CS 60050
Machine Learning

Classification: Logistic Regression

Some slides taken from course materials of Andrew Ng



Classification

Email: Spam / Not Spam?
Online Transactions: Fraudulent (Yes / No)?
Tumor: Malignant / Benign ?

0: “Negative Class” (e.g., benign tumor)
y €{0,1}

1: “Positive Class” (e.g., malignant tumor)
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AN\

(Yes) 14 X XX X
Malignant ?
(No) 0 -3636-3¢5¢ >—
Tumor Size

Threshold classifier output hg(x) at 0.5:

If ho(x) > 0.5, predict “y = 1”

If ho(x) < 0.5, predict “y = 0”
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Classification: y = 0 or 1

hg(x) canbe>10r<0

Logistic Regression: 0 < hy(z) <1
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Logistic Regression Model
Want 0 < hg(z) <1

ho(x) = g( 01 x)
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Interpretation of Hypothesis Output
hg(x) = estimated probability that y = 1 on input x

=[] [l

1 tumorSize
h@ (:IZ) = 0.7

Tell patient that 70% chance of tumor being malignant

“probability thaty = 1, given x,
parameterized by 6”
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Logistic regression

ho(z) = g(0" z)
g(Z) — 1_|_]€;—z

Suppose predict “y = 1“if ho(x) > 0.5

predict “y = 0“ ifhg(z) < 0.5
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Decision Boundary

X5

X X
3 xxX
X X
2 X X
1 X
1 2 3 X4

ho(z) = g(fo + 0121 + Oa22)

Predict “y = 1“if —3+ 21 +22 >0
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Non-linear decision boundaries

x <% ho(x) = g(0g + 6121 + O229
% X —|—(9333% —+ (94513‘%)

x -1 1 x Xl

X | Predict “y = 1“if —1+ 29 +23>0
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Non-linear decision boundaries

X3
x X% ho(x) = g(0o + 0121 + O222
X X —|—83x% + 9456‘%)
x 1 1 % X1
5 * Predict“y =1"if —14+ 22 4+ 22 >0

We can also learn more complex decision boundaries

ho(z) = (6 + 611 + O2x2 + 037

+0,2%3x9 + O35 + Ogxiwe +...)
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Cost function for
Logistic Regression



Training set: {(z'V,y"), (@®,y®), .- (&™), ™)}

Lo
X
m examples ze | ro =1,y € {0,1}
1

How to choose parameters 0 ?
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Cost function
Linear regression: J(0) = L > 1 (hy(zV) — y(z))z
i=1

Squared error cost function:

Cost(hg(z),y?) = L (he(x®) — y(i>)2

However this cost function is non-convex for the hypothesis of
logistic regression.
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Logistic regression cost function

—log(hg(x)) ify=1
Cost(hg(z),y) = { —log(1 % hZ(g;)) if z =0

Cost =0ify=1,hg(x) =1
But as  hg(x) — O
Cost — oo

Captures intuition that if hg(x) = 0O,
(predict P(y = 1|x;60) = 0), but y = 1,
we’ll penalize learning algorithm by a very
large cost.
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Logistic regression cost function

J(0) = L 3" Cost(hg(c?), y®)
1=1

—loo(ho(x ifty=1
Cost(hg(z),y) = { —log(1 é(hzggjgg if z =0

Note: y = 0 or 1 always
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Logistic regression cost function

J(0) = Z Cost(hg(x),y)

= — 113 5D loghy(x) + (1 — y) log (1 — hy(2®))]

1=1

To fit parameters 8 :

mein J(0)

To make a prediction given new z:

Output hg(x) = 1_|_639Tw
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Gradient Descent

J(0) = ‘%[fﬁ y® log he(z®) + (1 — y®) log (1 — hg(x®))]

Want ming J(0):
Repeat {

Hj = 9]’ — &%J(@)

} (simultaneously update all ;)
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Gradient Descent
J(0) = —=[> y W log hg (D) 4 (1 — y D) log (1 — hg(zV))]
i=1
Want ming J(0):
Repeat {
0y 1= b; —a 3 (ho(@) — y )

m’b
} (S|multaneously update all 0,)

Algorithm looks identical to linear regression, but the hypothesis
function is different for logistic regression.
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Thus we can gradient descent to learn parameter values, and
hence compute for a new input:

hg(x) = estimated probability thaty =1 on input x

The estimated probability can be used in many ways:
- Refraining from classifying unless confident

- Ranking items

- Multi-class classification
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Multi-class classification:
onhe vs. all



Multiclass classification

News article tagging: Politics, Sports, Movies, Religion, ...

Medical diagnosis: Not ill, Cold, Flu, Fever

Weather: Sunny, Cloudy, Rain, Shnow
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Binary classification:

X X

Multi-class classification:

A
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One-vs-all (one-vs-rest):

A

A

X

020

X
AA xx)(

X4
Class 1: Z\

Class 2: [
Class 3: X

hy () = P(y = il; )
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One-vs-all

Train a logistic regression classiﬁerhéi)(x) for each
class 7 to predict the probability that y = <.

On a new input Z, to make a prediction, pick the
class 2 that maximizes

max hg:) ()
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Advanced Optimization algorithms

Optimization algorithms:
- Gradient descent
- Conjugate gradient
- BFGS
- L-BFGS

Advantages of the other algorithms:

- No need to manually pick learning rate

- Often converges faster than gradient descent
Disadvantages:

- More complex
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