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Instructions related to this questions paper:

1. This is a QUESTION-CUM-ANSWER script.

2. This question paper has TEN questions.

3. Answer all questions.

4. All answers should be written in the blank spaces provided immediately
after the question / filling in the blanks as specified. Q1, Q2 and Q9a are
of multiple-choice type. Only one answer is correct, and the correct choice
should be circled.

5. No clarifications! Make appropriate (but not unjustifiable) assumptions
wherever (you feel) necessary.

6. Extra space is provided for rough work in the question paper itself. No extra
pages should be attached with this question-cum-answer script.

Page 2



1. Assume that on a certain machine an int variable is of size 32 bits (or 4 bytes), char variable is of size
8 bits (or 1 byte), and each memory address is of size 32 bits. Assume further that the sizeof() function
call returns the size of its operand in bytes. Answer the following questions. Marks: 1+2 = 3

(a) Consider the following structure:

struct myStruct {
char name[20];
int account_number;
struct myStruct *next;

};

What does sizeof(struct myStruct) return on this machine?

A. 26 B. 28 C. 48 D. 46

(b) What will be the output of the C program?

#include<stdio.h>
#include<stdlib.h>
int main()
{

int *p;
p = (int *)malloc(20);
printf("%d\n", sizeof(p));
free(p);
return 0;

}

A. 40 B. 20 C. 4 D. 80

2. Answer the following questions. Marks: 3×2 = 6

(a) Consider the following sequence of push and pop operations on an initially empty stack S.

S = push(S,1);
S = pop(S);
S = push(S,2);
S = push(S,3);
S = pop(S);
S = push(S,4);
S = pop(S);
S = pop(S);

Which of the following is the correct order in which elements are popped?

A. 1 2 4 3 B. 1 3 2 4 C. 1 2 3 4 D. 1 3 4 2

(b) What is the output of the following program? Marks: 2

#include<stdio.h>
#include<stdlib.h>

int main()
{

int *ptr;

*ptr = 10;

*ptr = 20;

*ptr = 30;
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printf("%d\n",*ptr);
return 0;

}

A. 10 B. 20 C. 30 D. None of the above

(c) Under what condition will this program print the string “Hello”?

#include<stdio.h>
#include<stdlib.h>

int main()
{

int *ptr;
ptr = (int *)malloc(sizeof(int)*10);
if (ptr == NULL)

printf("Hello\n");
return 0;

}

A. if the memory could not be allocated to the pointer “ptr”
B. if the memory has been allocated to the pointer “ptr” successfully
C. it will never print
D. none of the above

3. Fill in the blanks to complete a C program that creates a singly linked list by repeatedly calling the
function push(). It then counts the number of nodes present in the singly linked list recursively using
the function getCount(). Each blank has at most one statement.

// Recursive C program to find length or count of nodes in a linked list
#include<stdio.h>
#include<stdlib.h>

/* Link list node */
struct Node
{

int data;
struct Node* next;

};

/* Given a reference (pointer to pointer) to the head of a list and
an int as parameters, the function pushes a new node on the front
of the list. */

void push(struct Node** head_ref, int new_data)
{

/* allocate node */
struct Node* new_node =

(_____________) malloc(________________________);

/* put in the data */
new_node->data = new_data;

/* link the old list off the new node */
new_node->next = (*head_ref);
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/* move the head to point to the new node */
_____________________________;

/* Counts the no. of occurences of a node
(search_for) in a linked list (head)*/

int getCount(struct Node* head)
{

// Base case
if (____________________________)

return 0;

// count is 1 + count of remaining list
return 1 +______________________________;

}

/* the main function*/
int main()
{

/* Start with the empty list */
struct Node* head = NULL;
int num;
char flag = ’Y’;

// Use push() repeatedly to construct the list
while(________________________)

{
printf("\n Enter the next number to be pushed into the stack: ");
scanf("%d", &num);

push(________________________, num);
printf("\n Do you want to push more numbers into the stack?
(Answer Y to continue and N to stop pushing into the stack)");
scanf("%c", &flag);
}

/* printing the size of the list created */
printf("\n Number of nodes in the linked list is %d",
________________________);
return 0;

}

4. Answer the following questions. Marks: 3+4+2 = 9

(a) A quadratic algorithm with processing time T (n) = cn2 spends 1 ms in processing 100 data items.
Time spent for processing 5000 data items =

(b) Consider the problem of exponentiation of integer x to the power of integer n (i.e., xn). A
straightforward way of doing this is to multiply x, n times. However a more efficient way to
solve this problem would be to see that xn = xn/2 ∗ xn/2. Assuming that n = 2k, we can write a
small recursive function to implement exponentiation.

int power(int x, int n){
if (n==0) return 1;
if(n==1) return x;
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if ((n % 2) == 0) return power(x*x, n/2);
}

Let the time required to execute this program be T (n). Assume T (0) = c1 and T (1) = c2.
(i) The recursive expression is given by T (n) = + c3

(ii) The exact solution to the above recursive expression is

(c) log(n!) = Θ( ∗ log(n)).

5. (a) What does the following function do on the elements of the array arr[]? Marks: 2

void whatdoIdo(int arr[], int size)
{

int i=0;

for(i=0; i < size; i++)
{

if( arr[i] % 2 == 0 )
arr[i] = 0 ;

else
arr[i] = 1 ;

}
}

The function whatdoIdo .

(b) The following function computes the median of an array of floats x[]. Assume that all the entries
in the array are distinct, and there is only a single digit after the decimal point for all the numbers.
Fill the blanks.
Each blank can have only ONE statement.Marks: 0.5+0.5+0.5+0.5+0.5+0.5+1+1+1 = 6

float median(int n, float x[]) {
float temp;
int i, j;
for(i=0; i<n-1; i++) {

for(j=____; j<_____; j++) {
if(____________) {

temp = __________;
x[i] = __________;

x[j] =__________;
}

}
}

if(___________________) {
return _________________________________;

} else {
return _____________________;

}
}

(c) Now suppose you have two already sorted arrays ar1[] and ar2[] of EQUAL size n. The following
function attempts to find the median of the elements of the two arrays combined together. For
instance if ar1 = {1.0,12.0,15.0,26.0,28.0} and ar2 = {2.0,13.0,17.0,30.0,45.0}, you have to
find the median of the elements {1.0,12.0,15.0,26.0,28.0,2.0,13.0,17.0,30.0,45.0}. Fill in the
blanks. Each blank has only ONE statement.

Marks: (0.5+1)+(0.5+1)+0.5+(0.5∗3)+(0.5∗3)+1.5 = 8
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/* This function returns median of ar1[] and ar2[].
Assumptions in this function:
Both ar1[] and ar2[] are sorted arrays
Both have n elements */

float getMedian(float ar1[], float ar2[], int n)
{

int i = 0;
int j = 0;
int count;
float m1 = -1.0, m2 = -1.0; // contains medians from two arrays
for (count = 0; count <= n; count++)
{

if (i == n)
{

m1 = ____________;
m2 = ____________;
break;

}
else if (j == n)
{

m1 = ______________;
m2 = ______________;
break;

}
if (ar1[i] _________)
{

m1 = ______________;
m2 = ______________;
i________________;

}
else
{

m1 = _______________;
m2 = _______________;
j_______________;

}
}
return ___________________;

}

6. The following recursive function takes a string of given length as input and determines whether the
string is a palindrome. It returns 0 if the string is not a palindrome and 1 if it is. Fill in the blanks. Each
blank can have AT MOST one statement. Marks: 1+2+2 = 5

int ispalindrome ( char A[], int n )
{

if (__________) return 1;/*base case*/
if (__________) return 0;
return ispalindrome(___________);

}
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7. Complete the following program, where the main function takes three strings A,B,C as input from the
user and determines whether the string A contains the regular expression B ∗C, where ∗ stands for
any substring. For instance, if A = “abcdefg”, B = “bc” and C = “ef”, the function determines if an
occurrence of “bc” followed (not necessarily immediately) by an occurrence of “ef” can be detected in
“abcdefg”. In this case, the occurrence B∗C is detected at index position 1 in A, and the main function
gives this output. Either of B or C can also be null. The main function makes use of another function
locateSubstr that checks whether a string A contains another string B as a substring, and if so, returns
the match index of B in A. Thus, when B and C are non-empty, the main function first finds if B is a
substring of A, and if that is the case, whether C is a substring for the remaining portion of A, where the
match for B ends. Fill in the blanks.

Each blank can have AT MOST one statement. Marks: 1+1+2+1+1+1+1+1+1 = 10

#include <stdio.h>
#include <stdlib.h>
#define MAXLEN 1024
int locateSubstr ( char A[] , char B[] )
{

int i, j, match;
if (strlen(B) == 0) return 0;
for (i=0; i<=________________; ++i) if (A[i] == B[0]) {

match = 1;
for (j=0; j<______________; ++j) if (_______________)

{ match = 0; break; }
if (match)_________________;

}
return -1;

}
int main ()
{

char A[MAXLEN], B[MAXLEN], C[MAXLEN];
/* Assume the code to input strings from the users is here.

You need not write anything here */
/* i should store the matching index of B*C in A*/
int i,j,k;
if (strlen(B) == 0) i = _____________;
else if (strlen(C) == 0) i = _____________;
else{

j = locateSubstr(A,B);
if (j < 0) i=j;
else k = locateSubstr(____________________);
if (k>=0) i=____________________;
else i =________________;

}
if (i >= 0)

printf("The pattern B*C is found in A at idx %d\n", i);
else

printf("The pattern B*C is not found in A\n");
exit(0);

}

8. The following recursive function makes the base conversion. It reads two integers n and b from the
terminal (with n ≥ 0 and b > 1, both in base 10) and expresses n in base b. For example, the decimal
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expansion of 345 in base 10 is 345 = 3× 102 + 4× 10+ 5. Note that in this case 5 = 345%10 and
34 = 345/10; The output as printed by the program should be: (345) 10 = (3,4,5) 10. However,
please note that for n = 10 and b = 2, the program should print (10) 10 = (1,0,1,0) 2 and NOT
(10) 2 = (1,0,1,0) 2 .

Fill in the blanks. Each blank can have AT MOST one statement. Marks: 2×5 = 10

#include <stdio.h>

void baseconv ( int n , int b )
{

/* n is too small. Simply print it and return. */
if (______________) { printf("%d",n); return; }

/* Recursively print the more significant digits */
_____________________;

/* Finally print the least significant digit */
printf(",%d",__________);

}

int main ()
{

int n, b;

printf("n = "); scanf("%d", &n);
printf("b = "); scanf("%d", &b);

if ((n < 0)||(b < 2)) {
fprintf(stderr, "Error: Invalid input...\n");
exit(1);

}

printf("______________",n);
baseconv(n,b);
printf("____________",b);

exit(0);
}

9. Answer the following questions. Marks: (4×1)+2+(3×2)+(3×2) = 18

(a) CIRCLE the correct choice.
[i] What value will be assigned to the variable a after the following two statements are executed?

int a = 7, b = 5, c = -3;
a = a - a % b * c;

A. 0 B. 9 C. 13 D. 14

[ii] What value is assigned to the variable var?

#define T 10+10
var = T * T;

A. 400 B. 210 C. 200 D. 120
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[iii] Which of the following is NOT a legal name of a C variable?

A. 12_pds B. _12pds C. pds_12 D. pds12_

[iv] What is the 8-bit 2’s-complement representation of −49?

A. 11001110 B. 11001111 C. 10110001 D. 11010001

(b) Find the 32-bit (single-precision) floating point representation of +41.6 in the IEEE 754 format.
Put only ONE binary digit in each gap/space provided below.

Sign Bit: Exponent:

Mantissa:

(c) Consider the following for loop:

for (k=1; k<100; ++k) k *= k+1;

[i] How many times is the statement “k∗= k+1;” executed?
[ii] How many times is the loop condition “k < 100” checked in the loop?
[iii] What is the value stored in the variable “k” immediately after the for loop terminates?

(d) What will be the output of the following programs?
[i]

#include<stdio.h>
int main()
{

int x = 4, y = 6, z = 0;
while (y != 0) {

if (y % 2) z += x;
x *= 2;
y /= 2;

}
printf("%d\n", z);
return 0;

}

Answer:
[ii]

#include <stdio.h>
int main ()
{

int a = 5, b = 5, c;
char p = ’p’, q = ’q’;
c = !( (a>=b) || ((a<=b)&&(p>q)) );
printf("%d\n", c);
return 0;

}

Answer:
[iii]

#include <stdio.h>
int main ()
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{
int p, q;
for (p=q=0; p<10; ++p) {

q = p + q;
++p;

}
printf("%d\n", q);
return 0;

}

Answer:

10. The following program computes the sum of the square of digits in the decimal representation of a non-
negative integer. For example, the sum of the square of digits for 320127 is 32+22+02+12+22+72 =
67. Fill in the blanks with appropriate C constructs.

Each blank can have AT MOST one statement. Marks: 1+1+1+1+2+1 = 7

#include <stdio.h>
int main ()
{

unsigned int n, d, sum;

/* Read the unsigned integer n*/
scanf( ____________________ , &n );

/* Initialize sum */
sum = ____________________ ;

/* Loop as long as n is not reduced to zero*/
while ( ____________________ ) {

/* Store in d the least significant digit of n*/
d = ____________________ ;

/* Add the square of this least significant digit to sum*/
sum = ____________________ ;

/* Remove this digit from n */
n = ____________________ ;

}

/* Print the sum of the square of digits of the input integer*/
printf("The sum of the square of digits is %d \n", sum );

return 0;
}
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