
Scheduling in Linux – Part 1

Acknowledgement

The example of O(1) scheduler is borrowed from the slides of the same course offered by
Prof. Sandip Chakraborty in earlier years (very slight changes done)

The materials for some of the other slides are borrowed from the same source

Types of Tasks
 Interactive
 Requires fast response time
 May not require CPU for long durations, but when it needs the CPU, it should be

given asap
 So requires CPU in small bursts

 Ex: GUI tasks, Word processing, making a powerpoint slide,…
 Batch
 Requires long CPU times, but response time is not very important
 Throughput is more important
 Ex: scientific computations, …

 Real Time
 Required to be completed within some time

Goals of a Scheduler
 Real time tasks should have higher priority over other tasks
 A higher priority job should run as soon as possible
 Lower priority jobs should not be starved by higher priority jobs
 Interactive tasks should have fast response time and should not be prempted

while running
 Context switches should be reduced

Process Priorities in Linux
 0-99: real time tasks
 Higher value means higher priority

 100 – 139: non-real time tasks
 Actually processes get a nice value between -20 to +19
 -20 maps to 100
 +19 maps to 139
 Higher nice value means lower priority (you are being “nice” to other processes)

 Default nice value of a process is 0
 Maps to 120

 Thus, complete internal range of priority values of Linux is 0-139

Scheduling Classes
 Every process is attached to a scheduling class
 Five scheduling classes (in order of lower to higher priority)
 Idle (/kernel/sched/idle.c)
 Fair (/kernel/sched/fair.c)
 Real time (/kernel/sched/rt.c)
 Deadline (/kernel/sched/deadline.c)

 A task in rt class will always preempt a task in fair class, which will always
preempt the idle task etc.

 There is also a stop class in the list of scheduling classes for use in stopping the
cpu for some specific cases (highes priority class)

Scheduling Policies
 Every class has one or more policies associated with it
 For idle class
 SCHED_IDLE

 For some very low priority background processes

 For fair class
 SCHED_OTHER/SCHED_NORMAL
 SCHED_BATCH

 For real time class
 SCHED_FIFO
 SCHED_RR

 For deadline class
 SCHED_DEADINE

 Scheduling policies have associated algorithms
 Ex: for fair class, SCHED_NORMAL policy, completely fair scheduler (CFS) is

the algorithm

 We will study SCHED_NORMAL only in detail
 Will come back and talk about the other scheduling classes and policies a bit

at the end

Older Linux Schedulers

Genesis (1991)
 Kernel version 0.01
 A single queue of runnable processes, default is 32 process
 The scheduler iterates over the entire queue to select a task to run
 Check if any alarm is raised for a task, if yes, mark for processing
 Also move the tasks from waiting to running state if alarm raised

 Find the task with the largest unused timeslice and schedule it
 If no such process
 Assign all processes new timeslice values based on priority

 Higher priority gets larger timeslice
 Schedule the one with the largest timeslice

 Very simple, but O(n)
 Did not scale as systems became more powerful and complex

1 void schedule(void) {
2 int i,next,c;
3 struct task_struct ** p;
4
5 /* check alarm, wake up any interruptible tasks
6 that have got a signal */
7 for(p = &LAST_TASK ; p > &FIRST_TASK ; --p)
8 if (*p) {
9 if ((*p)->alarm && (*p)->alarm < jiffies) {
10 (*p)->signal |= (1<<(SIGALRM-1));
11 (*p)->alarm = 0;
12 }
13 if ((*p)->signal && (*p)->state==TASK_INTERRUPTIBLE)
14 (*p)->state=TASK_RUNNING;
15 }
16

17 /* this is the scheduler proper: */
18 while (1) {
19 c = -1;
20 next = 0;
21 i = NR_TASKS;
22 p = &task[NR_TASKS];
23 while (--i) {
24 if (!*--p)
25 continue;
26 if ((*p)->state == TASK_RUNNING && (*p)->counter > c)
27 c = (*p)->counter, next = i;
28 }
29 if (c) break;
30 for(p = &LAST_TASK ; p > &FIRST_TASK ; --p)
31 if (*p)
32 (*p)->counter = ((*p)->counter >> 1) + (*p)->priority;
33 }
34 switch_to(next);
35 }

 From comments in Genesis schedule() function

“'schedule()' is the scheduler function. This is GOOD CODE! There probably won't be
any reason to change this, as it should work well in all circumstances (ie gives IO-
bound processes good response etc)…”.

O(N) Scheduler
 From Kernel versions 2.4 onwards, till before 2.6
 Similar to the Genesis scheduler
 Main change is in the metric used for selecting the next process – Goodness of

a process
 Goodness of a process is calculated as the number of clock-ticks a task had left

plus some weight based on the task’s priority; returns integer values
 -1000: Never select this task to run
 positive number: The goodness value, larger the better
 +1000: A real time process

 No preemption of running process
 So a real time task coming cannot preempt a simple user process

 Has the same problem of scalability
 Needs to loop through all processes
 Goodness computations were costly
 Runqueues can still incur significant locking overhead as no. of processes

increases
 Does not scale to multiprocessors
 Single global queue suffers from ping-pong effect

O(1) Scheduler
 Introduced in Kernel Version 2.6.0 (2003)
 Introduced
 The priority scale (0-139) we discussed and the separation between normal and

real time tasks
 Early preemption:A new runnable task of higher priority can preempt the

currently running process of lower priority
 Dynamic priority for considering interactivity
 Decided based on recent interactivity (how often the process used the CPU in the

past)

 Separate runqueues for each CPU

 Timeslice given for each process
 For priority < 120, timeslice = (140 – priority)*20 milliseconds

otherwise, timeslice = (140 – priority)*5 milliseconds
 Two sets of queues, Active and Expired
 Each set has multiple queues, one for each priority
 So total 140 queues in each set

 At any point of time, schedule from the active set
 A process moves to the expired set when if it uses up its timeslice
 Except in some cases, will discuss

 A new process gets added to the expired set

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

Timeslice available

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

Timeslice complete

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

5

6

7

8

9 10 11

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

5

6

7

8

9 10 11

Process the array from
top to bottom in
increasing order of the
priority value

MAX_PRI
O

MIN_PRIO

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

5

6

7

8

9 10 11

Start scheduling the
processes in their
priority order

MAX_PRI
O

MIN_PRIO

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

5

6

7

8

9 10 11

Timeslice for a process
is calculated from its
priority

Prio < 120
T = (140-Prio)*20

Prio ≥ 120
T = (140-Prio)*5

MAX_PRI
O

MIN_PRIO

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

5

6

7

8

9 10 11

Timeslice for a process
is calculated from its
priority

Prio < 120
T = (140-Prio)*20

Prio ≥ 120
T = (140-Prio)*5

MAX_PRI
O

MIN_PRIO

T = 139 * 20 = 2780

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

5

6

7

8

9 10 11

The process starts
executing

MAX_PRI
O

MIN_PRIO

T = 139 * 20 = 2780

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

5

6

7

8

9 10 11

The process starts
executing

Timer Interrupts at
2780 clock tick

MAX_PRI
O

MIN_PRIO

T = 139 * 20 = 2780

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

5

6

7

8

9 10 11

The priority of the
process is recalculated
- Niceness
- Interactivity

MAX_PRI
O

MIN_PRIO

T = 139 * 20 = 2780

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

5

6

7

8

9 10 11

The process is moved
to the expired array

MAX_PRI
O

MIN_PRIO

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

5

6

7

8

9 10 11

Context switch to the
next process for the
same priority runqueue

MAX_PRI
O

MIN_PRIO

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

5

6

7

8

9 10 11

Context switch to the
next process for the
same priority runqueue

MAX_PRI
O

MIN_PRIO

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

5

6

7

8

9 10 11

Context switch to the
next process for the
same priority runqueue

MAX_PRI
O

MIN_PRIO

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

5

6

7

8

9 10 11

Priority update
Shift the process from
active array to expired
array

MAX_PRI
O

MIN_PRIO

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

5

6

7

8

9 10 11

The procedure repeats

MAX_PRI
O

MIN_PRIO

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

5

6

7

8

9 10 11

The procedure repeats

MAX_PRI
O

MIN_PRIO

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

1

2

3

4

5

6

7

8

9 10 11

The procedure repeats

MAX_PRI
O

MIN_PRIO

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

2

4

1 3 5

6

7

8

9 10 11

MAX_PRI
O

MIN_PRIO

If a runqueue for a
priority level is empty,
move to the next
runqueue

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

2

4

6

7

8

9 10 11

MAX_PRI
O

MIN_PRIO

1 3 5

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

2

4

6

7

8

9 10 11

If a runqueue for a
priority level is empty,
move to the next
runqueue

MAX_PRI
O

MIN_PRIO

1 3 5

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

2

4

6

7

8

9 10 11

If a runqueue for a
priority level is empty,
move to the next
runqueue

MAX_PRI
O

MIN_PRIO

1 3 5

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

2

4

7

8

6 9 10

If a process is
interrupted because of
the arrival of a higher
priority process, or for
other reason, move it
to the end of the
runqueue

MAX_PRI
O

MIN_PRIO

12

11

1 3 5

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

2

4

7

8

9 10 11

If a process is
interrupted because of
the arrival of a higher
priority process, or for
other reason, move it
to the end of the
runqueue

MAX_PRI
O

MIN_PRIO

12

6

1 3 5

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

2

4

7

8

9 10 11

If a process makes a
system call for I/O,
move it to the
waitqueue from the
runqueue

MAX_PRI
O

MIN_PRIO

12

6

1 3 5

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

2

4

7

8

9 10 11

If a process makes a
system call for I/O,
move it to the
waitqueue from the
runqueue

MAX_PRI
O

MIN_PRIO

12

6

Wait Queue

1 3 5

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

2

4

7

8

9 10 11

Once the I/O is
complete, move the
task to the expired
array (or active array
when the task needs
immediate scheduling)

MAX_PRI
O

MIN_PRIO

12

6

1 3 5

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

2

4

7

8

9 10 11

Continue the execution
of all the processes
from the active array

MAX_PRI
O

MIN_PRIO

12

6

1 3 5

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

2

Continue the execution
of all the processes
from the active array

MAX_PRI
O

MIN_PRIO

12

9

7

4

8

10

11

6

1 3 5

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

2

MAX_PRI
O

MIN_PRIO

12

9

7

4

8

10

11

6

Make the
Expired Array as
the Active array

1 3 5

 Reorganize the runqueue data structure

Example

Active Array Expired Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

[0]
[1]
[2]

[99]
...

...
[100]

[139]

2

Make the
Expired Array as
the Active array

MAX_PRI
O

MIN_PRIO

12

9

7

4

8

10

11

6

1 3 5

 Reorganize the runqueue data structure

Example

Active Array

[0]
[1]
[2]

[99]
[100]

[139]

...

...

1

2

3

5

MAX_PRI
O

MIN_PRIO

12

9

7

4

8

10

11

6

Only thing that remains:
How do we check that a

higher priority process has
arrived in the Active Array?

Use a bitmap

struct prio_array {

/* number of tasks */
int nr_active;

/* priority bitmap */
unsigned long bitmap[BITMAP_SIZE];

/* priority queues */
struct list_head queue[MAX_PRIO];

};

Dynamic Priority
 Good thing seen so far
 Timeslices computed based on priority
 Fast access to runqueues

 Not so good
 No distinction between interactive and batch jobs

 Dynamic priority: allows this distinction
 Dynamically increase priority level of interactive jobs
 Based on average sleep time of a process
 Sleep time added to a variable when a process wakes up
 CPU time subtracted from the variable when a process runs

 Dynamic Priority
 MAX(100, min(static priority – bonus +5), 139)
 Bonus is a value between 0 and 10 set based on average sleep time
 I/O bound processes sleep more, so should have higher priority when they are

runnable with higher bonus value
 Opposite for CPU-bound

 The runqueues are arranged based on this dynamic priorities actually
 Other optimization
 Define a process as interactive if(bonus – 5 ≥ (static priority)/4 – 28)
 Add an interactive process back to end of active queue with a fresh quanta when

it finishes its quanta
 But should this not cause starvation to lower level queues?
 Makes certain checks on the expired queue (what do you think should be checked?)
 Also, if an interactive task keeps on running, its interactivity will go down

 Note that dynamic priority does not affect the timeslice, that is still based on
the static priority

 Why is this called O(1) scheduler?
 Problems with the O(1) scheduler
 Complex heuristics for interactivity check, did not work well in practice
 Managing 2 x 140 runqueues is complex
 Codebase was complex and difficult to debug

 Replaced by Completely Fair Scheduler (CFS) in 2007 (Kernel version
2.6.23)

	Scheduling in Linux – Part 1
	Slide Number 2
	Types of Tasks
	Goals of a Scheduler
	Process Priorities in Linux
	Scheduling Classes
	Scheduling Policies
	Slide Number 8
	Older Linux Schedulers
	Genesis (1991)
	Slide Number 11
	Slide Number 12
	Slide Number 13
	O(N) Scheduler
	Slide Number 15
	O(1) Scheduler
	Slide Number 17
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Slide Number 55
	Dynamic Priority
	Slide Number 57
	Slide Number 58
	Slide Number 59

