
PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 1'

&

$

%

Data Type II

Lect 26 Goutam Biswas

PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 2'

&

$

%

Abstract Data Type

An abstract data type (ADT) is a specification
of a set of data and the set of valid operations
on it. The specification is independent of the
actual implementation and so is abstract. The
operations can be specified as mathematical
functions (interface) and a set of axioms
satisfied by them.

Lect 26 Goutam Biswas

PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 3'

&

$

%

Data Type complex

We have already talked about the data type
complex. It may be viewed as a collection of
ordered pair of real numbers. The essential
operations on this data type are:

Lect 26 Goutam Biswas

PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 4'

&

$

%

Operations on complex

• I/O operations: read and write of complex number.

• Basic operations: addition, subtraction,

multiplication, division, modulus, conjugate, test for

equality etc. on complex numbers.

• Other operations: initializing a complex number,

constructing a complex number from a pair of real

numbers, projecting the real and the imaginary parts

of a complex number etc.

Lect 26 Goutam Biswas

PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 5'

&

$

%

Axioms on complex

The set of axioms satisfied by the basic

operations are specified in mathematics.

• Addition and multiplication operations are

associative and commutative. There are

identity elements for both the operations.

• For every complex number z, there is an

additive inverse of z. If z 6= 0, then there is

also a multiplicative inverse of z. In fact the

datatype complex forms a field.

Lect 26 Goutam Biswas

PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 6'

&

$

%

Axioms on complex

• Two complex numbers z1 and z2 are equal iff

their real parts are equal and their

imaginary parts are also equal.

• There are interesting axioms that are not

explicitly mentioned in mathematics e.g. for

all complex number z,

z = makeComplex(real(z), imag(z)).

Lect 26 Goutam Biswas

PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 7'

&

$

%

Implementation of complex

We have already seen how the datatype
complex (an approximation) can be
implemented as a product (structure) of two
floating-point numbers. Due to the
approximation of real numbers by floating-point
numbers, some of the original axioms of
complex may fail.

Lect 26 Goutam Biswas

PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 8'

&

$

%

Implementation of Operations

It would have been nice if we could have
overloaded the usual operators to implement
the mathematical operations e.g. addition,
subtraction, test for equality etc. But in the
language C that is not possible and we
implement the operations as functions.

Lect 26 Goutam Biswas

PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 9'

&

$

%

Interfaces of a Few Operations

complex readComplex() ;

void readComplex1(complex *) ;

void writeComplex(complex) ;

complex addComplex(complex, complex) ;

complex subComplex(complex, complex) ;

complex multComplex(complex, complex) ;

complex divComplex(complex, complex) ;

complex makeComplex(float, float) ;

float realPart(complex) ;

float imaginaryPart(complex) ;

int isEqComplex(complex, complex) ;

Lect 26 Goutam Biswas

PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 10'

&

$

%

How to Organize the Implementation

• Header or interface file.

• Operation implementation file.

Lect 26 Goutam Biswas

PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 11'

&

$

%

Header File: complex.h

We put the type definition and the function
interfaces (prototypes) in a header or interface
file complex.h. There is no executable code in
the header file. It contains type definition,
function interfaces, macro definitions and inline
functions. It is to be properly guarded against
multiple inclusion.

Lect 26 Goutam Biswas

PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 12'

&

$

%

complex.h

#ifndef _MYCOMPLEX_H

#define _MYCOMPLEX_H

#include <stdio.h>

#include <math.h>

typedef struct complexType {

double real, imag;

} complex ;

complex readComplex() ;

void readComplex1(complex *) ;

void writeComplex(complex) ;

complex addComplex(complex, complex) ;

Lect 26 Goutam Biswas

PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 13'

&

$

%

complex subComplex(complex, complex) ;

complex multComplex(complex, complex) ;

complex divComplex(complex, complex) ;

complex makeComplex(double, double) ;

double realPart(complex) ;

double imaginaryPart(complex) ;

int isEqComplex(complex, complex) ;

#endif

Lect 26 Goutam Biswas

PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 14'

&

$

%

Implementation file complex.c

All operations are implemented as functions.
The functions are collected in complex.c file.

Lect 26 Goutam Biswas

PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 15'

&

$

%

complex.c

#include "complex.h"

#define MAXLEN 100

complex readComplex() { // complex.c

complex temp ;

scanf("%lf%lf",&temp.real, &temp.imag);

return temp ;

}

void readComplex1(complex *cp) {

scanf("%lf%lf",&cp -> real, &cp -> imag);

Lect 26 Goutam Biswas

PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 16'

&

$

%

}

void writeComplex(complex c) {

char s[MAXLEN], sign = ’+’, j = ’j’ ;

if(c.imag < 0.0) {

c.imag = - c.imag ;

sign = ’-’ ;

}

sprintf(s, "%f%c%c%f%c", c.real,

sign, j, c.imag, ’\0’) ;

printf("%s", s) ;

}

Lect 26 Goutam Biswas

PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 17'

&

$

%

complex addComplex(complex x, complex y) {

complex temp ;

temp.real = x.real + y.real ;

temp.imag = x.imag + y.imag ;

return temp ;

}

complex subComplex(complex x, complex y) {

complex temp ;

temp.real = x.real - y.real ;

temp.imag = x.imag - y.imag ;

return temp ;

Lect 26 Goutam Biswas

PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 18'

&

$

%

}

complex multComplex(complex x, complex y) {

complex temp ;

temp.real = x.real*y.real -

x.imag*y.imag ;

temp.imag = x.real*y.imag +

x.imag*y.real;

return temp ;

}

complex divComplex(complex x, complex y) {

complex temp ; // y cannot be zero

double deno = y.real*y.real +

Lect 26 Goutam Biswas

PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 19'

&

$

%

y.imag*y.imag ;

temp.real = (x.real*y.real +

x.imag*y.imag)/deno ;

temp.imag = (x.imag*y.real -

x.real*y.imag)/deno;

return temp ;

}

complex makeComplex(double r, double i) {

complex temp ;

temp.real = r ; temp.imag = i ;

return temp ;

Lect 26 Goutam Biswas

PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 20'

&

$

%

}

double realPart(complex c) { return c.real;}

double imaginaryPart(complex c) { return c.imag;}

int isEqComplex(complex x, complex y) {

return (x.real==y.real && x.imag==y.imag);

}

Lect 26 Goutam Biswas

PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 21'

&

$

%

User program testComplex.c

Now we consider the user program testComplex.c that
will use the data type. Note that user is interested about
the interface (header) and the code, but not the detail of
the implementation.

Lect 26 Goutam Biswas

PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 22'

&

$

%

User program testComplex.c

#include "complex.h"

int main() // testComplex.c

{

complex c, d, e, f ;

c = readComplex() ;

writeComplex(c) ;

printf("\n") ;

readComplex1(&d) ;

writeComplex(d) ;

printf("\n") ;

Lect 26 Goutam Biswas

PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 23'

&

$

%

e = addComplex(c,d) ;

writeComplex(e) ;

printf("\n") ;

e = subComplex(c,d) ;

writeComplex(e) ;

printf("\n") ;

e = multComplex(c,d) ;

writeComplex(e) ;

printf("\n") ;

e = divComplex(c,d) ;

Lect 26 Goutam Biswas

PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 24'

&

$

%

writeComplex(e) ;

printf("\n") ;

f = makeComplex(3.0, 4.0) ;

writeComplex(f) ;

printf("\n") ;

if(isEqComplex(e,f))

printf("\n e = f\n") ;

else

printf("\n e != f\n") ;

return 0 ;

}

Lect 26 Goutam Biswas

PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 25'

&

$

%

Hiding the Detail of Implementation

The question is how to hide the detail of the

implementation from the user. There are

different ways of doing it.

• User includes the header file and links the

object module corresponding to the

implementation.

• User includes the header file and links the

static or dynamic library.

Lect 26 Goutam Biswas

PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 26'

&

$

%

Separate Compilation

$ cc -Wall -c complex.c

This gives the object-module complex.o.

Lect 26 Goutam Biswas

PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 27'

&

$

%

Compiling testComplex.c

$ cc -Wall testComplex.c complex.o

This gives the executable file a.out.

Lect 26 Goutam Biswas

PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 28'

&

$

%

Makefile for Compilation

a.out : testComplex.o complex.o

cc testComplex.o complex.o

testComplex.o : testComplex.c

cc -Wall -c testComplex.c

complex.o : complex.c

cc -Wall -c complex.c

clean :

rm a.out *.o

Lect 26 Goutam Biswas

PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 29'

&

$

%

Creating Archive/Static Library

$ ar -rcs libcomplex.a complex.o

This gives the static library called

libcomplex.a.

$ file libcomplex.a
libcomplex.a: current ar archive

Lect 26 Goutam Biswas

PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 30'

&

$

%

Compiling the User Program

$ cc -Wall testComplex.c -L. -lcomplex

The datatype library libcomplex.a is linked

with the user program to create the executable

file a.out.

• -L. - current directory is also searched for

the library.

• -lcomplex - the library file name is

libcomplex.a.

Lect 26 Goutam Biswas

