
Scheduling in Linux – Part 2

Acknowledgement

The example of CFS is borrowed from the slides of the same course offered by Prof. Sandip
Chakraborty in earlier years (very slight changes done)

The materials for some of the other slides are borrowed from the same source

Scheduling SCHED_NORMAL class

So what was wrong with O(1)?
 Timeslice allocations across priorities were disproportionate, huge

difference in allocated timeslices

 Why is this a problem?

 Low priority tasks cause frequent context switches, even if there are no other
processes
 Suppose that there are two processes with priority 130, will cause context

switches every 50 millisecond unnecessarily

 High priority batch tasks can cause interactive tasks to suffer
 Suppose that there are two batch processes with priority 110, interactive jobs

will not get a chance to run for long
 Dynamic priority increase will still take time to catch up

 Fixed timeslice based on priority is not good
 Ignored the current load on the CPU

Completely fair Scheduler (CFS)
 Introduced in Kernel version 2.6.23 (2007)
 Default scheduler for a new task
 Major Idea
 To select the task to run
 Choose a task that has used the CPU less so far

 To decide the timeslice
 Calculate how long a task should run as a function of the total number of currently

runnable processes and their priorities
 So no fixed timeslice, depends on other tasks in the runqueue

 Trying to be fair to everyone

Selecting a Task to Run
 Consider two processes, a text editor and a simulation job
 Ideal proportion of CPU: 50%
 Text editor will not use its 50% always
 But will need the CPU immediately when it wants
 Will use it for a short time and then wait again

 Simulation job can use more than 50% when the text editor is not using it
 But must relinquish immediately whenever text editor wants it

 CFS Idea
 Allocate the CPU to a process which has used it less so far
 So the text editor will get scheduled as soon as it wants the CPU

 But a simple implementation does not take care of priorities
 So weight the runtime with the priority
 Keep track of virtual runtime (not exact physical runtime) of each process
 At every scheduling tick, if a process has run for p milliseconds, set

vruntime += p*(weight of the process)
 Weight increases with nice value of a process

 At any point of time, choose the process with the smallest vruntime
 Processes with higher nice values have faster increase in vruntime, therefore

are chosen later (lower priority as it should be) and vice-versa
 When a process sleeps, its vruntime remains unchanged.

 Weight for each nice value is defined statically

static const int prio_to_weight[40] = {
/* -20 */ 88761, 71755, 56483, 46273, 36291,
/* -15 */ 29154, 23254, 18705, 14949, 11916,
/* -10 */ 9548, 7620, 6100, 4904, 3906,
/* -5 */ 3121, 2501, 1991, 1586, 1277,
/* 0 */ 1024, 820, 655, 526, 423,
/* 5 */ 335, 272, 215, 172, 137,
/* 10 */ 110, 87, 70, 56, 45,
/* 15 */ 36, 29, 23, 18, 15,

};

 What is the weight of a process used?
 (weight for nice value 0)/(weight for nice value of the process)

= 1024/(weight for nice value of the process)

 Why are the weights like this
 Ensures that a nice value difference of 1 causes around 10% difference in CPU

share
 Example: Consider two processes A and B at nice 0 and nice 1
 Share of A = 1024/(1024+820) = 55%
 Share of B = 820/(1024+820) = 45%

 Another example: A and B at nice 0 and 2
 Share of A = 1024/(1024+655) = 61%
 Share of B = 655/(1024+820) = 39%

100

100

200

200 300

300

400

400

500

500 600
Real Time (Milliseconds)

V
ir

tu
al

 T
im

e
(M

ill
is

ec
on

ds
)

Nice 0 (Prio 120)

Nice -5 (Prio 115)

Nice +5 (Prio 125)

Choosing the Timeslice
 Calculate how long a task should run as a function of the total number of

currently runnable process
 Run the process for a time slice proportional to its weight divided by the weight

of all other runnable processes
 Use the priority value in the weight to ensure that a higher priority job gets

more CPU time proportional to the priority of the other processes in the
runqueue

 Target Latency
 A time set by CFS within which it will schedule all runnable processes
 This is the period whose proportion the processes are getting

 Default is 20 milliseconds

 Processes at same priority
 If target latency is T milliseconds and there are N processes, each gets T/N

milliseconds
 Example: the targeted latency is 20 milliseconds and
 2 runnable tasks, each will run for 10 milliseconds
 4 runnable tasks, each will run for 5 milliseconds
 20 runnable tasks, each will run for 1 millisecond.

 What if N becomes very large?
 Timeslice is too small, context switch will overwhelm the actual running time
 CFS sets lower limit, called minimum granularity (default 1 millisecond)
 If timeslice goes below this, target latency is increased dynamically

 Processes at different priority;
 Assign timeslices in proportion to their priority levels
 Assume two processes having priority values (niceness) 5 and 10, respectively
 Default target time (period) = 20ms
 Makes a mapping from niceness to weights (table shown already)

 5 translates to 335
 10 translated to 110

 Time allocated to the process with niceness 5 = 335/(335+110) x 20ms = 15.056
ms

 Time allocated to the process with niceness 10 = 110/(335+110) x 20ms = 4.944
ms

Implementation Issues
 The runqueue is maintained as a single Red-Black tree organized with the

virtual runtimes
 Leftmost node gives the next process to run (O(log n))

 So processes move from left to right of the tree as they execute
 Higher priority processes move slower than lower priority process, increasing

their chance to be rescheduled sooner
 When are new processes inserted into the tree?
 When a new process is created
 When a process becomes runnable

 With what initial vruntime?
 The maximum of the minimum vruntimes seen so far (will see later what this

means)

Virtual Runtime

Less CPU-time
More need of the CPU

More CPU-time
Less need of the CPU

CFS in ActionSelect the Scheduling Entity (SE)
with minimum vruntime for

execution

Less CPU-time
More need of the CPU

More CPU-time
Less need of the CPU

21

12 28

6 15 32

CFS in Action

CFS in Action
Dequeue the SE for execution

Less CPU-time
More need of the CPU

More CPU-time
Less need of the CPU

21

12 28

6 15 32

CFS in Action
Dequeue the SE for execution

Less CPU-time
More need of the CPU

More CPU-time
Less need of the CPU

21

12 28

6
15 32

curr

CFS in ActionRecompute min_vruntime as the
vruntime of the leftmost node of

the RB tree

Less CPU-time
More need of the CPU

More CPU-time
Less need of the CPU

21

12 28

6
15 32

curr

CFS in Action
Recompute min_vruntime as the
vruntime of the leftmost node of

the RB tree
min_vruntime = 12

Less CPU-time
More need of the CPU

More CPU-time
Less need of the CPU

21

12 28

6
15 32

curr

CFS in ActionSet the dynamic
timeslice for the SE

pointed by curr

Less CPU-time
More need of the CPU

More CPU-time
Less need of the CPU

21

12 28

15 32
6curr

CFS in ActionSet the dynamic
timeslice for the SE

pointed by curr

Less CPU-time
More need of the CPU

More CPU-time
Less need of the CPU

21

12 28

15 32
6curr

slice = sched_period x (se->load.weight / cfs_rq->load)

CFS in ActionSet the dynamic
timeslice for the SE

pointed by curr

Less CPU-time
More need of the CPU

More CPU-time
Less need of the CPU

21

12 28

15 32
6curr

slice = sched_period x (se->load.weight / cfs_rq->load)

Remember, that the
sched_period is

dynamic

CFS in ActionSet the dynamic
timeslice for the SE

pointed by curr

Less CPU-time
More need of the CPU

More CPU-time
Less need of the CPU

21

12 28

15 32
6curr

vruntime = slice x (NICE_0_LOAD / se->load.weight)

CFS in ActionExecute the process
till slice

Less CPU-time
More need of the CPU

More CPU-time
Less need of the CPU

21

12 28

15 32
6curr

CFS in Action

Less CPU-time
More need of the CPU

More CPU-time
Less need of the CPU

21

12 28

15 32
6curr

Once the execution is over,
update the vruntime of the

process (if the process is still
runnable)

CFS in Action
Once the execution is over,
update the vruntime of the

process (if the process is still
runnable)

Less CPU-time
More need of the CPU

More CPU-time
Less need of the CPU

21

12 28

15 32
14curr

CFS in ActionCheck with the cached
value of min_vruntime

min_vruntime = 12

Less CPU-time
More need of the CPU

More CPU-time
Less need of the CPU

21

12 28

15 32
14curr

CFS in Action
Check with the cached
value of min_vruntime

min_vruntime = 12
Needs preemption and

context switching

Less CPU-time
More need of the CPU

More CPU-time
Less need of the CPU

21

12 28

15 32
14curr

CFS in ActionInsert the SE in the RB
tree with the updated

vruntime

Less CPU-time
More need of the CPU

More CPU-time
Less need of the CPU

21

12 28

15 32
14curr

CFS in ActionInsert the SE in the RB
tree with the updated

vruntime

Less CPU-time
More need of the CPU

More CPU-time
Less need of the CPU

21

12 28

15 32

14

curr

CFS in ActionInsert the SE in the RB
tree with the updated

vruntime

Less CPU-time
More need of the CPU

More CPU-time
Less need of the CPU

21

12 28

15 32

14

curr

CFS in Action
Extract the leftmost
node for scheduling,

update min_vruntime,
rebalance the tree

Less CPU-time
More need of the CPU

More CPU-time
Less need of the CPU

21

12 28

15 32

14

curr

CFS in Action
Extract the leftmost
node for scheduling,

update min_vruntime,
rebalance the tree

Less CPU-time
More need of the CPU

More CPU-time
Less need of the CPU

21

12

2815

3214curr

Behavior of Types of Tasks with CFS
 Interactive Tasks
 Uses less CPU time, so vruntime stays low, so stays more on left side of the tree
 Scheduled again earlier

 Batch Tasks
 Uses more CPU time, so vruntime is high, so moves more to the right side of the

tree
 Scheduled later

 So CFS favors interactive tasks

Group Scheduling
 Consider that you have 2 processes initially
 So each gets 50% CPU

 Now the first task spawns 100 threads
 Total 102 tasks, CPU is shared between them
 So second process gets very little CPU, not fair

 CFS allows Group Scheduling for such cases
 A set of tasks are scheduled as a group
 CPU allocation is fair between groups

 We will not look at this in this course

 We will look at Linux implementation of CFS and associated routines next

	Scheduling in Linux – Part 2
	Slide Number 2
	Scheduling SCHED_NORMAL class
	So what was wrong with O(1)?
	Slide Number 5
	Completely fair Scheduler (CFS)
	Selecting a Task to Run
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Choosing the Timeslice
	Slide Number 13
	Slide Number 14
	Implementation Issues
	Slide Number 16
	CFS in Action
	CFS in Action
	CFS in Action
	CFS in Action
	CFS in Action
	CFS in Action
	CFS in Action
	CFS in Action
	CFS in Action
	CFS in Action
	CFS in Action
	CFS in Action
	CFS in Action
	CFS in Action
	CFS in Action
	CFS in Action
	CFS in Action
	CFS in Action
	CFS in Action
	Behavior of Types of Tasks with CFS
	Group Scheduling
	Slide Number 38

