CS 60050 Machine Learning

Classification: Logistic Regression

Some slides taken from course materials of Andrew Ng

Classification

Email: Spam / Not Spam?

Online Transactions: Fraudulent (Yes / No)?

Tumor: Malignant / Benign?

 $y \in \{0, 1\}$

0: "Negative Class" (e.g., benign tumor)

1: "Positive Class" (e.g., malignant tumor)

Threshold classifier output $h_{\theta}(x)$ at 0.5:

If
$$h_{\theta}(x) \geq 0.5$$
, predict "y = 1"

If
$$h_{\theta}(x) < 0.5$$
, predict "y = 0"

Andrew Ng

Threshold classifier output $h_{\theta}(x)$ at 0.5:

If
$$h_{\theta}(x) \geq 0.5$$
, predict "y = 1"

If
$$h_{\theta}(x) < 0.5$$
, predict "y = 0"

Andrew Ng

Classification: y = 0 or 1

 $h_{\theta}(x)$ can be > 1 or < 0

Logistic Regression: $0 \le h_{\theta}(x) \le 1$

Logistic Regression Model

Want
$$0 \le h_{\theta}(x) \le 1$$

$$h_{\theta}(x) = g(\theta^T x)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

Sigmoid function Logistic function

Interpretation of Hypothesis Output

 $h_{\theta}(x)$ = estimated probability that y = 1 on input x

Example: If
$$x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ \text{tumorSize} \end{bmatrix}$$
 $h_{\theta}(x) = 0.7$

Tell patient that 70% chance of tumor being malignant

"probability that y = 1, given x, parameterized by θ "

Logistic regression

$$h_{\theta}(x) = g(\theta^T x)$$
$$g(z) = \frac{1}{1 + e^{-z}}$$

Suppose predict "y=1" if $h_{\theta}(x) \geq 0.5$

predict "
$$y = 0$$
" if $h_{\theta}(x) < 0.5$

Decision Boundary

Predict "
$$y = 1$$
" if $-3 + x_1 + x_2 \ge 0$

Non-linear decision boundaries

Non-linear decision boundaries

We can also learn more complex decision boundaries

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_1^2 x_2 + \theta_5 x_1^2 x_2^2 + \theta_6 x_1^3 x_2 + \dots)$$

Andrew Ng

Cost function for Logistic Regression

Training set: $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \cdots, (x^{(m)}, y^{(m)})\}$

m examples
$$x \in \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x_n \end{bmatrix}$$
 $x_0 = 1, y \in \{0, 1\}$ $h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

How to choose parameters θ ?

Cost function

Linear regression:
$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Squared error cost function:

$$Cost(h_{\theta}(x^{(i)}), y^{(i)}) = \frac{1}{2} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

However this cost function is non-convex for the hypothesis of logistic regression.

Logistic regression cost function

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Cost = 0 if
$$y = 1, h_{\theta}(x) = 1$$

But as $h_{\theta}(x) \to 0$
 $Cost \to \infty$

Captures intuition that if $h_{\theta}(x) = 0$, (predict $P(y = 1|x; \theta) = 0$), but y = 1, we'll penalize learning algorithm by a very large cost.

Logistic regression cost function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$
$$\operatorname{Cost}(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Note: y = 0 or 1 always

Logistic regression cost function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$
$$= -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

To fit parameters θ :

$$\min_{\theta} J(\theta)$$

To make a prediction given new x:

Output
$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Gradient Descent

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

Want $\min_{\theta} J(\theta)$:

Repeat {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

 $\{$ (simultaneously update all $heta_j$)

Gradient Descent

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

Want $\min_{\theta} J(\theta)$:

Repeat
$$\{$$

$$\theta_j := \theta_j - \underline{\alpha} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$
 (simultaneously update all θ_j)

Algorithm looks identical to linear regression, but the hypothesis function is different for logistic regression.

Thus we can gradient descent to learn parameter values, and hence compute for a new input:

 $h_{\theta}(x)$ = estimated probability that y = 1 on input x

The estimated probability can be used in many ways:

- Refraining from classifying unless confident
- Ranking items
- Multi-class classification

Multi-class classification: one vs. all

Multiclass classification

News article tagging: Politics, Sports, Movies, Religion, ...

Medical diagnosis: Not ill, Cold, Flu, Fever

Weather: Sunny, Cloudy, Rain, Snow

Binary classification:

Multi-class classification:

One-vs-all (one-vs-rest):

Class 2:

Class 3: X

$$h_{\theta}^{(i)}(x) = P(y = i|x;\theta)$$
 $(i = 1, 2, 3)$

Andrew Ng

One-vs-all

Train a logistic regression classifier $h_{\theta}^{(i)}(x)$ for each class i to predict the probability that y=i.

On a new input x, to make a prediction, pick the class i that maximizes

$$\max_{i} h_{\theta}^{(i)}(x)$$

Advanced Optimization algorithms

Optimization algorithms:

- Gradient descent
- Conjugate gradient
- BFGS
- L-BFGS

Advantages of the other algorithms:

- No need to manually pick learning rate
- Often converges faster than gradient descent

Disadvantages:

- More complex