
PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 1'

&

$

%

Internal Sorting by Comparison

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 2'

&

$

%

Problem Specification

Consider the collection of data related to the

students of a particular class. Each data

consists of

• Roll Number: char rollNo[9]

• Name: char name[50]

• cgpa: double cgpa

It is necessary to prepare the merit list of the
students.

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 3'

&

$

%

Roll No. Name CGPA

02ZO2001 V. Bansal 7.50

02ZO2002 P. K. Singh 8.00

02ZO2003 Imtiaz Ali 8.50

02ZO2004 S. P. Sengupta 8.25

02ZO2005 P. Baluchandran 9.25

02ZO2006 V. K. R. V. Rao 9.00

02ZO2007 L. P. Yadav 6.50

02ZO2008 A. Maria Watson 8.00

02ZO2009 S. V. Reddy 7.00

02ZO2010 D. K. Sarlekar 7.50

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 4'

&

$

%

Sorting

The merit list should be sorted on cgpa of a
student.

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 5'

&

$

%

Roll No. Name CGPA

02ZO2005 P. Baluchandran 9.25

02ZO2006 V. K. R. V. Rao 9.00

02ZO2003 Imtiaz Ali 8.50

02ZO2004 S. P. Sengupta 8.25

02ZO2002 P. K. Singh 8.00

02ZO2008 A. Maria Watson 8.00

02ZO2001 V. Bansal 7.50

02ZO2010 D. K. Sarlekar 7.50

02ZO2009 S. V. Reddy 7.00

02ZO2007 L. P. Yadav 6.50

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 6'

&

$

%

Problem Abstraction

We only consider the cgpa field for discussion of
sorting algorithms.

Unsorted Data

7.5 8.0 8.5 8.25 9.25 9.0 6.5 8.0 7.0 7.5

Sorted Data

9.25 9.0 8.5 8.25 8.0 8.0 7.5 7.5 7.0 6.5

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 7'

&

$

%

Simple Sorting Algorithms

• Selection Sort

• Insertion Sort

• Bubble Sort

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 8'

&

$

%

Selection Sort

The data is stored in an 1-D array and we sort

them in non-ascending order. Let the number

of data be n

for i ← 0 to n− 2 do

maxIndex ← indexOfMax({a[i], · · ·, a[n-1]})

a[i] ↔ a[maxIndex] #Exchange

endFor

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 9'

&

$

%

0 1 2 43 5 6 7

0 1 2 43 5 6 7

0 1 2 43 5 6 7

0 1 2 43 5 6 7

Unsorted Data

After i=0

After i=1

After i=2

Index of Max

Index of Max

Index of Max

Index of Max

7.5 8.0 6.5 9.25 7.5 8.5 9.0 7.0

9.25 8.0 6.5 7.5 7.5 8.5 9.0 7.0

7.08.08.57.57.56.59.09.25

9.25 9.0 8.5 7.5 7.5 6.5 8.0 7.0

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 10'

&

$

%

C Program

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 11'

&

$

%

int indexOfMax(double cgpa[],int low,int high) {

int max ;

if(low == high) return low;

max = indexOfMax(cgpa,low+1,high);

if(cgpa[low] > cgpa[max]) return low ;

return max;

} // selSort.c

#define EXCH(X,Y,Z) ((Z)=(X), (X)=(Y), (Y)=(Z))

void selectionSort(double cgpa[], int noOfStdnt) {

int i ;

for(i = 0; i < noOfStdnt - 1; ++i) {

int max = indexOfMax(cgpa, i, noOfStdnt-1);

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 12'

&

$

%

double temp ;

EXCH(cgpa[i], cgpa[max], temp);

}

} // selSort.c

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 13'

&

$

%

Measure of Goodness of an Algorithm

• Correctness of the algorithm.

• Increase of execution time with the increase

in the size of input.

• Increase of the requirement of extra space

(other than the space required by the input

data) with the increase in the size of input.

• Difficulty in coding the algorithm, · · ·

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 14'

&

$

%

Execution Time

The execution time of a program (algorithm)
depends on many factors e.g. the machine
parameters (clock speed, instruction set,
memory access time etc.), the code generated
by the compiler, other processes sharing time
on the OS, data set, data structure and
encoding of the algorithm etc.

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 15'

&

$

%

Execution Time Abstraction

It is necessary to get an abstract view of the
execution time, to compare different algorithms,
that essentially depends on the algorithm and
the data structure.

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 16'

&

$

%

Execution of selectionSort()

If there are n data, the for-loop in the function
selectionSort(), is executed (n− 1) times
([i : 0 · · · (n− 2)]), so the number of
assignments, array acess, comparison and call
to indexOfMax() are all approximately
proportional to the data count, na.

aIt is difficult to get the exact count of these operations from the high-level

coding of the algorithm.

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 17'

&

$

%

Execution of indexOfMax()

For each value of i in the for-loop of

selectionSort() there is a call to indexOfMax()

(low ← i)

• The call generates a sequence of n− i

recursive calls (including the first one).

• The total number of comparisons for each i

inside indexOfMax(), are 2(n− i)− 1. There

are also (n− i− 1) assignments and

2(n− i− 1) array access.

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 18'

&

$

%

Execution Time

• The total number of function calls is
∑n−2

i=0 (n− i) =
(n+ 2)(n− 1)

2 .

• The total number of comparisons is

n+
∑n−2

i=0 2(n− i)− 1 = n2 + n− 1.

• The total number of assignments is

k(n−1)+
∑n−2

i=0 (n−i−1) =
n(n− 1)

2 +k(n−1).

• The total number of array access is
∑n−2

i=0 2(n− i− 1) = n(n− 1).

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 19'

&

$

%

Execution Time

Different operations have different costs, that
makes the execution time a complex function of
n. But for a large value of n (data count), the
number of each of these operations is
approximately proportional to n2.

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 20'

&

$

%

Execution Time

If we assume identical costs for each of these

operations (abstraction), the running time of

selection sort is approximately proportional to

n2a.

This roughly means that the running time of
selection sort algorithm will be four times if the
data count is doubled.

a
n is the number of data to be sorted.

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 21'

&

$

%

Time Complexity

We say that the running time or the time
complexity of selection sort is of order n2,
Θ(n2). We shall define this notion precisely.

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 22'

&

$

%

Space Complexity

In the recursive implementation of
indexOfMax(), the depth of nested calls may go
upto n. Considering the space for the local
variables e.g. max, the extra space requirement
is proportional to n.

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 23'

&

$

%

Space Complexity

The extra space requirement or the space
complexity of this program is of order n, Θ(n).
We can reduce the space requirement using a
non-recursive function.

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 24'

&

$

%

Selection Sort without Recursion

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 25'

&

$

%

#define EXCH(X,Y,Z) ((Z)=(X), (X)=(Y), (Y)=(Z))

void selectionSort(double cgpa[], int noOfStdnt) {

int i ;

for(i = 0; i < noOfStdnt - 1; ++i) {

int max, j ;

double temp ;

temp = cgpa[i] ;

max = i ;

for(j = i+1; j < noOfStdnt; ++j)

if(cgpa[j] > temp) {

temp = cgpa[j] ;

max = j ;

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 26'

&

$

%

}

EXCH(cgpa[i], cgpa[max], temp);

}

} // selSort1.c

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 27'

&

$

%

Space Complexity

In the non-recursive version, the volume of
extra space does not depends on the number of
data elements. There are four (4) local variables
and two (2) parameters. The space requirement
is a constant and is expressed as Θ(1) (n0 = 1).

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 28'

&

$

%

Note

We shall introduce the notion of upper bound
(O), lower bound (Ω) and order (Θ) of
non-decreasing positive real-valued functions.
These notations will be useful to talk about the
running time and space usages of algorithms.

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 29'

&

$

%

Big O: Asymptotic Upper Bound

Consider two functions f, g : N −→ R
+. We say

f(n) is O(g(n)) (f(n) ∈ O(g(n)) or
f(n) = O(g(n))), if there are two positive
constants c and n0 such that 0 ≤ f(n) ≤ cg(n),
for all n ≥ n0.
g(n) is an upper bound of f(n).

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 30'

&

$

%

Ω: Asymptotic Lower Bound

Consider two functions f, g : N −→ R
+. We say

f(n) is Ω(g(n)) (f(n) ∈ Ω(g(n)) or
f(n) = Ω(g(n))), if there are two positive
constants c and n0 such that 0 ≤ cg(n) ≤ f(n),
for all n ≥ n0.
g(n) is a lower bound of f(n).

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 31'

&

$

%
0

cg(n) f(n)

n nn
1

kh(n)

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 32'

&

$

%

cg(n)
f(n)

n
0 nn

1

kh(n)

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 33'

&

$

%

Examples

• n2 + n+ 5 = O(n2): It is easy to verify that

2n2 ≥ n2 + n+ 5 for all n ≥ 3 i.e. c = 2 and

n0 = 3.

• n2 + n+ 5 6= O(n) and

• n2 + n+ 5 = O(n3), O(n4), · · ·.

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 34'

&

$

%

Examples

• n2 + n+ 5 = Ω(n2): It is easy to verify that
n
2

2
< n2 + n+ 5 for all n i.e. c = 0.5 and

n0 = 0.

• n2 + n+ 5 = Ω(n), Ω(n log n), Ω(log n) and

• n2 + n+ 5 6= Ω(n3),Ω(n4), · · ·.

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 35'

&

$

%

Big Θ: Asymptotically Tight Bound

Consider two functions f, g : N −→ R
+. We say

f(n) = Θ(g(n)), if there are three positive

constants c1, c2 and n0 such that

0 ≤ c1g(n) ≤ f(n) ≤ c2g(n),

for all n ≥ n0.
g(n) is an asymptotically tight bound of f(n)
or g(n) is of order f(n).
f(n) = Θ(g(n)) is equivalent to f(n) = O(g(n))
and g(n) = O(f(n)).

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 36'

&

$

%

f(n)

n
0 n

c  g(n)
0c  g(n)

1

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 37'

&

$

%

Examples

• g(n) = n2 + n+ 5 = Θ(n2), take c1 =
1

3
,

c2 = 1 and n0 = 2.

n 0 1 2 3 · · ·

1

3
g(n) 5

3

7

3

11

3

17

3
· · ·

n2 0 1 4 9 · · ·

• But n2 + n+ 5 6= Θ(n3), Θ(n), · · ·.

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 38'

&

$

%

Selection Sort

Running time of selection sort is Θ(n2) and the
space requirement is Θ(1) (no-recursive), where
n is the number of data to sort.

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 39'

&

$

%

Note

Let n be the size of the input. The worst case

running time of an algorithm is

• Θ(n) implies that it takes almost double the

time if the input size is doubled;

• Θ(n2) implies that it takes almost four times

the time if the input is doubled;

• Θ(log n) implies that it takes a constant

amount of extra time if the input is doubled;

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 40'

&

$

%

Insertion Sort

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 41'

&

$

%

6.5 7.5 8.5 9.0 7.0
0 1 2 43 5 6

6.5 7.5 8.5 9.0 7.0
0 2 43 5 6

temp

1

temp

7.5 8.5 9.0 7.0
0 43 5 6

2

1

7.5 8.5 9.0 7.0
0 4 5 6

3

2
temp

1

7.5 8.5 9.0 7.0
0 5 6

3

21

4

8.5

8.5

8.0

8.0

8.0

7

7

7

7

7

Unsorted Data

1st Step

2nd Step

2nd Step

After 2nd Step

8.5

6.5

8.0

3 4

8.5

7.5

7.5

8.5

7.5 6.5

7.5 6.5 8.0

8.5 8.0 7.5 6.5

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 42'

&

$

%

Insertion Sort Algorithm

for i ← 1 to noOfStdnt −1 do

temp ← cgpa[i]

for j ← i-1 downto 0 do

if cgpa[j] < temp

cgpa[j+1] ← cgpa[j]

else go out of loop

endFor

cgpa[j+1] ← temp

endFor

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 43'

&

$

%

C Program

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 44'

&

$

%

void insertionSort(double cgpa[], int noOfStdnt){

int i, j ;

for(i=1; i < noOfStdnt; ++i) {

double temp = cgpa[i] ;

for(j = i-1; j >= 0; --j) {

if(cgpa[j]<temp) cgpa[j+1]=cgpa[j];

else break ;

}

cgpa[j+1] = temp ;

}

} // insertionSort.c

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 45'

&

$

%

Execution Time

Let n be the number of data. The outer

for-loop will always be executed n− 1 times.

The number of times the inner for-loop is
executed depends on data. It is entered at least
once but the maximum number of execution
may be i.

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 46'

&

$

%

Execution Time

If for most of the values of i, 0 ≤ i < n, the
inner loop is executed near the minimum value
(for an almost sorted data), the execution time
will be almost proportional to n i.e. linear in n.

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 47'

&

$

%

Worst Case Execution Time

But in the worst case, The inner for-loop will be

executed
n−1∑

i=1

i =
n(n− 1)

2
= Θ(n2)

times. So the running time of insertion sort is
O(n2), the worst case running is Θ(n2), the best
case running time is Θ(n).

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 48'

&

$

%

Extra Space for Computation

The extra space required for the computation of
insertion sort does not depend on number of
data. It is Θ(1) (so it is also O(1) and Ω(1)).

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 49'

&

$

%

Bubble Sort

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 50'

&

$

%

0 1 2 3 4 5 6 7
53 22 49 15 21 82

0 1 2 3 4 5 6 7
53 22 49 15 21 16

0 1 2 3 4 5 6 7
53 22 49 15 37 16

0 1 2 3 4 5 6 7
53 22 49 37 16

0 1 2 3 4 5 6 7
53 22 37 16

no−exchange

i = 0

j = 7

j = 6

no−exchange

exchange

37 16

82 37

21 82

21

exchange

8215

15 21

exchange

8249

0 1 2 3 4 5 6 7
53 37 16211549

exchange

8222

0 1 2 3 4 5 6 7
37 162115492253 82

exchange
0 1 2 3 4 5 6 7

37 16211549225382

j = 5

j = 4

j = 3

j = 2

j = 1

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 51'

&

$

%

Bubble Sort Algorithm

for i ← 0 to noOfStdnt −2 do

exchange = NO

for j ← noOfStdnt −1 downto i +1 do

if (cgpa[j-1] < cgpa[j])

cgpa[j-1] ↔ cgpa[j] # Exchange

exchange = YES

endFor

if (exchange == NO) break

endFor

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 52'

&

$

%

C Program

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 53'

&

$

%

#define EXCHANGE 0

#define NOEXCHANGE 1

#define EXCH(X,Y,Z) ((Z)=(X), (X)=(Y), (Y)=(Z))

void bubbleSort(double cgpa[], int noOfStdnt) {

int i, j, exchange, temp ;

for(i=0; i < noOfStdnt - 1; ++i) {

exchange = NOEXCHANGE ;

for(j = noOfStdnt - 1; j > i; --j)

if(cgpa[j-1] < cgpa[j]) {

EXCH(cgpa[j-1], cgpa[j], temp);

exchange = EXCHANGE ;

}

if(exchange) break ;

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 54'

&

$

%

}

} // bubbleSort.c

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 55'

&

$

%

Execution Time

The number of times the outer for-loop is
executed depends on the input data, as there is
a conditional break. If the data is sorted in the
desired order, there is no exchange, and in the
best case the outer loop is executed only once.
This makes the best running time of bubble
sort approximately proportional to n.

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 56'

&

$

%

Execution Time and Space

But in the worst case the outer loop is executed

n− 1 times. The inner loop is executed

(n− 1)− i times for every value of i. So in the

worst case, the total number of times the inner

loop is executed is

n−1∑

i=0

(n− 1)− i =
n(n− 1)

2
= Θ(n2)

times.

Lect 19 Goutam Biswas



PDS: CS 11002 Computer Sc & Engg: IIT Kharagpur 57'

&

$

%

Worst Case Complexity

• The running time of bubble sort (worst case

time complexity) is O(n2) (quadratic in n).

• The extra storage requirement does not

depend on the size of data and the space

complexity is Θ(1).

Lect 19 Goutam Biswas


