CS 60050
Machine Learning

Feasibility of Learning



When can learning be used?

* A pattern exists

* The pattern cannot be pinned down
mathematically

* There is data about the application



What are we learning?

* An unknown function: target function

« We know the value of the target function for only
some inputs (the training set)

« Two components of learning model
— A hypothesis set

— A learning algorithm, which picks one particular
hypothesis from the hypothesis set

— Hopefully, the selected hypothesis function matches
the target function



UNKNOWN TARGET FUNCTION
f: X=

\

(ideal credit apTroval function)

TRAINING EXAMPLES
(%.5). . (X )5)

(historical records of credit customers)

k LEARNING FINAL
ALGORITHM “ngz",'ES'S

(final credit approval formula)

HYPOTHESIS SET
H

(set of candidate formulas)



Can we actually learn an
unknown function?

* Intuitively, no — the function can behave
arbitrarily outside of the given training set

* |s learning feasible?

« Can we say something about the target function
outside of what we know?



A probabilistic experiment

Consider a bin with red and green marbles
P [pick a red marble] = u
P [pick a green marble] =1 —

We pick N marbles independently
Fraction of red marbles in sample = v

Does v (known) say anything about y (unknown)?
Possibility vs. Probability



Hoeffding’s Inequality

In a big sample (large N), v is probably close to gt (within €).

Formally,

Pllv—pl >e€ < 2e—2N

Sample size N is dampened by €2

The statement “y = v” is P.A.C (probably
approximately correct).



Hoeffding’s Inequality

Pllv—pu| > e < 2e 2N

One of the laws of large numbers

Valid for all N and ¢
Bound does not depend on u (desirable)
Tradeoff: N, €, and the bound

U is unknown, v is known



Connection to Learning

 Bin: the unknown is a number

* Learning: the unknown is the target
functionf: X 2> Y

* How to connect the bin analogy to the
learning problem?



Connection to Learning

Each marble is a point x € X ® (x)+/(x)

Color a marble x green if h(x)=f(x)
Color a marble x red if h(x) # f(x)
Sample analogous to training set

Bin analogous to actual
population

How is the sample generated
from the bin?
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Connection to Learning

® /I(xX)£f(x)

« v: fraction of red marbles in
sample = in-sample error
Ein(h)

« . fraction of red marbles in
population = out-of-sample
error E_(h)

* Hoeffding's inequality:

P[ |Ein(R) —Eout(h)| > e] = 26_2€2N oooooiOOOO




A problem with our formulation
® /(x)+[f(x)

* Both E, (h)and E_,(h) is
decided by the hypothesis h

* No guarantee that E,_(h) will
be small

 We need to find a h for
which v (hence p) is small




Multiple bins = multiple hypotheses
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Another problem with our formulation

« Hoeffding's inequality does not apply to
multiple bins

* If an experiment is tried many times,
probability of an event in some trial can be
much greater than the probability of that
event in a particular trial




Example

 Toss a fair coin 10 times. What is the
probability of getting 10 heads?

 Toss 1000 fair coins 10 times each. What

IS the probability of getting 10 heads with
some coin?




Bounds with multiple bins

* Let g be the hypothesis with minimum in-
sample error

P[ |E|n(g) o Eout(g)‘ > 6]
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or |Ein(]2']\f) - Eout(h'ﬁf)’ > (2 ]

M
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m=1



Bounds with multiple bins

* Let g be the hypothesis with minimum in-
sample error
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The final bound

* Let g be the hypothesis with minimum in-
sample error

P(|Ei(g) — Eou(g)| > €] < 2Me 2N

* M: number of different hypotheses, from
which g is chosen



Till now

* Learning is feasible, in a probabilistic sense

UNKNOWN TARGET FUNCTION PROBABILITY
f: X=0 DISTRIBUTION
\ P on .X

TRAINING EXAMPLES
(%, ¥%,)s > (X ) 1

LEARNING FINAL
- \ALGORITHM i HYPOQEES'S

HYPOTHESIS SET
H




Next

* Two components that connect the learning
problem to a practical application

— Error measures
— Noisy targets



Error measures

* How closely does a hypothesis h resemble
the target function f?
* Error measure E(h, 1)

— Almost always a point-wise definition in terms
of point x: e(h(x), f(x))
— E.g., squared error e = (h(x) — f(x))?
— E.g., binary error e = 1 if h(x) = f(x), O otherwise
 How to go from point-wise to global?



Error measures

In-sample error:

E..(h) :%Ze h(x,), f(x,)

QOut-of-sample error:
Eyi(h) =Ey [e (h(x), f(x))]

» Test data will be selected through a probability
distribution

* Hence, out-of-sample error is an expectation



Learning diagram with point-wise error
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Learning diagram with error function
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How to choose the error measure

* Two types of errors:
— False positive/accept: hypothesis +1, target -1
— False negative/reject: hypothesis -1, target +1

 How do we penalize each type?

f
+1 —1
+1 false accept

h

—1 | false reject



Example: Fingerprint verification

* Input fingerprint, classify as
known identity or intruder

» Application 1: Supermarket
verifies customers for
giving a discount

* Application 2: For entering
into RAW, Gol



Example: Fingerprint verification

* Input fingerprint, classify as
known identity or intruder

f
» Application 1: Supermarket +1 —1
verifies customers for , Hl 0 1
giving a discount —1}710 0

* Application 2: For entering
into RAW, Gol



Example: Fingerprint verification

* Input fingerprint, classify as
known identity or intruder

f
» Application 1: Supermarket +1 —1
verifies customers for , Hl 0 1
giving a discount —1}710 0
f
qgl =]

* Application 2: For entering 01000
into RAW, Gol 2 I




Error measure

* |deally, e(h(x), f(x)) should be defined by
the end-user or domain expert

» Alternatives:
— Something plausible

— Measures which make the learning efficient /
give closed-form solutions, e.g., squared error



Learning diagram with error function
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Noisy targets
* The ‘target function’ is not always a function

* Two identical inputs can lead to two
different behaviors / decisions

— A particular user may rate a particular movie
differently at different times, based on mood

— Given two identical applications for a job / for
credit, one may be selected but not the other



Noisy targets

* Instead of deterministic target function y = f(x),
consider target distribution: y ~ P(y | x)

« Deterministic target is a special case of noisy
target: P(y | xX) is zero except for y = f(x)

* Noisy target = deterministic target plus noise
f(x) = E(y | x) y — f(x)



P(y | x) and P(x)

* P(y | x) is the target distribution that we
are trying to learn

* P(x) is the input distribution that quantifies
relative importance of x in the training
sample (and hopefully also in test set)



P(y | x) and P(x)

P(y | x) is the target distribution
P(x) is the input distribution

Training examples (X4,¥4), (X5,¥5), ---, (XnsYN)
generated by the joint distribution P(x)P(y | x)

We assume each training example (X, y) to
be generated independently

Out-of-sample error is now E, [ e(h(x), y) ]



Final learning diagram
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