CS 60050 Machine Learning

Error analysis and validation

Sources of noise

- While learning a target function using a training set
- Two sources of noise
 - Some training points may not come exactly from the target function: stochastic noise
 - The target function may be too complex to capture using the chosen hypothesis set: deterministic noise
- Generalization error: Model tries to fit the noise in the training data, which gets extrapolated to out-ofsample

Ways to handle noise

- Regularization
 - Constraint the model so that the noise cannot be learnt too well
 - Already discussed

- Validation
 - Check performance on data other than training data

Validation

- Divide given data into training set and test set
 - E.g., 80% train and 20% test
 - Better to select randomly
- Learn parameters using training set, check performance on test set, using measures like accuracy, misclassification rate
- Trade-off: more data for training vs. validation

An example: model selection

- Which order polynomial will best fit a given data?
 Polynomials available: h1, h2, ..., h10
- As if an extra parameter degree of the polynomial is to be learned
- Approach
 - Divide into train and test set
 - Train each hypothesis on train set, measure error on test set
 - Select the hypothesis with minimum test set error

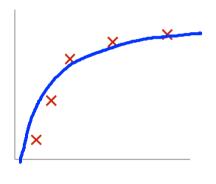
An example: model selection

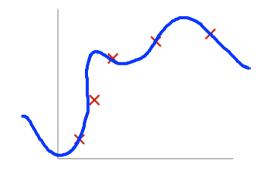
- Problem with the previous approach
 - The test set error we computed is not a true estimate of generalization error, since our extra parameter is fit to the test set

Approach 2

- Divide data into train set (60%), validation set
 (20%) and test set (20%)
- Select that hypothesis which gives lowest error on validation set
- Use test set to estimate generalization error

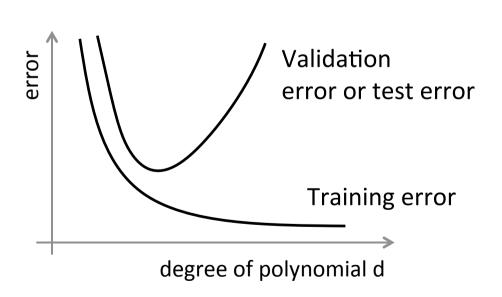
Analysing bias vs. variance





Analysing bias vs. variance

 Suppose your model is not performing as well as expected. Is it a bias problem or a variance problem?



Bias (underfit):
Both training error and validation / test error are high

Variance (overfit): Low training error High validation / test error

Will more training data help?

• A learnt model is not performing as well as expected. Will having more training data help?

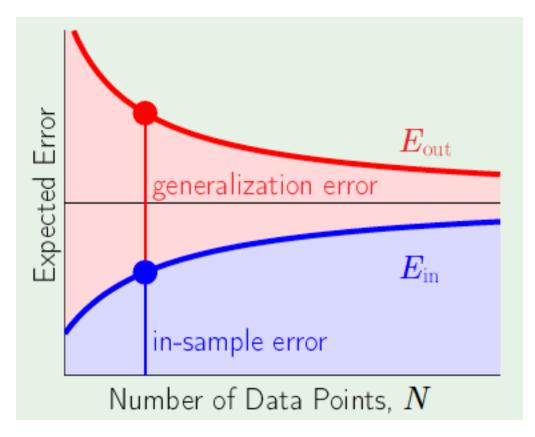
 Note that there can be substantial cost for getting more training data.

Will more training data help?

- A learnt model is not performing as well as expected.
 Will having more training data help?
- Note that there can be substantial cost for getting more training data.
- If model is suffering from high bias, getting more training data will not (by itself) help much.
- If model is suffering from high variance, getting more training data is likely to help

Learning curves

 How do training error (in-sample error) and test or validation error (out-of-sample error) generally vary with number of training points?



Practical approach

- Divide data into training set and validation set
- Start with simple algorithm, train on different amounts of training data, test performance on validation set
- Plot learning curves to decide if more training data, more features likely to help
- Error analysis: Manually examine the examples (in validation set) where algorithm made errors. Any systematic trend in what type of examples it is making errors on?

Skewed classes

- Often the class of interest is a rare class (y=1)
 - Spam emails / social network accounts
 - Cancerous cells
 - Fraud credit card transactions
- Precision: Out of all examples for which model predicted h=1, for what fraction is y=1?
- Recall: Of all examples for which y=1, for what fraction did model correctly predict h=1?

Precision / Recall

		Predicted Label	
		$\hat{y} = 1$	$\hat{y} = -1$
True Label	y = 1	True positive	False negative
	y = -1	False positive	True negative

Precision: (True positive) / (True positive + False positive)

Recall: (True positive) / (True positive + False negative)

Precision vs. Recall: tradeoff

- Predict y=1 if h > some threshold
- Predict y=1 only if highly confident: high precision, lower recall
- Avoid missing too many cases with y=1: high recall, lower precision

F-score: harmonic mean of Precision and Recall

$$2\frac{PR}{P+R}$$