Indian Institute of Technology, Kharagpur
Department of Computer Science and Engineering
Class Test 2, Spring 2017-18

Programming and Data Structure (CS 11001 / CS 10001)
Students: Date: 28-March-2018
Full marks: 20 Time: 7:00pm—8:00pm

Answer the questions in the spaces provided on the question sheets. You may use
the last pages of this booklet for your rough work. No other supplementary sheets
will be given to you.

Roll Number Section

Name

Question: 1 2 3 4 5 6 7 Total

Points:)) 2 3 2 2 1 20

Score:

1. (5 points) In the following program we implement four functions which takes a matrix as
an argument and performs the following functions:

a) Compute sum of left diagonal elements (a “left diagonal” of a square matrix A[n|[n] is the
set of elements lying on the diagonal line connecting the elements A[0][0] and A[n—1]|[n—1])

b) Compute sum of right diagonal elements (a “right diagonal” of a square matrix A[n]|[n]
is the set of elements lying on the diagonal line connecting the elements A[0][n — 1] and
Aln — 1][0])

c¢) Print the lower diagonal matrix (the lower diagonal matrix of a square matrix A[n|[n] is
the set of elements lying strictly ‘below’ its left diagonal)

d) Print the upper diagonal matrix (the upper diagonal matrix of a square matrix A[n][n]
is the set of elements lying strictly ‘above’ its left diagonal)

Fill in the blanks to complete the program. One blank can have AT MOST ONE statement.
Marks: (0.2540.5+0.25) + (0.2540.5+0.25) + (0.254+0.5+0.25)
+ (0.254-0.54-0.25)4(0.254+0.254-0.25+0.25) = 5

#include<stdio.h>

/* computes the sum of left diagonal elements */
int sumLeftDiagElements(int [4], int rows, int cols) {
int i, j, sum = O;
for (i =0; i < rows; i++) {
for (j = 0; j < cols; j++) {

return sum;

/* computes the sum of right diagonal elements */
int sumRightDiagElements(int [4], int rows, int cols) {
int i, j, sum = O;
for (i =0; i < rows; i++) {
for (j =0; j < cols; j++) {

if (o ____) {
sum _ ;
}
}
}
return sum;
}
/* Print the lower diagonal elements */
void lowerDiagMatrix(int ___________________ [4], int rows, int cols) {
int i, j;
for (i =0; i < rows; i++) {
for (j = 0; j < cols; j++) {
if (o ____) A
printf(______________________________)
}
}
printf ("\n");
}
}
/* Print the upper diagonal elements */
void upperDiagMatrix(int ________________ [4], int rows, int cols) {

int i, j;
for (i =0; i < rows; i++) {
for (j = 0; j < cols; j++) {

printf(_________________________);

}
else {
printf (" ");

+
printf ("\n");

Page 2

int main() {

int mat[4][4] = { {2, 3, 8, 4 },
{5,1, 7, 31},
{9, 2,6, 813,
{1, 4, 5, 7%} 3}

int left_diag sum = sumlLeftDiagElements(____________________
printf("Sum of Left Diagonal elements: %d\n", left_diag_sum);

int right_diag_sum = sumRightDiagElements(__________________ , 4, 4);
printf ("Sum of Right Diagonal elements: %d\n", right_diag_sum);
printf ("Lower Diagonal Elements :-\n");

lowerDiagMatrix(____________________________ » 4, 4);
printf ("Upper Diagonal Elements :-\n");
upperDiagMatrix(___________________________ s 4, 4);
return O;

2. (5 points) A coder wants to improvise the sorting procedure over a set of integer elements

by coding the bubble and selection sort together. The idea is that — (i) (s)he will pairwise
compare two elements from the beginning of the array to its end and thereby push the
maximum element at the end of the array (as done in bubble-sort), and (ii) while doing
o, (s)he maintains the location of minimum element in the array and later exchange the
minimum element with the initial element of the array (as done in selection-sort). In doing
so (at every iteation), (s)he will place the maximum and minimum elements at both ends
of the array and hence (s)he has to perform the above two iterative tasks ((i) and (ii)) over
the array size being reduced by two elements (one in both ends of the array) everytime.
Having such an insight, can you complete the following code snippets to realize this? Each
blank can have AT MOST one statement. Marks: 1 x5 =5

#include<stdio.h>

void swap(int *x, int *y)

{
int temp;
temp = *Xx;
X = Xy,
*y = temp;
b

int main()

{
int a[] = {3,1,0,7,5,4,9,2,6,8}; // given set of integer elements to sort
int n = sizeof(a)/sizeof(int); // calculate number of elements in array al]
int i, j, minIndex;

Page 3

for(i =0 ; i < n-1-i ; i++) { //start outer-loop

/* selecting the index for the minimum element */
minIndex = i;
for(j =i+l ; j < _____________________
if(alj] < alminIndex]) {
minIndex = 5

; j++) { // start inner-loop-1

}
} // end inner-loop-1

/* pushing maximum element at the end of array by pairwise
compare and swap */
for(j = i+l ; j < n-i ; j++) { // start inner-loop-2

swap(&alj-11 , &aljl);

/* updating minimum index if corresponding elements
get exchanged */
if(minIndex == j) {
minIndex = ________________ ____ __________ ;
b
}

} // end inner-loop-2

/* exchanging the minimum element with the initial element of array */

swap(__________)
} // end outer-loop
return O;
}
3. (2 points) What will be the output of the following function? Marks: 2

#include <stdio.h>
#include <stdlib.h>

int main ()

{

char A[10] "14FB61R23";

int i, sum = 0;

for (i=0; A[i]l; ++i) {
if (A[i] < ’0’) continue;
if (A[i] > ’9’) continue;
sum += A[i] -’0’;

}

printf("sum = %d", sum);

Page 4

return O;

4. (3 points) The following function takes two null-terminated strings S, T as parameters.
The function returns 0 if the two strings are equal, 1 if the first string (S) is a proper prefix
of the other (T), 2 if the second string is a proper prefix of the other, 1 otherwise. Fill it
the blanks. Each blank can have AT MOST one statement. Marks: 3 x1 =3

int compstr (char *S, char *T)
{
int i = 0;
while (1) {
) return O;

) return 2;

) return -1;

}
5. (2 points) Let the function g be defined as follows:

int g (int n)

{
if (mn <7
return n;
return g(n/2);
}
What is the value returned by the call g(346)? Marks: 2

6. (2 points) What value does the call h(5) return, where h is defined as follows? Marks: 2

int h (int n)

{
if (n == 0)
return 1;
if (n%2 == 0)
return 2*h(n-1);
else
return 3*h(n-1);
}

Page 5

7. (1 point) Please fill in the blank in the following program for calculating the power of a
number using recursion. Each blank can have at most one statement. Mark: 1

#include<stdio.h>
int power(int base, int exp);

int main()

{
int base, exp;
printf ("Enter base: ");
scanf ("%d", &base);
printf ("Enter exponent: ");
scanf ("%d", &exp);
printf("%d to the power of %d is %d", base, exp, power(base, exp));
return O;

}

int power(int base, int exp)

{
if (exp==0) // base condition
{

return 1;

}
else
{
}

}

Page 6

[Extra Page/ Rough Work]

Page 7

[Extra Page/ Rough Work]

Page 8

