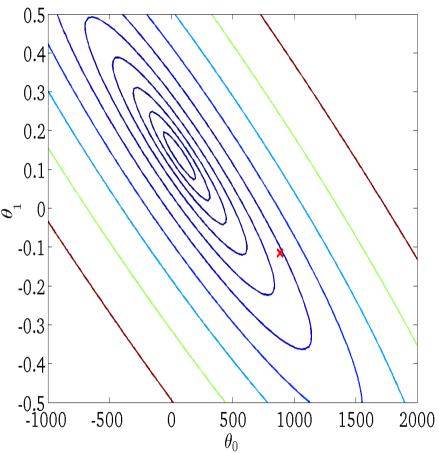
- The cost function in linear regression is always a convex function – always has a single global minimum
- So, gradient descent will always converge



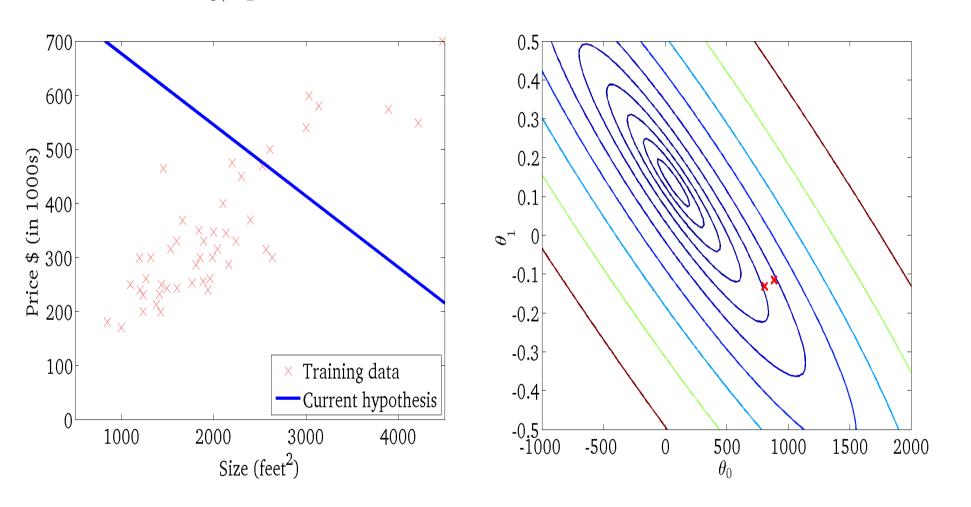
Gradient descent in action

 $J(\theta_0,\theta_1)$ (for fixed θ_0,θ_1 , this is a function of x) (function of the parameters θ_0,θ_1)

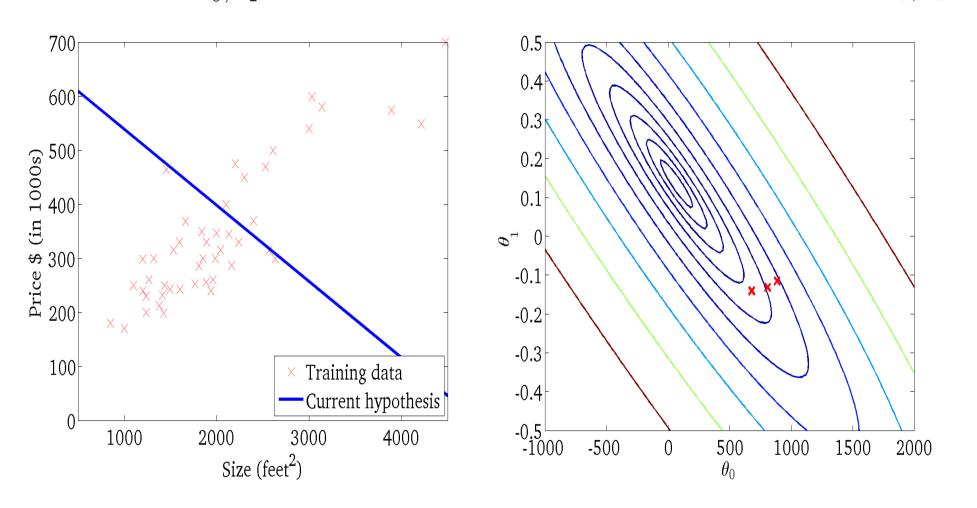




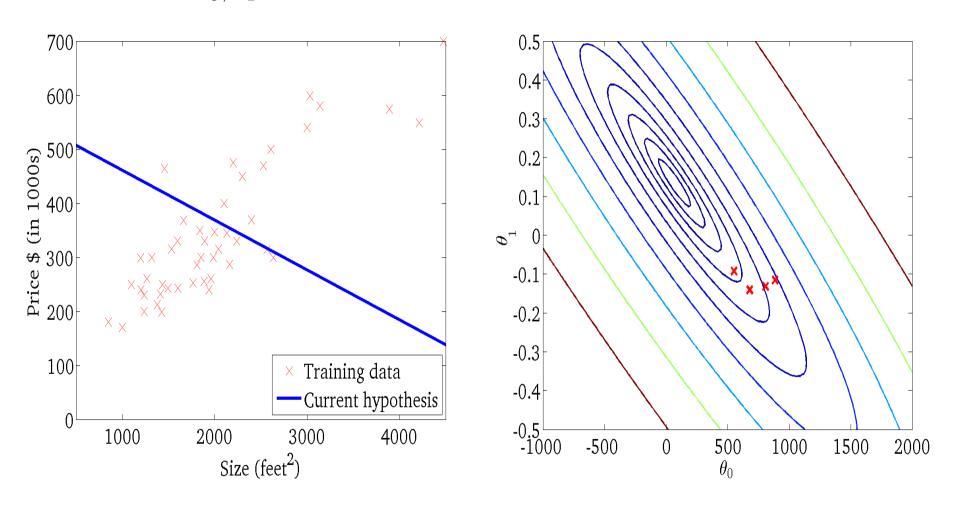
 $J(\theta_0,\theta_1)$ (for fixed θ_0,θ_1 , this is a function of x) (function of the parameters θ_0,θ_1)



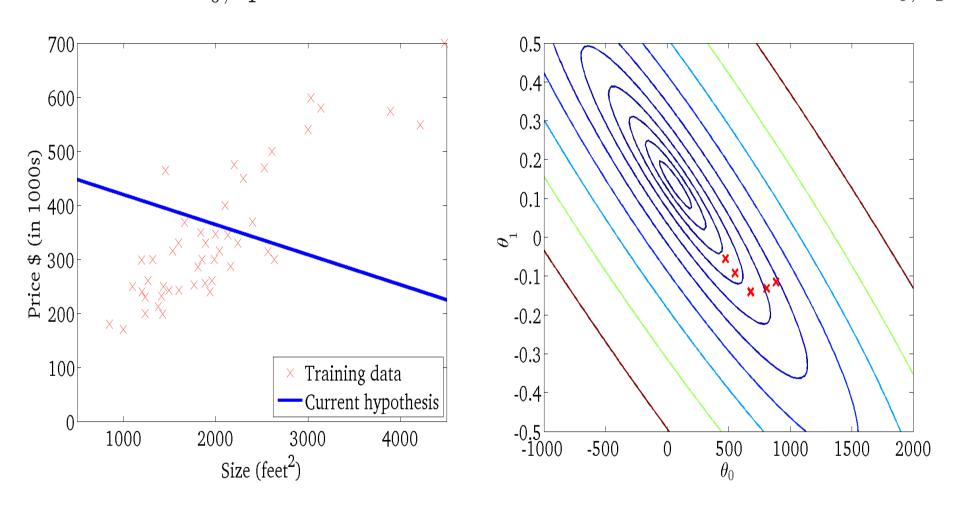
 $J(\theta_0,\theta_1)$ (for fixed θ_0,θ_1 , this is a function of x) (function of the parameters θ_0,θ_1)



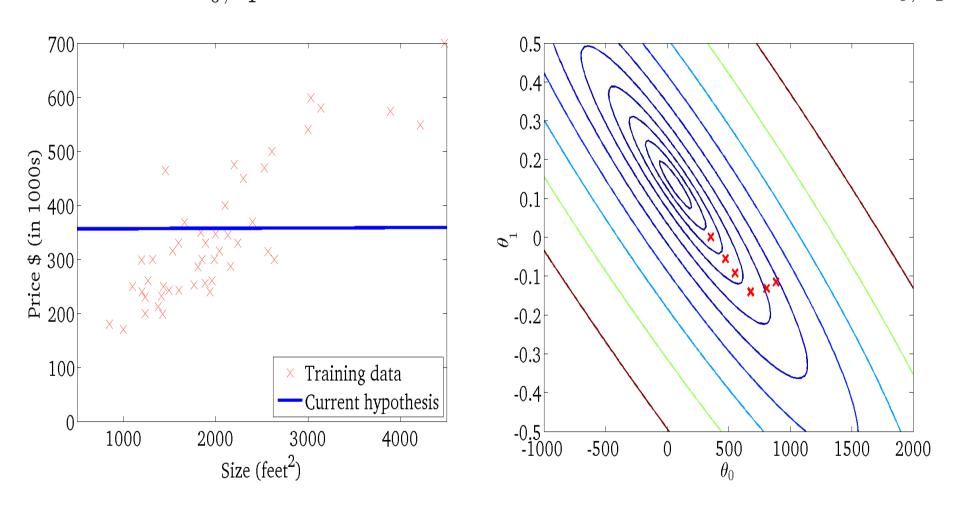
 $J(\theta_0,\theta_1)$ (for fixed θ_0,θ_1 , this is a function of x) (function of the parameters θ_0,θ_1)



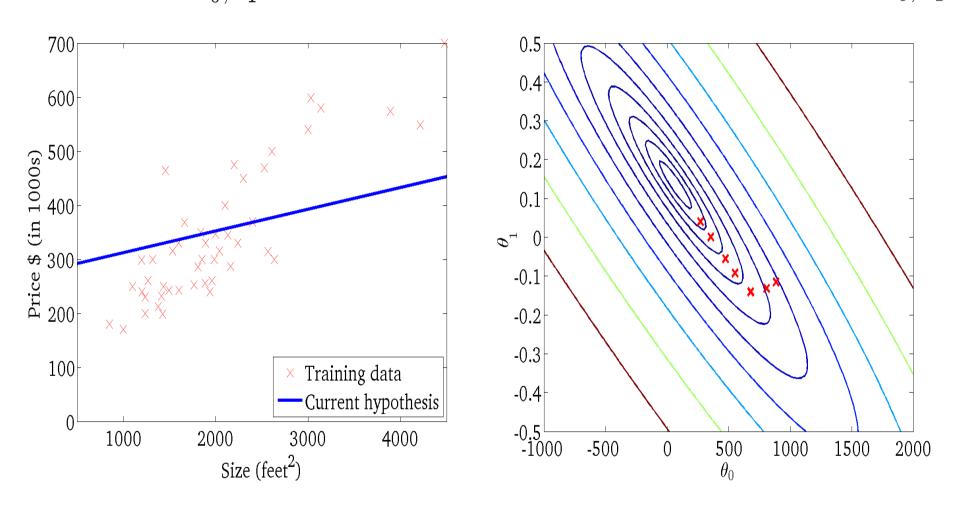
 $J(\theta_0,\theta_1)$ (for fixed θ_0,θ_1 , this is a function of x) (function of the parameters θ_0,θ_1)



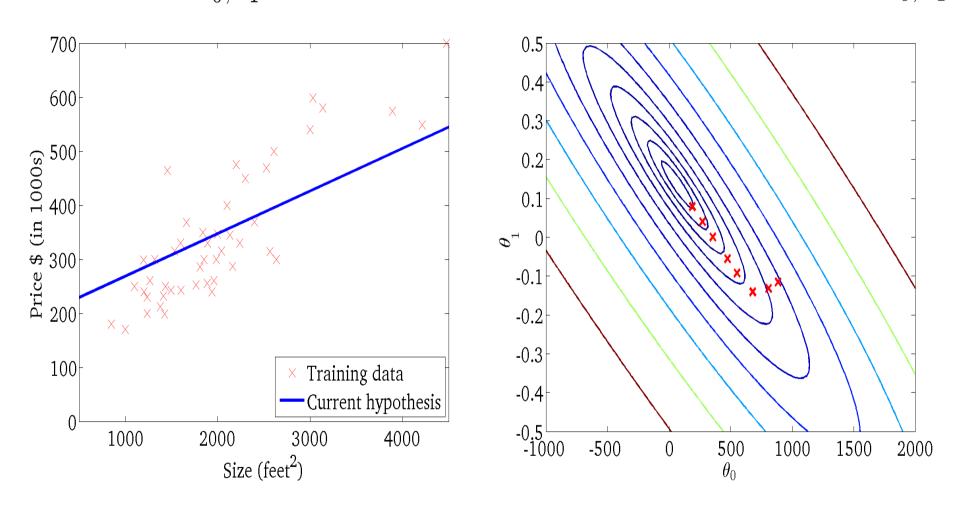
 $h_{\theta}(x) \qquad \qquad J(\theta_0,\theta_1)$ (for fixed θ_0,θ_1 , this is a function of x) (function of the parameters θ_0,θ_1)



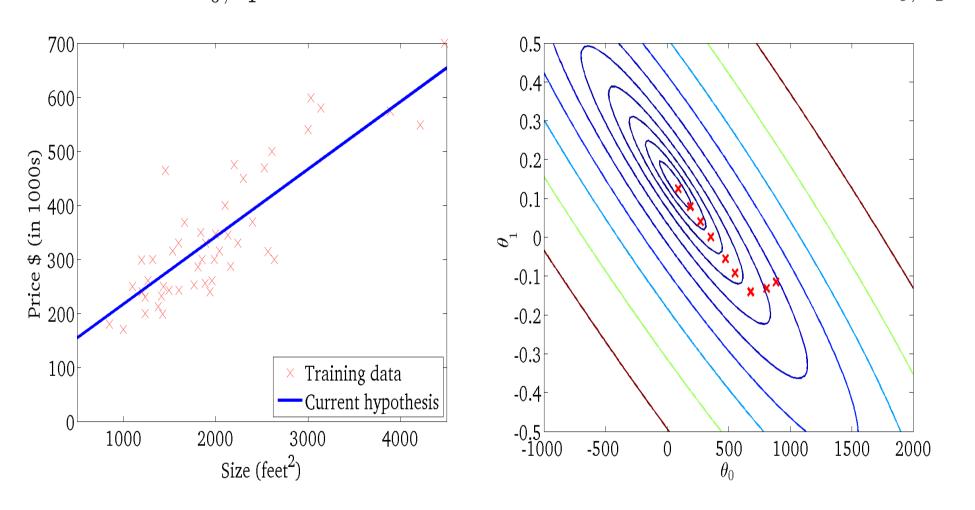
 $h_{\theta}(x) \qquad \qquad J(\theta_0,\theta_1)$ (for fixed θ_0,θ_1 , this is a function of x) (function of the parameters θ_0,θ_1)



 $h_{\theta}(x) \qquad \qquad J(\theta_0,\theta_1)$ (for fixed θ_0,θ_1 , this is a function of x) (function of the parameters θ_0,θ_1)



 $h_{\theta}(x) \qquad \qquad J(\theta_0,\theta_1)$ (for fixed θ_0,θ_1 , this is a function of x) (function of the parameters θ_0,θ_1)



Linear Regression for multiple variables

Multiple features (variables).

Size (feet²)	Number of bedrooms		Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

Multiple features (variables).

Size (feet ²)	Number of bedrooms		Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

Notation:

```
n = number of features. m = number of training examples
```

 $x^{(i)}$ = input (features) of i^{th} training example.

 $x_{j}^{\left(i\right)}$ = value of feature j in i^{th} training example.

Hypothesis:

For univariate linear regression:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

For multi-variate linear regression:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

For convenience of notation, define $x_0 = 1$.

Hypothesis: $h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$

Parameters: $\theta_0, \theta_1, \dots, \theta_n$

Cost function:

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

Repeat
$$\Big\{$$

$$\theta_j:=\theta_j-\alpha\frac{\partial}{\partial\theta_j}J(\theta_0,\dots,\theta_n)$$
 $\Big\}$ (simultaneously update for every $j=0,\dots,n$)

Gradient Descent

Previously (n=1):

Repeat {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)}$$

(simultaneously update θ_0, θ_1)

 $\left. \right\}$

New algorithm $(n \ge 1)$:

Repeat {

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

simultaneously update $heta_i$ for

$$j=0,\ldots,n$$

. .

Gradient Descent

Previously (n=1):

Repeat {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

(simultaneously update θ_0, θ_1)

}

New algorithm $(n \ge 1)$:

Repeat {

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

simultaneously update $\, heta_{i} \,$ for

$$j=0,\ldots,n$$

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=0}^{m} (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

$$\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)}) x_2^{(i)}$$

. . .

Practical aspects of applying gradient descent

Feature Scaling

Idea: Make sure features are on a similar scale.

E.g.
$$x_1$$
 = size (0-2000 feet²)
 x_2 = number of bedrooms (1-5)

Normalization wrt the maximum value:

$$x_1 = \frac{\text{size (feet}^2)}{2000}$$

$$x_2 = \frac{\text{number of bedrooms}}{5}$$

Feature Scaling

Idea: Make sure features are on a similar scale.

E.g.
$$x_1$$
 = size (0-2000 feet²)
 x_2 = number of bedrooms (1-5)

Mean normalization:

Replace x_i with $x_i - \mu_i$ to make features have approximately zero mean (Do not apply to $x_0 = 1$).

Other types of normalization:

$$x_1 = \frac{size - 1000}{2000}$$

$$x_2 = \frac{\#bedrooms - 2}{5}$$

$$-0.5 \le x_1 \le 0.5, -0.5 \le x_2 \le 0.5$$

Is gradient descent working properly?

- Plot how J(θ) changes with every iteration of gradient descent
- For sufficiently small learning rate, J(θ) should decrease with every iteration
- If not, learning rate needs to be reduced
- However, too small learning rate means slow convergence

When to end gradient descent?

- Example convergence test:
- Declare convergence if J(θ) decreases by less than 0.001 in an iteration (assuming J(θ) is decreasing in every iteration)

Polynomial Regression for multiple variables

Choice of features

