
Chapter 5 Objects and
Graphics

Objectives

• To understand the concept of objects and how they can be used to simplify

programs.

• To be familiar with the various objects available in the graphics library.

• To be able to create objects in programs and call appropriate methods to

perform graphical computations.

• To understand the fundamental concepts of computer graphics, especially

the role of coordinate systems and coordinate transformations.

• To understand how to work with both mouse and text-based input in a

graphical programming context.

• To be able to write simple interactive graphics programs using the graphics

library.

5.1 Overview

So far we have been writing programs that use the built-in Python data types for

numbers and strings. We saw that each data type could represent a certain set

of values, and each had a set of associated operations. Basically, we viewed the

data as passive entities that were manipulated and combined via active opera-

tions. This is a traditional way to view computation. To build complex systems,

123

124 Chapter 5. Objects and Graphics

however, it helps to take a richer view of the relationship between data and

operations.

Most modern computer programs are built using an object-oriented (OO) ap-

proach. Object orientation is not easily defined. It encompasses a number of

principles for designing and implementing software, principles that we will re-

turn to numerous times throughout the course of this book. This chapter pro-

vides a basic introduction to object concepts by way of some computer graphics.

Graphical programming is a lot of fun and provides a great vehicle for learn-

ing about objects. In the process, you will also learn the principles of computer

graphics that underlie many modern computer applications. Most of the ap-

plications that you are familiar with probably have a so-called Graphical User

Interface (GUI) that provides visual elements like windows, icons (representa-

tive pictures), buttons and menus.

Interactive graphics programming can be very complicated; entire textbooks

are devoted to the intricacies of graphics and graphical interfaces. Industrial-

strength GUI applications are usually developed using a dedicated graphics pro-

gramming framework. Python comes with its own standard GUI module called

Tkinter. As GUI frameworks go, Tkinter is one of the simplest to use, and Python

is a great language for developing real-world GUIs. Still, at this point in your

programming career, it would be a challenge to learn the intricacies of any GUI

framework, and doing so would not contribute much to the main objectives of

this chapter, which are to introduce you to objects and the fundamental princi-

ples of computer graphics.

To make learning these basic concepts easier, we will use a graphics library

(graphics.py) specifically written for use with this textbook. This library is a

wrapper around Tkinter that makes it more suitable for beginning programmers.

It is freely available as a Python module file1 and you are welcome to use it as

you see fit. Eventually, you may want to study the code for the library itself as a

stepping stone to learning how to program directly in Tkinter.

5.2 The Object of Objects

The basic idea of object-oriented development is to view a complex system as the

interaction of simpler objects. The word objects is being used here in a specific

technical sense. Part of the challenge of OO programming is figuring out the

1See Appendix B for information on how to obtain the graphics library and other supporting

materials for this book.

5.3. Simple Graphics Programming 125

vocabulary. You can think of an OO object as a sort of active data type that

combines both data and operations. To put it simply, objects know stuff (they

contain data), and they can do stuff (they have operations). Objects interact by

sending each other messages. A message is simply a request for an object to

perform one of its operations.

Consider a simple example. Suppose we want to develop a data processing

system for a college or university. We will need to keep track of considerable

information. For starters, we must keep records on the students who attend

the school. Each student could be represented in the program as an object. A

student object would contain certain data such as name, ID number, courses

taken, campus address, home address, GPA, etc. Each student object would also

be able to respond to certain requests. For example, to send out a mailing, we

would need to print an address for each student. This task might be handled by

a printCampusAddress operation. When a particular student object is sent the

printCampusAddress message, it prints out its own address. To print out all the

addresses, a program would loop through the collection of student objects and

send each one in turn the printCampusAddress message.

Objects may refer to other objects. In our example, each course in the college

might also be represented by an object. Course objects would know things such

as who the instructor is, what students are in the course, what the prerequisites

are, and when and where the course meets. One example operation might be

addStudent, which causes a student to be enrolled in the course. The student

being enrolled would be represented by the appropriate student object. Instruc-

tors would be another kind of object, as well as rooms, and even times. You can

see how successive refinement of these ideas could lead to a rather sophisticated

model of the information structure of the college.

As a beginning programmer, you’re probably not yet ready to tackle a college

information system. For now, we’ll study objects in the context of some simple

graphics programming.

5.3 Simple Graphics Programming

In order to run the graphical programs and examples in this chapter (and the

rest of the book), you will need a copy of the file graphics.py that is supplied

with the supplemental materials. Using the graphics library is as easy as placing

a copy of the graphics.py file in the same folder as your graphics program(s).

Alternatively, you can place it in a system directory where other Python libraries

are stored so that it can be used from any folder on the system.

126 Chapter 5. Objects and Graphics

The graphics library makes it easy to experiment with graphics interactively

and write simple graphics programs. As you do, you will be learning principles

of object-oriented programming and computer graphics that can be applied in

more sophisticated graphical programming environments. The details of the

graphics module will be explored in later sections. Here we’ll concentrate on a

basic hands-on introduction to whet your appetite.

As usual, the best way to start learning new concepts is to roll up your sleeves

and try out some examples. The first step is to import the graphics module.

Assuming you have placed graphics.py in an appropriate place, you can import

the graphics commands into an interactive Python session.

>>> import graphics

Next we need to create a place on the screen where the graphics will appear.

That place is a graphics window or GraphWin, which is provided by the graphics

module.

>>> win = graphics.GraphWin()

This command creates a new window on the screen. The window will have the

title “Graphics Window.” The GraphWin may overlap your Python interpreter

window, so you might have to resize the Python window to make both fully

visible. Figure 5.1 shows an example screen view.

The GraphWin is an object, and we have assigned it to the variable called

win. We can manipulate the window object through this variable, similar to the

way that file objects are manipulated through file variables. For example, when

we are finished with a window, we can destroy it. This is done by issuing the

close command.

>>> win.close()

Typing this command causes the window to vanish from the screen.

We will be working with quite a few commands from the graphics library,

and it gets tedious having to type the graphics. notation every time we use

one. Python has an alternative form of import that can help out.

from graphics import *

The from statement allows you to load specific definitions from a library mod-

ule. You can either list the names of definitions to be imported or use an as-

terisk, as shown, to import everything defined in the module. The imported

commands become directly available without having to preface them with the

module name. After doing this import, we can create a GraphWin more simply.

5.3. Simple Graphics Programming 127

Figure 5.1: Screen shot with a Python window and a GraphWin.

win = GraphWin()

All of the rest of the graphics examples will assume that the entire graphics

module has been imported using from.

Let’s try our hand at some drawing. A graphics window is actually a collec-

tion of tiny points called pixels (short for picture elements). By controlling the

color of each pixel, we control what is displayed in the window. By default, a

GraphWin is 200 pixels tall and 200 pixels wide. That means there are 40,000

pixels in the GraphWin. Drawing a picture by assigning a color to each individ-

ual pixel would be a daunting challenge. Instead, we will rely on a library of

graphical objects. Each type of object does its own bookkeeping and knows how

to draw itself into a GraphWin.

The simplest object in the graphics module is a Point. In geometry, a point

is a location in space. A point is located by reference to a coordinate system. Our

graphics object Point is similar; it can represent a location in a GraphWin. We

define a point by supplying x and y coordinates (x, y). The x value represents

the horizontal location of the point, and the y value represents the vertical.

Traditionally, graphics programmers locate the point (0, 0) in the upper-left

128 Chapter 5. Objects and Graphics

corner of the window. Thus x values increase from left to right, and y values

increase from top to bottom. In the default 200 x 200 GraphWin, the lower-right

corner has the coordinates (199, 199). Drawing a Point sets the color of the

corresponding pixel in the GraphWin. The default color for drawing is black.

Here is a sample interaction with Python illustrating the use of Points:

>>> p = Point(50,60)

>>> p.getX()

50

>>> p.getY()

60

>>> win = GraphWin()

>>> p.draw(win)

>>> p2 = Point(140,100)

>>> p2.draw(win)

The first line creates a Point located at (50, 60). After the Point has been cre-

ated, its coordinate values can be accessed by the operations getX and getY.

A Point is drawn into a window using the draw operation. In this example,

two different point objects (p and p2) are created and drawn into the GraphWin

called win. Figure 5.2 shows the resulting graphical output.

Figure 5.2: Graphics window with two points drawn.

In addition to points, the graphics library contains commands for drawing

lines, circles, rectangles, ovals, polygons and text. Each of these objects is cre-

5.4. Using Graphical Objects 129

ated and drawn in a similar fashion. Here is a sample interaction to draw various

shapes into a GraphWin:

>>> #### Open a graphics window

>>> win = GraphWin(’Shapes’)

>>> #### Draw a red circle centered at point (100,100) with radius 30

>>> center = Point(100,100)

>>> circ = Circle(center, 30)

>>> circ.setFill(’red’)

>>> circ.draw(win)

>>> #### Put a textual label in the center of the circle

>>> label = Text(center, "Red Circle")

>>> label.draw(win)

>>> #### Draw a square using a Rectangle object

>>> rect = Rectangle(Point(30,30), Point(70,70))

>>> rect.draw(win)

>>> #### Draw a line segment using a Line object

>>> line = Line(Point(20,30), Point(180, 165))

>>> line.draw(win)

>>> #### Draw an oval using the Oval object

>>> oval = Oval(Point(20,150), Point(180,199))

>>> oval.draw(win)

Try to figure out what each of these statements does. If you type them in as

shown, the final result will look like Figure 5.3.

5.4 Using Graphical Objects

Some of the examples in the above interactions may look a bit strange to you.

To really understand the graphics module, we need to take an object-oriented

point of view. Remember, objects combine data with operations. Computation

is performed by asking an object to carry out one of its operations. In order to

make use of objects, you need to know how to create them and how to request

operations.

In the interactive examples above, we manipulated several different kinds

of objects: GraphWin, Point, Circle, Oval, Line, Text, and Rectangle. These

are examples of classes. Every object is an instance of some class, and the class

describes the properties the instance will have.

130 Chapter 5. Objects and Graphics

Figure 5.3: Various shapes from the graphics module.

Borrowing a biological metaphor, when we say that Fido is a dog, we are

actually saying that Fido is a specific individual in the larger class of all dogs. In

OO terminology, Fido is an instance of the dog class. Because Fido is an instance

of this class, we expect certain things. Fido has four legs, a tail, a cold, wet nose

and he barks. If Rex is a dog, we expect that he will have similar properties,

even though Fido and Rex may differ in specific details such as size or color.

The same ideas hold for our computational objects. We can create two sepa-

rate instances of Point, say p and p2. Each of these points has an x and y value,

and they both support the same set of operations like getX and draw. These

properties hold because the objects are Points. However, different instances

can vary in specific details such as the values of their coordinates.

To create a new instance of a class, we use a special operation called a con-

structor. A call to a constructor is an expression that creates a brand new object.

The general form is as follows:

<class-name>(<param1>, <param2>, ...)

Here <class-name> is the name of the class that we want to create a new in-

stance of, e.g., Circle or Point. The expressions in the parentheses are any

parameters that are required to initialize the object. The number and type of

the parameters depends on the class. A Point requires two numeric values,

while a GraphWin can be constructed without any parameters. Often, a con-

structor is used on the right side of an assignment statement, and the resulting

5.4. Using Graphical Objects 131

object is immediately assigned to a variable on the left side that is then used to

manipulate the object.

To take a concrete example, let’s look at what happens when we create a

graphical point. Here is a constructor statement from the interactive example

above.

p = Point(50,60)

The constructor for the Point class requires two parameters giving the x and

y coordinates for the new point. These values are stored as instance variables

inside of the object. In this case, Python creates an instance of Point having an

x value of 50 and a y value of 60. The resulting point is then assigned to the

variable p. A conceptual diagram of the result is shown in Figure 5.4. Note that,

in this diagram as well as similar ones later on, only the most salient details

are shown. Points also contain other information such as their color and which

window (if any) they are drawn in. Most of this information is set to default

values when the Point is created.

x:

60

50

p:

y:

Point

Figure 5.4: Conceptual picture of the result of p = Point(50,60). The variable

p refers to a freshly created Point having the given coordinates.

To perform an operation on an object, we send the object a message. The

set of messages that an object responds to are called the methods of the object.

You can think of methods as functions that live inside of the object. A method is

invoked using dot-notation.

<object>.<method-name>(<param1>, <param2>, ...)

The number and type of the parameters is determined by the method being used.

Some methods require no parameters at all. You can find numerous examples

of method invocation in the interactive examples above.

As examples of parameterless methods, consider these two expressions:

132 Chapter 5. Objects and Graphics

p.getX()

p.getY()

The getX and getY methods return the x and y values of a point, respectively.

Methods such as these are sometimes called accessors, because they allow us to

access information from the instance variables of the object.

Other methods change the values of an object’s instance variables, hence

changing the state of the object. All of the graphical objects have a move method.

Here is a specification:

move(dx, dy): Moves the object dx units in the x direction and dy units in the

y direction.

To move the point p to the right 10 units, we could use this statement.

p.move(10,0)

This changes the x instance variable of p by adding 10 units. If the point is

currently drawn in a GraphWin, move will also take care of erasing the old image

and drawing it in its new position. Methods that change the state of an object

are sometimes called mutators.

The move method must be supplied with two simple numeric parameters

indicating the distance to move the object along each dimension. Some methods

require parameters that are themselves complex objects. For example, drawing

a Circle into a GraphWin involves two objects. Let’s examine a sequence of

commands that does this.

circ = Circle(Point(100,100), 30)

win = GraphWin()

circ.draw(win)

The first line creates a Circle with a center located at the Point (100, 100) and

a radius of 30. Notice that we used the Point constructor to create a location

for the first parameter to the Circle constructor. The second line creates a

GraphWin. Do you see what is happening in the third line? This is a request for

the Circle object circ to draw itself into the GraphWin object win. The visible

effect of this statement is a circle in the GraphWin centered at (100, 100) and

having a radius of 30. Behind the scenes, a lot more is happening.

Remember, the draw method lives inside the circ object. Using informa-

tion about the center and radius of the circle from the instance variables, the

draw method issues an appropriate sequence of low-level drawing commands

5.4. Using Graphical Objects 133

(a sequence of method invocations) to the GraphWin. A conceptual picture of

the interactions among the Point, Circle and GraphWin objects is shown in

Figure 5.5. Fortunately, we don’t usually have to worry about these kinds of

details; they’re all taken care of by the graphical objects. We just create objects,

call the appropriate methods, and let them do the work. That’s the power of

object-oriented programming.

Circle

y:

x:

100

100

Pointcenter:

radius:

draw()

.

.

.

GraphWin

.

.

.

Low-level drawing commands

win:

30

circ:

Figure 5.5: Object interactions to draw a circle.

There is one subtle “gotcha” that you need to keep in mind when using

objects. It is possible for two different variables to refer to exactly the same

object; changes made to the object through one variable will also be visible to

the other. Suppose we are trying to write a sequence of code that draws a smiley

face. We want to create two eyes that are 20 units apart. Here is a sequence of

code intended to draw the eyes.

Incorrect way to create two circles.

leftEye = Circle(Point(80, 50), 5)

leftEye.setFill(’yellow’)

leftEye.setOutline(’red’)

rightEye = leftEye

134 Chapter 5. Objects and Graphics

rightEye.move(20,0)

The basic idea is to create the left eye and then copy that into a right eye which

is then moved over 20 units.

This doesn’t work. The problem here is that only one Circle object is cre-

ated. The assignment

rightEye = leftEye

simply makes rightEye refer to the very same circle as leftEye. Figure 5.6

shows the situation. When the Circle is moved in the last line of code, both

rightEye and leftEye refer to it in its new location on the right side. This

situation where two variables refer to the same object is called aliasing, and it

can sometimes produce rather unexpected results.

rightEye:

leftEye: Circle

y:

x:

50

80

Pointcenter:

radius: 10

Figure 5.6: Variables leftEye and rightEye are aliases.

One solution to this problem would be to create a separate circle for each

eye.

A correct way to create two circles.

leftEye = Circle(Point(80, 50), 5)

leftEye.setFill(’yellow’)

leftEye.setOutline(’red’)

rightEye = Circle(Point(100, 50), 5)

rightEye.setFill(’yellow’)

rightEye.setOutline(’red’)

This will certainly work, but it’s cumbersome. We had to write duplicated code

for the two eyes. That’s easy to do using a “cut and paste” approach, but it’s not

5.5. Graphing Future Value 135

very elegant. If we decide to change the appearance of the eyes, we will have to

be sure to make the changes in two places.

The graphics library provides a better solution; all graphical objects support

a clone method that makes a copy of the object. Using clone, we can rescue

the original approach.

Correct way to create two circles, using clone.

leftEye = Circle(Point(80, 50), 5)

leftEye.setFill(’yellow’)

leftEye.setOutline(’red’)

rightEye = leftEye.clone() # rightEye is an exact copy of the left

rightEye.move(20,0)

Strategic use of cloning can make some graphics tasks much easier.

5.5 Graphing Future Value

Now that you have some idea of how to use objects from the graphics module,

we’re ready to try some real graphics programming. One of the most important

uses of graphics is providing a visual representation of data. They say a picture is

worth a thousand words; it is almost certainly better than a thousand numbers.

Few programs that manipulate numeric data couldn’t be improved with a bit

of graphical output. Remember the program in Chapter 2 that computed the

future value of a ten year investment? Let’s try our hand at creating a graphical

summary.

Programming with graphics requires careful planning. You’ll probably want

pencil and paper handy to draw some diagrams and scratch out calculations as

we go along. As usual, we begin by considering the specification of exactly what

the program will do.

The original program futval.py had two inputs, the amount of money to

be invested and the annualized rate of interest. Using these inputs, the program

calculated the change in principal year by year for ten years using the formula

principal = principal(1+apr). It then printed out the final value of the principal.

In the graphical version, the output will be a ten-year bar graph where the height

of successive bars represents the value of the principal in successive years.

Let’s use a concrete example for illustration. Suppose we invest $2000 at

10% interest. This table shows the growth of the investment over a ten-year

period:

136 Chapter 5. Objects and Graphics

Years Value

0 $2,000.00

1 $2,200.00

2 $2,420.00

3 $2,662.00

4 $2,928.20

5 $3,221.02

6 $3,542.12

7 $3,897.43

8 $4,287.18

9 $4,715.90

10 $5,187.49

Our program will display this information in a bar graph. Figure 5.7 shows the

data in graphical form. The graph actually contains eleven bars. The first bar

Figure 5.7: Bar graph showing growth of $2,000 at 10% interest.

shows the original value of the principal. For reference, let’s number these bars

according to the number of years of interest accrued, 0–10.

Here is a rough design for the program:

Print an introduction

Get value of principal and apr from user

5.5. Graphing Future Value 137

Create a GraphWin

Draw scale labels on left side of window

Draw bar at position 0 with height corresponding to principal

For successive years 1 through 10

Calculate principal = principal * (1 + apr)

Draw a bar for this year having a height corresponding to principal

Wait for user to press Enter.

The pause created by the last step is necessary to keep the graphics window dis-

played so that we can interpret the results. Without such a pause, the program

would end and the GraphWin would vanish with it.

While this design gives us the broad brush strokes for our algorithm, there

are some very important details that have been glossed over. We must decide

exactly how big the graphics window will be and how we will position the ob-

jects that appear in this window. For example, what does it mean to draw, say, a

bar for year five with height corresponding to $3,221.02?

Let’s start with the size of the GraphWin. Recall that the size of a window

is given in terms of the number of pixels in each dimension. Computer screens

are also measured in terms of pixels. The number of pixels or resolution of the

screen is determined by the monitor and graphics card in the computer you use.

The lowest resolution screen you are likely to encounter these days is a so-called

standard VGA screen that is 640 x 480 pixels. Most screens are considerably

larger. Let’s make the GraphWin one quarter the size of a 640 x 480 screen, or

320 x 240. That should allow all users to see the graphical output as well as the

textual output from our program.

Given this analysis, we can flesh out a bit of our design. The third line of the

design should now read:

Create a 320 x 240 GraphWin titled ‘‘Investment Growth Chart’’

You may be wondering how this will translate into Python code. You have al-

ready seen that the GraphWin constructor allows an optional parameter to spec-

ify the title of the window. You may also supply width and height parameters to

control the size of the window. Thus, the command to create the output window

will be:

win = GraphWin("Investment Growth Chart", 320, 240)

Next we turn to the problem of printing labels along the left edge of our

window. To simplify the problem, we will assume the graph is always scaled to

138 Chapter 5. Objects and Graphics

a maximum of $10,000 with the five labels “0.0K” to “10.0K” as shown in the

example window. The question is how should the labels be drawn? We will need

some Text objects. When creating Text, we specify the anchor point (the point

the text is centered on) and the string to use as the label.

The label strings are easy. Our longest label is five characters, and the labels

should all line up on the right side of a column, so the shorter strings will be

padded on the left with spaces. The placement of the labels is chosen with a bit

of calculation and some trial and error. Playing with some interactive examples,

it seems that a string of length five looks nicely positioned in the horizontal

direction placing the center 20 pixels in from the left edge. This leaves just a bit

of whitespace at the margin.

In the vertical direction, we have just over 200 pixels to work with. A simple

scaling would be to have 100 pixels represent $5,000. That means our five labels

should be spaced 50 pixels apart. Using 200 pixels for the range 0–10,000 leaves

240 − 200 = 40 pixels to split between the top and bottom margins. We might

want to leave a little more margin at the top to accommodate values that grow

beyond $10,000. A little experimentation suggests that putting the “ 0.0K” label

10 pixels from the bottom (position 230) seems to look nice.

Elaborating our algorithm to include these details, the single step

Draw scale labels on left side of window

becomes a sequence of steps

Draw label " 0.0K" at (20, 230)

Draw label " 2.5K" at (20, 180)

Draw label " 5.0K" at (20, 130)

Draw label " 7.5K" at (20, 80)

Draw label "10.0K" at (20, 30)

The next step in the original design calls for drawing the bar that corresponds

to the initial amount of the principal. It is easy to see where the lower left corner

of this bar should be. The value of $0.0 is located vertically at pixel 230, and

the labels are centered 20 pixels in from the left edge. Adding another 20 pixels

gets us to the right edge of the labels. Thus the lower left corner of the 0th bar

should be at location (40, 230).
Now we just need to figure out where the opposite (upper right) corner

of the bar should be so that we can draw an appropriate rectangle. In the

vertical direction, the height of the bar is determined by the value of principal.

In drawing the scale, we determined that 100 pixels is equal to $5,000. This

5.5. Graphing Future Value 139

means that we have 100/5000 = 0.02 pixels to the dollar. This tells us, for

example, that a principal of $2,000 should produce a bar of height 2000(.02) =
40 pixels. In general, the y position of the upper-right corner will be given by

230−(principal)(0.02). (Remember that 230 is the 0 point, and the y coordinates

decrease going up).

How wide should the bar be? The window is 320 pixels wide, but 40 pixels

are eaten up by the labels on the left. That leaves us with 280 pixels for 11 bars:

280/11 = 25.4545. Let’s just make each bar 25 pixels; that will give us a bit of

margin on the right side. So, the right edge of our first bar will be at position

40 + 25 = 65.

We can now fill the details for drawing the first bar into our algorithm.

Draw a rectangle from (40, 230) to (65, 230 - principal * 0.02)

At this point, we have made all the major decisions and calculations required to

finish out the problem. All that remains is to percolate these details into the rest

of the algorithm. Figure 5.8 shows the general layout of the window with some

of the dimensions we have chosen.

0.0K

2.5K

5.0K

7.5K

10.0K

(40,230)

320

(0,0)

(319,239)

25

10

40

50

(315,230)

240

Figure 5.8: Position of elements in future value bar graph.

Let’s figure out where the lower-left corner of each bar is going to be lo-

cated. We chose a bar width of 25, so the bar for each successive year will start

25 pixels farther right than the previous year. We can use a variable year to rep-

resent the year number and calculate the x coordinate of the lower left corner

140 Chapter 5. Objects and Graphics

as (year)(25) + 40. (The +40 leaves space on the left edge for the labels.) Of

course, the y coordinate of this point is still 230 (the bottom of the graph).

To find the upper-right corner of a bar, we add 25 (the width of the bar) to

the x value of the lower-left corner. The y value of the upper right corner is

determined from the (updated) value of principal exactly as we determined it

for the first bar. Here is the refined algorithm:

for year running from a value of 1 up through 10:

Calculate principal = principal * (1 + apr)

Calculate xll = 25 * year + 40

Calculate height = principal * 0.02

Draw a rectangle from (xll, 230) to (xll+25, 230 - height)

The variable xll stands for x lower left—the x value of the lower left corner of

the bar.

Putting all of this together produces the detailed algorithm shown below:

Print an introduction

Get value of principal and apr from user

Create a 320x240 GraphWin titled ‘‘Investment Growth Chart’’

Draw label " 0.0K" at (20,230)

Draw label " 2.5K" at (20, 180)

Draw label " 5.0K" at (20, 130)

Draw label " 7.5K" at (20, 80)

Draw label "10.0K" at (20, 30)

Draw a rectangle from (40, 230) to (65, 230 - principal * 0.02)

for year running from a value of 1 up through 10:

Calculate principal = principal * (1 + apr)

Calculate xll = 25 * year + 40

Draw a rectangle from (xll, 230) to (xll+25, 230 - principal * 0.02)

Wait for user to press Enter

Whew! That was a lot of work, but we are finally ready to translate this algo-

rithm into actual Python code. The translation is straightforward using objects

from the graphics module. Here’s the program:

futval_graph.py

from graphics import *

5.5. Graphing Future Value 141

def main():

Introduction

print "This program plots the growth of a 10-year investment."

Get principal and interest rate

principal = input("Enter the initial principal: ")

apr = input("Enter the annualized interest rate: ")

Create a graphics window with labels on left edge

win = GraphWin("Investment Growth Chart", 320, 240)

win.setBackground("white")

Text(Point(20, 230), ’ 0.0K’).draw(win)

Text(Point(20, 180), ’ 2.5K’).draw(win)

Text(Point(20, 130), ’ 5.0K’).draw(win)

Text(Point(20, 80), ’ 7.5K’).draw(win)

Text(Point(20, 30), ’10.0K’).draw(win)

Draw bar for initial principal

height = principal * 0.02

bar = Rectangle(Point(40, 230), Point(65, 230-height))

bar.setFill("green")

bar.setWidth(2)

bar.draw(win)

Draw bars for successive years

for year in range(1,11):

calculate value for the next year

principal = principal * (1 + apr)

draw bar for this value

xll = year * 25 + 40

height = principal * 0.02

bar = Rectangle(Point(xll, 230), Point(xll+25, 230-height))

bar.setFill("green")

bar.setWidth(2)

bar.draw(win)

raw_input("Press <Enter> to quit")

142 Chapter 5. Objects and Graphics

win.close()

main()

If you study this program carefully, you will see that I added a number of

features to spruce it up a bit. All graphical objects support methods for changing

color. I have set the background color of the window to white (by default it’s

gray).

win.setBackground("white")

I have also changed the color of the bar object. The following line asks the

bar to color its interior green (because it’s money, you know):

bar.setFill("green")

You can also change the color of a shape’s outline using the setOutline method.

In this case, I have chosen to leave the outline the default black so that the bars

stand out from each other. To enhance this effect, this code makes the outline

wider (two pixels instead of the default one).

bar.setWidth(2)

You might also have noted the economy of notation in drawing the labels.

Since we don’t ever change the labels, saving them into a variable is unnecessary.

We can just create a Text object, tell it to draw itself, and be done with it. Here

is an example:

Text(Point(20,230), ’ 0.0K’).draw(win)

Finally, take a close look at the use of the year variable in the loop.

for year in range(1,11):

The expression range(1,11) produces a sequence of ints 1–10. The loop in-

dex variable year marches through this sequence on successive iterations of the

loop. So, the first time through year is 1, then 2, then 3, etc., up to 10. The

value of year is then used to compute the proper position of the lower left corner

of each bar.

xll = year * 25 + 40

I hope you are starting to get the hang of graphics programming. It’s a bit

strenuous, but very addictive.

5.6. Choosing Coordinates 143

5.6 Choosing Coordinates

The lion’s share of the work in designing the futval graph program was in de-

termining the precise coordinates where things would be placed on the screen.

Most graphics programming problems require some sort of a coordinate trans-

formation to change values from a real-world problem into the window coordi-

nates that get mapped onto the computer screen. In our example, the problem

domain called for x values representing the year (0–10) and y values represent-

ing monetary amounts ($0–$10,000). We had to transform these values to be

represented in a 320 x 240 window. It’s nice to work through an example or two

to see how this transformation happens, but it makes for tedious programming.

Coordinate transformation is an integral and well-studied component of com-

puter graphics. It doesn’t take too much mathematical savvy to see that the

transformation process always follows the same general pattern. Anything that

follows a pattern can be done automatically. In order to save you the trouble

of having to explicitly convert back and forth between coordinate systems, the

graphics module provides a simple mechanism to do it for you. When you cre-

ate a GraphWin you can specify a coordinate system for the window using the

setCoords method. The method requires four parameters specifying the coor-

dinates of the lower-left and upper-right corners, respectively. You can then use

this coordinate system to place graphical objects in the window.

To take a simple example, suppose we just want to divide the window into

nine equal squares, Tic-Tac-Toe fashion. This could be done without too much

trouble using the default 200 x 200 window, but it would require a bit of arith-

metic. The problem becomes trivial if we first change the coordinates of the

window to run from 0 to 3 in both dimensions.

create a default 200x200 window

win = GraphWin("Tic-Tac-Toe")

set coordinates to go from (0,0) in the lower left

to (3,3) in the upper right.

win.setCoords(0.0, 0.0, 3.0, 3.0)

Draw vertical lines

Line(Point(1,0), Point(1,3)).draw(win)

Line(Point(2,0), Point(2,3)).draw(win)

Draw horizontal lines

144 Chapter 5. Objects and Graphics

Line(Point(0,1), Point(3,1)).draw(win)

Line(Point(0,2), Point(3,2)).draw(win)

Another benefit of this approach is that the size of the window can be changed

by simply changing the dimensions used when the window is created (e.g. win

= GraphWin("Tic-Tac-Toe", 300, 300)). Because the same coordinates span

the window (due to setCoords) the objects will scale appropriately to the new

window size. Using “raw” window coordinates would require changes in the

definitions of the lines.

We can apply this idea to simplify our graphing future value program. Ba-

sically, we want our graphics window to go from 0 through 10 (representing

years) in the x dimension and from 0 to 10,000 (representing dollars) in the y
dimension. We could create just such a window like this.

win = GraphWin("Investment Growth Chart", 320, 240)

win.setCoords(0.0, 0.0, 10.0, 10000.0)

Then creating a bar for any values of year and principal would be simple.

Each bar starts at the given year and a baseline of 0 and grows to the next year

and a height equal to principal.

bar = Rectangle(Point(year, 0), Point(year+1, principal))

There is a small problem with this scheme. Can you see what I have forgot-

ten? The bars will fill the entire window; we haven’t left any room for labels or

margins around the edges. This is easily fixed by expanding the coordinates of

the window slightly. Since our bars start at 0, we can locate the left side labels

at -1. We can add a bit of whitespace around the graph by expanding the co-

ordinates slightly beyond that required for our graph. A little experimentation

leads to this window definition:

win = GraphWin("Investment Growth Chart", 320, 240)

win.setCoords(-1.75,-200, 11.5, 10400)

Here is the program again, using the alternative coordinate system:

futval_graph2.py

from graphics import *

def main():

5.6. Choosing Coordinates 145

Introduction

print "This program plots the growth of a 10-year investment."

Get principal and interest rate

principal = input("Enter the initial principal: ")

apr = input("Enter the annualized interest rate: ")

Create a graphics window with labels on left edge

win = GraphWin("Investment Growth Chart", 320, 240)

win.setBackground("white")

win.setCoords(-1.75,-200, 11.5, 10400)

Text(Point(-1, 0), ’ 0.0K’).draw(win)

Text(Point(-1, 2500), ’ 2.5K’).draw(win)

Text(Point(-1, 5000), ’ 5.0K’).draw(win)

Text(Point(-1, 7500), ’ 7.5k’).draw(win)

Text(Point(-1, 10000), ’10.0K’).draw(win)

Draw bar for initial principal

bar = Rectangle(Point(0, 0), Point(1, principal))

bar.setFill("green")

bar.setWidth(2)

bar.draw(win)

Draw a bar for each subsequent year

for year in range(1, 11):

principal = principal * (1 + apr)

bar = Rectangle(Point(year, 0), Point(year+1, principal))

bar.setFill("green")

bar.setWidth(2)

bar.draw(win)

raw_input("Press <Enter> to quit.")

win.close()

main()

Notice how the cumbersome coordinate calculations have been eliminated. This

version also makes it easy to change the size of the GraphWin. Changing the

window size to 640 x 480 produces a larger, but correctly drawn bar graph. In

146 Chapter 5. Objects and Graphics

the original program, all of the calculations would have to be redone to accom-

modate the new scaling factors in the larger window.

Obviously, the second version of our program is much easier to develop and

understand. When you are doing graphics programming, give some consider-

ation to choosing a coordinate system that will make your task as simple as

possible.

5.7 Interactive Graphics

Graphical interfaces can be used for input as well as output. In a GUI envi-

ronment, users typically interact with their applications by clicking on buttons,

choosing items from menus, and typing information into on-screen text boxes.

These applications use a technique called event-driven programming. Basically,

the program draws a set of interface elements (often called widgets) on the

screen, and then waits for the user to do something.

When the user moves the mouse, clicks a button or types a key on the key-

board, this generates an event. Basically, an event is an object that encapsulates

data about what just happened. The event object is then sent off to an appropri-

ate part of the program to be processed. For example, a click on a button might

produce a button event. This event would be passed to the button handling code,

which would then perform the appropriate action corresponding to that button.

Event-driven programming can be tricky for novice programmers, since it’s

hard to figure out “who’s in charge” at any given moment. The graphics module

hides the underlying event-handling mechanisms and provides two simple ways

of getting user input in a GraphWin.

5.7.1 Getting Mouse Clicks

We can get graphical information from the user via the getMouse method of the

GraphWin class. When getMouse is invoked on a GraphWin, the program pauses

and waits for the user to click the mouse somewhere in the graphics window.

The spot where the user clicks is returned to the program as a Point. Here is a

bit of code that reports the coordinates of ten successive mouse clicks:

from graphics import *

win = GraphWin("Click Me!")

for i in range(10):

5.7. Interactive Graphics 147

p = win.getMouse()

print "You clicked (%d, %d)" % (p.getX(), p.getY())

The value returned by getMouse() is a ready-made Point. We can use it like

any other point using accessors such as getX and getY or other methods such as

draw and move.

Here is an example of an interactive program that allows the user to draw

a triangle by clicking on three points in a graphics window. This example is

completely graphical, making use of Text objects as prompts. No interaction

with a Python text window is required. If you are programming in a Windows

environment, you can name this program using a .pyw extension. Then when

the program is run, it will not even display the Python shell window.

Program: triangle.pyw

from graphics import *

def main():

win = GraphWin("Draw a Triangle")

win.setCoords(0.0, 0.0, 10.0, 10.0)

message = Text(Point(5, 0.5), "Click on three points")

message.draw(win)

Get and draw three vertices of triangle

p1 = win.getMouse()

p1.draw(win)

p2 = win.getMouse()

p2.draw(win)

p3 = win.getMouse()

p3.draw(win)

Use Polygon object to draw the triangle

triangle = Polygon(p1,p2,p3)

triangle.setFill("peachpuff")

triangle.setOutline("cyan")

triangle.draw(win)

Wait for another click to exit

message.setText("Click anywhere to quit.")

win.getMouse()

main()

148 Chapter 5. Objects and Graphics

The three-click triangle illustrates a couple new features of the graphics

module. There is no triangle class; however there is a general class Polygon

that can be used for any multi-sided, closed shape. The constructor for Polygon

accepts any number of points and creates a polygon by using line segments to

connect the points in the order given and to connect the last point back to the

first. A triangle is just a three-sided polygon. Once we have three Points p1,

p2, and p3, creating the triangle is a snap.

triangle = Polygon(p1, p2, p3)

You should also study how the Text object is used to provide prompts. A

single Text object is created and drawn near the beginning of the program.

message = Text(Point(5, 0.5), "Click on three points")

message.draw(win)

To change the prompt, we don’t need to create a new Text object, we can just

change the text that is displayed. This is done near the end of the program with

the setText method.

message.setText("Click anywhere to quit.")

As you can see, the getMouse method of GraphWin provides a simple way of

interacting with the user in a graphics-oriented program.

5.7.2 Handling Textual Input

In the triangle example, all of the input was provided through mouse clicks.

The graphics module also includes a simple Entry object that can be used to

get keyboard input in a GraphWin.

An Entry object draws a box on the screen that can contain text. It un-

derstands setText and getText methods just like the Text object does. The

difference is that the contents of an Entry can be edited by the user. Here’s a

version of the temperature conversion program from Chapter 2 with a graphical

user interface:

convert_gui.pyw

Program to convert Celsius to Fahrenheit using a simple

graphical interface.

from graphics import *

5.7. Interactive Graphics 149

def main():

win = GraphWin("Celsius Converter", 300, 200)

win.setCoords(0.0, 0.0, 3.0, 4.0)

Draw the interface

Text(Point(1,3), " Celsius Temperature:").draw(win)

Text(Point(1,1), "Fahrenheit Temperature:").draw(win)

input = Entry(Point(2,3), 5)

input.setText("0.0")

input.draw(win)

output = Text(Point(2,1),"")

output.draw(win)

button = Text(Point(1.5,2.0),"Convert It")

button.draw(win)

Rectangle(Point(1,1.5), Point(2,2.5)).draw(win)

wait for a mouse click

win.getMouse()

convert input

celsius = eval(input.getText())

fahrenheit = 9.0/5.0 * celsius + 32

display output and change button

output.setText("%0.1f" % fahrenheit)

button.setText("Quit")

wait for click and then quit

win.getMouse()

win.close()

main()

When run, this produces a window with an entry box for typing in a Celsius

temperature and a “button” for doing the conversion. The button is just for show.

The program actually just pauses for a mouse click anywhere in the window.

Figure 5.9 shows how the window looks when the program starts.

Initially, the input entry box is set to contain the value 0.0. The user can

150 Chapter 5. Objects and Graphics

Figure 5.9: Initial screen for graphical temperature converter.

delete this value and type in another temperature. The program pauses until

the user clicks the mouse. Notice that the point where the user clicks is not even

saved; the getMouse function is just used to pause the program until the user

has a chance to enter a value in the input box.

The program then processes the input in four steps. First, the text in the

input box is converted into a number (via eval). This number is then converted

to degrees Fahrenheit. Finally, the resulting number is turned back into a string

(via the string formatting operator) for display in the output text area.

Figure 5.10 shows how the window looks after the user has typed an input

and clicked the mouse. Notice that the converted temperature shows up in the

output area, and the label on the button has changed to “Quit” to show that

clicking again will exit the program. This example could be made much prettier

using some of the options in the graphics library for changing the colors, sizes

and line widths of the various widgets. The code for the program is deliberately

Spartan to illustrate just the essential elements of GUI design.

Although the basic tools getMouse and Entry do not provide a full-fledged

GUI environment, we will see in later chapters how these simple mechanisms

can support surprisingly rich interactions.

5.8. Graphics Module Reference 151

Figure 5.10: Graphical temperature converter after user input.

5.8 Graphics Module Reference

The examples in this chapter have touched on most of the elements in the

graphics module. This section provides a complete reference to the objects and

functions provided in the graphics library. The set of objects and functions that

are provided by a module is sometimes called an Applications Programming In-

terface or API. Experienced programmers study APIs to learn about new libraries.

You should probably read this section over once to see what the graphics library

has to offer. After that, you will probably want to refer back to this section often

when you are writing your own graphical programs.

5.8.1 GraphWin Objects

A GraphWin object represents a window on the screen where graphical images

may be drawn. A program may define any number of GraphWins. A GraphWin

understands the following methods:

GraphWin(title, width, height) Constructs a new graphics window for draw-

ing on the screen. The parameters are optional, the default title is “Graph-

ics Window,” and the default size is 200 x 200.

plot(x, y, color) Draws the pixel at (x, y) in the window. Color is optional,

black is the default.

152 Chapter 5. Objects and Graphics

plotPixel(x, y, Color) Draws the pixel at the “raw” position (x, y) ignoring

any coordinate transformations set up by setCoords.

setBackground(color) Sets the window background to the given color. The

initial background is gray. See Section 5.8.5 for information on specifying

colors.

close() Closes the on-screen window.

getMouse() Pauses for the user to click a mouse in the window and returns

where the mouse was clicked as a Point object.

setCoords(xll, yll, xur, yur) Sets the coordinate system of the window.

The lower left corner is (xll, yll) and the upper right corner is (xur, yur).
All subsequent drawing will be done with respect to the altered coordinate

system (except for plotPixel).

5.8.2 Graphics Objects

The module provides the following classes of drawable objects: Point, Line,

Circle, Oval, Rectangle, Polygon, and Text. All objects are initially created

unfilled with a black outline. All graphics objects support the following generic

set of methods:

setFill(color) Sets the interior of the object to the given color.

setOutline(color) Sets the outline of the object to the given color.

setWidth(pixels) Sets the width of the outline of the object to this many pix-

els. (Does not work for Point.)

draw(aGraphWin) Draws the object into the given GraphWin.

undraw() Undraws the object from a graphics window.

move(dx,dy) Moves the object dx units in the x direction and dy units in the

y direction. If the object is currently drawn, the image is adjusted to the

new position.

clone() Returns a duplicate of the object. Clones are always created in an

undrawn state. Other than that, they are identical to the cloned object.

5.8. Graphics Module Reference 153

Point Methods

Point(x,y) Constructs a point having the given coordinates.

getX() Returns the x coordinate of a point.

getY() Returns the y coordinate of a point.

Line Methods

Line(point1, point2) Constructs a line segment from point1 to point2.

setArrow(string) Sets the arrowhead status of a line. Arrows may be drawn

at either the first point, the last point, or both. Possible values of string

are ’first’, ’last’, ’both’, and ’none’. The default setting is ’none’.

getCenter() Returns a clone of the midpoint of the line segment.

getP1(), getP2() Returns a clone of the corresponding endpoint of the seg-

ment.

Circle Methods

Circle(centerPoint, radius) Constructs a circle with given center point and

radius.

getCenter() Returns a clone of the center point of the circle.

getRadius() Returns the radius of the circle.

getP1(), getP2() Returns a clone of the corresponding corner of the circle’s

bounding box. These are opposite corner points of a square that circum-

scribes the circle.

Rectangle Methods

Rectangle(point1, point2) Constructs a rectangle having opposite corners

at point1 and point2.

getCenter() Returns a clone of the center point of the rectangle.

getP1(), getP2() Returns a clone of corner points originally used to construct

the rectangle.

154 Chapter 5. Objects and Graphics

Oval Methods

Oval(point1, point2) Constructs an oval in the bounding box determined by

point1 and point2.

getCenter() Returns a clone of the point at the center of the oval.

getP1(), getP2() Returns a clone of the corresponding point used to con-

struct the oval.

Polygon Methods

Polygon(point1, point2, point3, ...) Constructs a polygon having the given

points as vertices. Also accepts a single parameter that is a list of the ver-

tices.

getPoints() Returns a list containing clones of the points used to construct the

polygon.

Text Methods

Text(anchorPoint, string) Constructs a text object that displays the given

string centered at anchorPoint. The text is displayed horizontally.

setText(string) Sets the text of the object to string.

getText() Returns the current string.

getAnchor() Returns a clone of the anchor point.

setFace(family) Changes the font face to the given family. Possible values

are: ’helvetica’, ’courier’, ’times roman’, and ’arial’.

setSize(point) Changes the font size to the given point size. Sizes from 5 to

36 points are legal.

setStyle(style) Changes font to the given style. Possible values are ’normal’,

’bold’, ’italic’, and ’bold italic’.

setTextColor(color) Sets the color of the text to color. Note: setFill has

the same effect.

5.8. Graphics Module Reference 155

5.8.3 Entry Objects

Objects of type Entry are displayed as text entry boxes that can be edited by

the user of the program. Entry objects support the generic graphics meth-

ods move(), draw(graphwin), undraw(), setFill(color), and clone(). The

Entry specific methods are given below.

Entry(centerPoint, width) Constructs an Entry having the given center point

and width. The width is specified in number of characters of text that can

be displayed.

getAnchor() Returns a clone of the point where the entry box is centered.

getText() Returns the string of text that is currently in the entry box.

setText(string) Sets the text in the entry box to the given string. Changes

the font face to the given family. Possible values are: ’helvetica’,

’courier’, ’times roman’, and ’arial’.

setSize(point) Changes the font size to the given point size. Sizes from 5 to

36 points are legal.

setStyle(style) Changes font to the given style. Possible values are: ’normal’,

’bold’, ’italic’, and ’bold italic’.

setTextColor(color) Sets the color of the text to color.

5.8.4 Displaying Images

The graphics module also provides minimal support for displaying certain image

formats into a GraphWin. Most platforms will support JPEG, PPM and GIF im-

ages. Display is done with an Image object. Images support the generic methods

move(dx,dy), draw(graphwin), undraw(), and clone(). Image specific meth-

ods are given below.

Image(centerPoint, filename) Constructs an image from contents of the given

file, centered at the given center point.

getAnchor() Returns a clone of the point where the image is centered.

156 Chapter 5. Objects and Graphics

5.8.5 Generating Colors

Colors are indicated by strings. Most normal colors such as ’red’, ’purple’,

’green’, ’cyan’, etc. should be available. Many colors come in various shades,

such as ’red1’, ’red2’,’red3’, ’red4’, which are increasingly darker shades

of red.

The graphics module also provides a function for mixing your own colors nu-

merically. The function color rgb(red, green, blue) will return a string rep-

resenting a color that is a mixture of the intensities of red, green and blue spec-

ified. These should be ints in the range 0–255. Thus color rgb(255, 0, 0) is

a bright red, while color rgb(130, 0, 130) is a medium magenta.

5.9 Chapter Summary

This chapter introduced computer graphics and object-based programming. Here

is a summary of some of the important concepts.

• An object is a computational entity that combines data and operations.

Objects know stuff and can do stuff. An object’s data is stored in instance

variables, and its operations are called methods.

• Every object is an instance of some class. It is the class that determines

what methods an object will have. An instance is created by calling a

constructor method.

• An object’s attributes are accessed via dot notation. Generally computa-

tions with objects are performed by calling on an object’s methods. Acces-

sor methods return information about the instance variables of an object.

Mutator methods change the value(s) of instance variables.

• The graphics module supplied with this book provides a number of classes

that are useful for graphics programming. A GraphWin is an object that

represents a window on the screen for displaying graphics. Various graph-

ical objects such as Point, Line, Circle, Rectangle, Oval, Polygon, and

Text may be drawn in a GraphWin. Users may interact with a GraphWin

by clicking the mouse or typing into an Entry box.

• An important consideration in graphical programming is the choice of an

appropriate coordinate system. The graphics library provides a way of

automating certain coordinate transformations.

5.10. Exercises 157

• The situation where two variables refer to the same object is called alias-

ing. It can sometimes cause unexpected results. Use of the clone method

in the graphics library can help prevent these situations.

5.10 Exercises

Review Questions

True/False

1. Using graphics.py allows graphics to be drawn into a Python shell win-

dow.

2. Traditionally, the upper-left corner of a graphics window has coordinates

(0,0).

3. A single point on a graphics screen is called a pixel.

4. A function that creates a new instance of a class is called an accessor.

5. Instance variables are used to store data inside an object.

6. The statement myShape.move(10,20) moves myShape to the point (10,20).

7. Aliasing occurs when two variables refer to the same object.

8. The copy method is provided to make a copy of a graphics object.

9. A graphics window always has the title “Graphics Window.”

10. The method in the graphics library used to get a mouse click is readMouse.

Multiple Choice

1. A method that returns the value of an object’s instance variable is called

a(n)

a) mutator b) function c) constructor d) accessor

2. A method that changes the state of an object is called a(n)

a) stator b) mutator c) constructor d) changor

3. What graphics class would be best for drawing a square?

a) Square b) Polygon c) Line d) Rectangle

158 Chapter 5. Objects and Graphics

4. What command would set the coordinates of win to go from (0,0) in the

lower-left corner to (10,10) in the upper-right?

a) win.setcoords(Point(0,0), Point(10,10))

b) win.setcoords((0,0), (10,10))

c) win.setcoords(0, 0, 10, 10)

d) win.setcoords(Point(10,10), Point(0,0))

5. What expression would create a line from (2,3) to (4,5)?

a) Line(2, 3, 4, 5)

b) Line((2,3), (4,5))

c) Line(2, 4, 3, 5)

d) Line(Point(2,3), Point(4,5))

6. What command would be used to draw the graphics object shape into the

graphics window win?

a) win.draw(shape) b) win.show(shape)

c) shape.draw() d) shape.draw(win)

7. Which of the following computes the horizontal distance between points

p1 and p2?

a) abs(p1-p2)

b) p2.getX() - p1.getX()

c) abs(p1.getY() - p2.getY())

d) abs(p1.getX() - p2.getX())

8. What kind of object can be used to get text input in a graphics window?

a) Text b) Entry c) Input d) Keyboard

9. A user interface organized around visual elements and user actions is

called a(n)

a) GUI b) application c) windower d) API

10. What color is color rgb(0,255,255)?

a) yellow b) cyan c) magenta d) orange

Discussion

1. Pick an example of an interesting real-world object and describe it as a

programming object by listing its data (attributes, what it “knows”) and

its methods (behaviors, what it can “do”).

5.10. Exercises 159

2. Describe in your own words the object produced by each of the following

operations from the graphics module. Be as precise as you can. Be sure to

mention such things as the size, position, and appearance of the various

objects. You may include a sketch if that helps.

(a) Point(130,130)

(b) c = Circle(Point(30,40),25)

c.setFill(’blue’)

c.setOutline(’red’)

(c) r = Rectangle(Point(20,20), Point(40,40))

r.setFill(color_rgb(0,255,150))

r.setWidth(3)

(d) l = Line(Point(100,100), Point(100,200))

l.setOutline(’red4’)

l.setArrow(’first’)

(e) Oval(Point(50,50), Point(60,100))

(f) shape = Polygon(Point(5,5), Point(10,10), Point(5,10), Point(10,5))

shape.setFill(’orange’)

(g) t = Text(Point(100,100), "Hello World!")

t.setFace("courier")

t.setSize(16)

t.setStyle("italic")

3. Describe what happens when the following interactive graphics program

runs:

from graphics import *

def main():

win = GraphWin()

shape = Circle(Point(50,50), 20)

shape.setOutline("red")

shape.setFill("red")

shape.draw(win)

for i in range(10):

p = win.getMouse()

c = shape.getCenter()

dx = p.getX() - c.getX()

160 Chapter 5. Objects and Graphics

dy = p.getY() - c.getY()

shape.move(dx,dy)

win.close()

main()

Programming Exercises

1. Alter the program from the last discussion question in the following ways:

(a) Make it draw squares instead of circles.

(b) Have each successive click draw an additional square on the screen

(rather than moving the existing one).

(c) Print a message on the window ”Click again to quit” after the loop,

and wait for a final click before closing the window.

2. An archery target consists of a central circle of yellow surrounded by con-

centric rings of red, blue, black and white. Each ring has the same “width,”

which is the same as the radius of the yellow circle. Write a program that

draws such a target. Hint: Objects drawn later will appear on top of ob-

jects drawn earlier.

3. Write a program that draws some sort of face.

4. Write a program that draws a winter scene with a Christmas tree and a

snowman.

5. Write a program that draws 5 dice on the screen depicting a straight (1, 2,

3, 4, 5 or 2, 3, 4, 5, 6).

6. Modify the graphical future value program so that the input (principal and

apr) also are done in a graphical fashion using Entry objects.

7. Circle Intersection. Write a program that computes the intersection of a

circle with a horizontal line and displays the information textually and

graphically.

Input: Radius of the circle and the y-intercept of the line.

Output: Draw a circle centered at (0, 0) with the given radius in a window

with coordinates running from -10,-10 to 10,10.

Draw a horizontal line across the window with the given y-intercept.

5.10. Exercises 161

Draw the two points of intersection in red.

Print out the x values of the points of intersection.

Formula: x = ±
√

r2 − y2

8. Line Segment Information.

This program allows the user to draw a line segment and then displays

some graphical and textual information about the line segment.

Input: 2 mouse clicks for the end points of the line segment.

Output: Draw the midpoint of the segment in cyan.

Draw the line.

Print the length and the slope of the line.

Formulas: dx = x2 − x1

dy = y2 − y1

slope = dy/dx

length =
√

dx2 + dy2

9. Rectangle Information.

This program displays information about a rectangle drawn by the user.

Input: 2 mouse clicks for the opposite corners of a rectangle.

Output: Draw the rectangle.

Print the perimeter and area of the rectangle.

Formulas:
area = (length)(width)

perimeter = 2(length + width)

10. Triangle Information.

Same as previous problem, but with 3 clicks for the verticies of a triangle.

Formulas: For perimeter, see length from line problem.

area =
√

s(s − a)(s − b)(s − c) where a, b, and c are the lengths of

the sides and s = a+b+c
2

11. Five-click house.

162 Chapter 5. Objects and Graphics

You are to write a program that allows the user to draw a simple house

using five mouse-clicks. The first two clicks will be the opposite corners of

the rectangular frame of the house. The third click will indicate the center

of the top edge of a rectangular door. The door should have a total width

that is 1
5 of the width of the house frame. The sides of the door should

extend from the corners of the top down to the bottom of the frame. The

fourth click will indicate the center of a square window. The window is

half as wide as the door. The last click will indicate the peak of the roof.

The edges of the roof will extend from the point at the peak to the corners

of the top edge of the house frame.

1

2

43

5

12. Write a program to plot a horizontal bar chart of student exam scores.

Your program should get input from a file. The first line of the file contains

the count of the number of students in the file, and each subsequent line

contains a student’s last name followed by a score in the range 0 to 100.

Your program should draw a horizontal rectangle for each student where

the length of the bar represents the student’s score. The bars should all

line up on their left-hand edges. Hint: use the number of students to

determine the size of the window and its coordinates. Bonus: label the

bars at the left end with the student name.

Computewell

Dibblebit

Jones

Smith

5.10. Exercises 163

13. Write a program to draw a quiz score histogram. Your program should

read data from a file. Each line of the file contains a number in the

range 0–10. Your program must count the number of occurrences of

each score and then draw a vertical bar chart with a bar for each pos-

sible score (0–10) with a height corresponding to the count of that score.

For example, if 15 students got an 8, then the height of the bar for 8

should be 15. Hint: use a list that stores the count for each possible score.

7 8 9 100 1 2 3 4 5 6

