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Abstract. The art gallery problem enquires about the least number of
guards that are sufficient to ensure that an art gallery, represented by a
polygon P , is fully guarded. In 1998, the problems of finding the mini-
mum number of point guards, vertex guards, and edge guards required
to guard P were shown to be APX-hard by Eidenbenz, Widmayer and
Stamm. In 1987, Ghosh presented approximation algorithms for vertex
guards and edge guards that achieved a ratio of O(log n), which was
improved upto O(log logOPT ) by King and Kirkpatrick in 2011. It has
been conjectured that constant-factor approximation algorithms exist for
these problems. We settle the conjecture for the special class of polygons
that are weakly visible from an edge and contain no holes by present-
ing a 6-approximation algorithm for finding the minimum number of
vertex guards that runs in O(n2) time. On the other hand, for weak vis-
ibility polygons with holes, we present a reduction from the Set Cover
problem to show that there cannot exist a polynomial time algorithm
for the vertex guard problem with an approximation ratio better than
((1− ε)/12) lnn for any ε > 0, unless NP = P.

1 Introduction

1.1 The Art Gallery Problem and Its Variants

The art gallery problem enquires about the least number of guards that are suffi-
cient to ensure that an art gallery (represented by a polygon P ) is fully guarded,
assuming that a guard’s field of view covers 360◦ as well as an unbounded dis-
tance. This problem was first posed by Victor Klee in a conference in 1973, and
in the course of time, it has turned into one of the most investigated problems
in computational geometry.

A polygon P is defined to be a closed region in the plane bounded by a finite
set of line segments, called edges of P , such that, between any two points of
P , there exists a path which does not intersect any edge of P . If the boundary
of a polygon P consists of two or more cycles, then P is called a polygon with
holes. Otherwise, P is called a simple polygon or a polygon without holes. An
art gallery can be viewed as an n-sided polygon P (with or without holes) and
guards as points inside P . Any point z ∈ P is said to be visible from a guard g if
the line segment zg does not intersect the exterior of P . In general, guards may
be placed anywhere inside P . In 1975, Chvátal [4] showed that �n

3 � stationary
guards are sufficient and sometimes necessary for guarding a simple polygon. In
1978, Fisk [9] presented a simpler and more elegant proof of this result.
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1.2 Related Hardness and Approximation Results

The decision version of the art gallery problem is to determine, given a polygon
P and a number k as input, whether the polygon P can be guarded with k or
fewer guards. The problem was first proved to be NP-complete for polygons with
holes by O’Rourke and Supowit [19]. For guarding simple polygons, it was proved
to be NP-complete for vertex guards by Lee and Lin [18], and their proof was
generalized to work for point guards by Aggarwal [1]. The problem is NP-hard
even for simple orthogonal polygons as shown by Katz and Roisman [16] and
Schuchardt and Hecker [20]. Each one of these hardness results hold irrespective
of whether we are dealing with vertex guards, edge guards, or point guards.

In 1987, Ghosh [10,12] provided an O(log n)-approximation algorithm for the
case of vertex and edge guards by discretizing the input polygon and treating it as
an instance of the Set Cover problem. In fact, applying methods for the Set Cover
problem developed after Ghosh’s algorithm, it is easy to obtain an approximation
factor of O(logOPT ) for vertex guarding simple polygons or O(log h logOPT )
for vertex guarding a polygon with h holes. Deshpande et al. [5] obtained an
approximation factor of O(logOPT ) for point guards or perimeter guards by
developing a sophisticated discretization method that runs in pseudopolynomial
time. Efrat and Har-Peled [6] provided a randomized algorithm with the same
approximation ratio that runs in fully polynomial expected time. For guarding
simple polygons using vertex guards and perimeter guards, King and Kirkpatrick
[17] obtained O(log logOPT ) approximation ratio in 2011.

In 1998, Eidenbenz, Stamm and Widmayer [7,8] proved that the problem
is APX-complete, implying that an approximation ratio better than a fixed
constant cannot be achieved unless P=NP. They also proved that if the input
polygon is allowed to contain holes, then there cannot exist a polynomial time al-
gorithm for the problem with an approximation ratio better than ((1−ε)/12) lnn
for any ε > 0, unless NP ⊆ TIME(nO(log logn)). Contrastingly, in the case of
simple polygons without holes, the existence of a constant-factor approximation
algorithm for vertex guards and edge guards has been conjectured by Ghosh
[10,13] since 1987. However, this conjecture has not yet been settled even for
special classes of polygons such as weak visibility polygons, monotone polygons,
orthogonal polygons etc.

1.3 Our Contributions

A polygon P is said to be a weak visibility polygon if every point in P is visible
from some point of an edge [11]. In Section 2, we present a 6-approximation
algorithm, which has running time O(n2), for vertex guarding polygons that are
weakly visible from an edge and contain no holes. This result can be viewed as
a step forward towards solving Ghosh’s conjecture for a special class of poly-
gons. Following the construction of Eidenbenz, Stamm and Widmayer [7], we
establish a reduction from Set Cover and show that, for the special class of poly-
gons containing holes that are weakly visible from an edge, there cannot exist a
polynomial time algorithm for the vertex guard problem with an approximation
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ratio better than ((1 − ε)/12) lnn for any ε > 0, unless NP = P. For details of
this reduction, refer to the full version of the paper [3].

2 Placement of Guards in Weak Visibility Polygons

Let P be a simple polygon. If there exists an edge uv in P (where u is the
next clockwise vertex of v) such that P is weakly visible from uv, then it can
be located in O(n2) time [2,14]. Henceforth, we assume that such an edge uv
has been located. Let bdc(p, q) (or, bdcc(p, q)) denote the clockwise (respectively,
counterclockwise) boundary of P from a vertex p to another vertex q. Note that,
by definition, bdc(p, q) = bdcc(q, p). The visibility polygon of P from a point z,
denoted by V P (z), is defined to be the set of all points in P that are visible
from z. In other words, V P (z) = {q ∈ P : q is visible from z}.

The shortest path tree of P rooted at a vertex r of P , denoted by SPT (r), is
the union of Euclidean shortest paths from r to all the vertices of P . This union
of paths is a planar tree, rooted at r, which has n nodes, namely the vertices of
P . For every vertex x of P , let pu(x) and pv(x) denote the parent of x in SPT (u)
and SPT (v) respectively. In the same way, for every interior point y of P , let
pu(y) and pv(y) denote the vertex of P next to y in the Euclidean shortest path
to y from u and v respectively.

2.1 Guarding All Vertices of a Polygon

Suppose a guard is placed on each non-leaf vertex of SPT (u) and SPT (v). It
is obvious that these guards see all points of P . However, the number of guards
required may be very large compared to the size of an optimal guarding set. In
order to reduce the number of guards, placing guards on every non-leaf vertex
should be avoided. Let A be a subset of vertices of P . Let SA denote the set
which consists of the parents pu(z) and pv(z) of every vertex z ∈ A. Then, A
should be chosen such that all vertices of P are visible from guards placed at
vertices of SA. We present a method for choosing A and SA as follows:-

Algorithm 2.1. An O(n2)-algorithm for computing a guard set SA for all ver-
tices of P

Compute SPT (u) and SPT (v)
Initialize all the vertices of P as unmarked
Initialize A ← ∅, SA ← ∅ and z ← u
while z �= v do

z ← the vertex next to z in clockwise order on bdc(u, v)
if z is unmarked then

A ← A ∪ {z} and SA ← SA ∪ {pu(z), pv(z)}
Place guards on pu(z) and pv(z)
Mark all vertices of P that become visible from pu(z) or pv(z)

end if
end while
return the guard set SA
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Now, assume a special condition such that for every vertex z ∈ A, all vertices
of bdc(pu(z), pv(z)) are visible from pu(z) or pv(z). We prove that, in such a
situation, |SA| ≤ 2.|Sopt|, where Sopt denotes an optimal vertex guard set.

Lemma 1. Any guard g ∈ Sopt that sees vertex z of P must lie on bdc(pu(z),
pv(z)).

Proof. Since pu(z) is the parent of z in SPT (u), z cannot be visible from any
vertex of bdc(u, pu(z)). Similarly, since pv(z) is the parent of z in SPT (v), z
cannot be visible from any vertex of bdcc(v, pv(z)). Hence, any guard g ∈ Sopt

that sees z must lie on bdc(pu(z), pv(z)).

Lemma 2. Let z be a vertex of P such that all vertices of bdc(pu(z), pv(z)) are
visible from pu(z) or pv(z). For every vertex x lying on bdc(pu(z), pv(z)), if x
sees a vertex q of P , then q must also be visible from pu(z) or pv(z).

Proof. If q lies on bdc(pu(z), pv(z)), then it is visible from from pu(z) or pv(z)
by assumption. So, consider the case where q lies on bdcc(pu(z), pv(z)). Now,
either q lies on bdc(u, pu(z)) or q lies on bdcc(v, pv(z)). In the former case, if
bdcc(q, pv(z)) intersects the segment qpv(z), then q or pv(z) is not weakly visible
from uv (see Fig. 1). Moreover, no other portion of the boundary can intersect
qpv(z) since qx and zpv(z) are internal segments. Hence, q must be visible from
pv(z). Analogously, if q lies on bdcc(v, pv(z)), q must be visible from pu(z).

Lemma 3. Assume that every vertex z ∈ A is such that every vertex of
bdc(pu(z), pv(z)) is visible from pu(z) or pv(z). Then, |A| ≤ |Sopt|.
Proof. Assume on the contrary that |A| > |Sopt|. This implies that Algorithm
2.1 includes two distinct vertices z1 and z2 belonging to A which are both visible
from a single guard g ∈ Sopt. Moreover, it follows from Lemma 1 that g must lie
on bdc(pu(z1), pv(z1)). Without loss of generality, let us assume that vertex z1 is
added to A before z2 by Algorithm 2.1. In that case, Algorithm 2.1 places guards
at pu(z1) and pv(z1). Now, as vertex z2 is visible from g, it follows from Lemma
2 that z2 is also visible from pu(z1) or pv(z1). Therefore, z2 is already marked,
and hence, Algorithm 2.1 does not include z2 in A, which is a contradiction.

Lemma 4. |SA| = 2|A|.
Proof. For every z ∈ A, since Algorithm 2.1 includes both the parents pu(z)
and pv(z) of z in SA, it is clear that |SA| ≤ 2|A|. If both the parents of every
z ∈ A are distinct, then |SA| = 2|A|. Otherwise, there exists two distinct vertices
z1 and z2 in A that share a common parent, say p. Without loss of generality,
let us assume that vertex z1 is added to A before z2 by Algorithm 2.1. In that
case, Algorithm 2.1 places a guard at p, which results in z2 getting marked.
Thus, Algorithm 2.1 cannot include z2 in A, which is a contradiction. Hence,
|SA| = 2|A| must be true.

Theorem 1. If every vertex z ∈ A is such that all vertices of bdc(pu(z), pv(z))
are visible from pu(z) or pv(z), then |SA| ≤ 2|Sopt|.
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Proof. By Lemma 4, |SA| = 2|A|. Also, by Lemma 3, |A| ≤ |Sopt|.
So, |SA| = 2|A| ≤ 2|Sopt|.

The above bound does not hold if there exists z ∈ A such that some vertices
of bdc(pu(z), pv(z)) are not visible from pu(z) or pv(z). Now, consider Fig. 2. For
each i ∈ {1, 2, . . . , k − 1}, zi+1 is not visible from pu(zi) or pv(zi), which forces
Algorithm 2.1 to place guards at pu(zi+1) and pv(zi+1). Therefore, Algorithm
2.1 includes z1, z2, z3, . . . , zk in A and places a total of 2k guards at vertices
u, pv1, pu2, pv2, . . . , puk, pvk. However, all vertices of P are visible from just two
guards placed at u and g. Hence, |SA| = 2k whereas |Sopt| = 2. Since the
construction in Fig. 2 can be extended for any arbitrary integer k, |SA| can be
arbitrarily large compared to |Sopt|. So, we present a new and better algorithm
which gives us a 4-approximation of |Sopt|.

z

pu(z)

pv(z)

u v

x

q

Fig. 1. Case in Lemma 2 where
the segment qpv(z) is inter-
sected by bdc(u, pu(z))

z1

z2
z3

zk

g

u v

pu2 pu3

pvk

pv3
pv2

pv1

puk

Fig. 2. An instance where the guard set SA com-
puted by Algorithm 2.1 is arbitrarily large compared
to an optimal guard set Sopt

In the new algorithm, bdc(u, v) is scanned to identify a set of unmarked
vertices, denoted as B, such that all vertices of P are visible from guards in
SB = {pu(z)|z ∈ B} ∪ {pv(z)|z ∈ B}. During the scan, let z denote the current
unmarked vertex under consideration. At every step, the algorithmmaintains the
invariance that, for every unmarked vertex y of bdc(u, z) (excluding z), pu(y) and
pv(y) see all unmarked vertices of bdc(pu(y), y). Let z

′ denote the next unmarked
vertex of bdc(z, pv(z)) in clockwise order from z such that z′ is not visible from
either pu(z) or pv(z). Depending on whether z′ exists, the current vertex z must
satisfy one of the following properties.

(A) All vertices of bdc(z, pv(z)) are already marked due to the guards currently
included in SB (see Fig. 3).

(B) Every unmarked vertex of bdc(z, pv(z)) is visible from pu(z) or pv(z) (see
Fig. 4).

(C ) Not all unmarked vertices of bdc(pu(z
′), z′) are visible from pu(z

′) or pv(z′)
(see Fig. 5).

(D) Every unmarked vertex of bdc(pu(z
′), z′) is visible from pu(z

′) or pv(z′) (see
Fig. 6).
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If z satisfies property (A) or (B), then z is included in B and the first unmarked
vertex of bdc(pv(z), v) in clockwise order from pv(z) becomes the new z. If z
satisfies property (C), then z is included in B and z′ becomes the new z. If z
satisfies property (D), then z′ becomes the new z. Whenever z is included in
B, pu(z) and pv(z) are included in SB and all unmarked vertices that become
visible from pu(z) or pv(z) are marked. After doing so, if there remain unmarked
vertices on bdcc(z, u), then bdcc(z, u) is scanned from z in counterclockwise order
and more guards are included in SB according to the following strategy:-

(i) y ← pu(z)
(ii) Scan bdcc(y, u) from y in counterclockwise till an unmarked vertex x is

located.
(iii) Add x to B. Add pu(x) and pv(x) to SB.
(iv) Mark every vertex visible from pu(x) or pv(x).
(v) y ← pu(x)
(vi) Repeat steps (ii)-(v) until all vertices of bdcc(z, u) are marked.

z

u v

pv(z)

pu(z)

g2
g1

Fig. 3. All vertices of bdc(z, pv(z)) are al-
ready marked due to guards at g1 and g2

u v

z

pv(z)

pu(z)

g2

g1
y

Fig. 4. The only unmarked vertex y of
bdc(z, pv(z)) is visible from pv(z)

z

z′

u v
pv(z)

pv(z
′)

pu(z
′)

pu(z)

y

Fig. 5. Guards at pu(z
′) and pv(z

′)
do not see the unmarked vertex y of
bdc(pu(z

′), z′)

z

z′

u v
pv(z)

pv(z
′)

pu(z
′)

pu(z)

Fig. 6. Guards at pu(z
′) and pv(z

′) see
all unmarked vertices of bdc(pu(z

′), z′)



Vertex Guarding in Weak Visibility Polygons 51

Initially, z is chosen to be the first unmarked vertex of bdc(u, v) in clockwise
order from u. Then, for each z under consideration along the clockwise scan
of bdc(u, v), the appropriate action is performed corresponding to the property
of z. Then, z is updated and the process is repeated till v is reached. The set
of vertices SB is returned by the algorithm as a guard set. The entire process is
described in pseudocode as Algorithm 2.2.

Algorithm 2.2. An O(n2)-algorithm for computing a guard set S for all vertices
of P

Compute SPT (u) and SPT (v)
Initialize all the vertices of P as unmarked
Initialize B ← ∅, SB ← ∅ and z ← u
while there exists an unmarked vertex in P do

z ← the first unmarked vertex on bdc(u, v) in clockwise order from z
if every unmarked vertex of bdc(z, pv(z)) is visible from pu(z) or pv(z) then

B ← B ∪ {z} and SB ← SB ∪ {pu(z), pv(z)}
Mark all vertices of P that become visible from pu(z) or pv(z)
z ← pv(z)

else
z′ ← the first unmarked vertex on bdc(z, v) in clockwise order
while every unmarked vertex of bdc(pu(z

′), z′) is visible from pu(z
′) or pv(z′)

do
z ← z′ and z′ ← the first unmarked vertex on bdc(z

′, v) in clockwise order
end while
w ← z
while there exists an unmarked vertex on bdc(u, z) do

B ← B ∪ {w} and SB ← SB ∪ {pu(w), pv(w)}
Mark all vertices of P that become visible from pu(w) or pv(w)
w ← the first unmarked vertex on bdcc(w, u) in counterclockwise order

end while
end if

end while
return the guard set S = SB

For showing an upper bound on S, a bipartite graph G = (B ∪ Sopt, E) is
constructed such that the degree of each vertex in B is exactly 1 and the degree
of each vertex in Sopt is at most 2.

The graph G is constructed as follows. For every vertex bi ∈ B, there exists
a g ∈ Sopt such that g sees bi. By Lemma 1, g must lie on bdc(pu(bi), pv(bi)).
If g lies on bdc(pu(bi), bi), then the edge gbi is added to E. Observe that any
vertex q lying on bdcc(pu(bi), bi) that is visible from g is also visible from pu(bi)
or pv(bi) (see the proof of Lemma 2). So, q is marked on inclusion of bi in B, and
therefore q cannot be included in B. Hence, for k > i, no vertex bk ∈ B exists
that can add an edge gbk.

If g lies on bdc(bi, b
′
i) and sees another bj ∈ B, then the edges gbi and gbj are

added to G. Similar arguments as above show that, for k > j, no vertex bk ∈ B
exists that can add an edge gbk.
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If g lies on bdc(b
′
i, pv(b

′
i) (see Fig. 7), there exists a vertex xi on bdc(pu(bi), bi)

such that xi is visible from pu(bi) or pv(bi), but not from pu(b
′
i) or pv(b

′
i).

So, in order to see xi, there must exist another guard g′ ∈ Sopt lying on
bdc(pv(b

′
i), pv(xi)). The edge g

′bi is added to G. Let Vg′ denote the set of vertices
of P lying on bdc(pv(b

′
i), pv(xi)) that are visible from g′. If Vg′ does not contain

any vertex of B, then the degree of g′ is 1 in G. Otherwise, the first vertex bj ∈ B
of Vg′ in clockwise order from pv(b

′
i) is located and the edge g′bj is added to G.

Now, every vertex belonging to Vg′ must be visible from pu(bj) or pv(bj), which
means that no other vertex of Vg′ can be included in B. Hence, for k > j, no
vertex bk ∈ B exists which can have an edge g′bk incident on g′, ensuring that
the degree of g′ is at most 2 in G.

b′ibi
xi

pu(bi)

g′

pv(b
′
i)

pv(bi) pu(bj)

bj

pv(xi)
pv(bj)

u v

g

pu(b
′
i)

Fig. 7. The guard g ∈ Sopt is located on
bdc(b

′
i, pv(b

′
i)

g

b′ibixi

pu(bi)

g′

pv(b
′
i)

pv(bi) pu(bj)

bj

pv(xi)
pv(bj)

u v

pu(b
′
i)

Fig. 8. The guard g ∈ Sopt is located on
bdc(pv(b

′
i), pv(bi))

If g lies on bdc(pv(b
′
i), pv(bi) (see Fig. 8), then add the edge gbi to G. Observe

that no vertex lying on bdc(b
′
i, pv(b

′
i)) can be visible from g. Moreover, at most

one other vertex bj ∈ B lying on bdc(pv(b
′
i), pv(bi)) is visible from g, as explained

earlier for the case of g′ ∈ Sopt seeing xi. If bj exists, then the edge gbj is added
to G, ensuring the degree of g is at most 2 in G. As a direct consequence of the
above construction, we have the following results.

Lemma 5. In the bipartite graph G, the degree of each vertex in B is exactly 1
and degree of each vertex in Sopt is at most 2.

Corollary 1. |B| ≤ 2|Sopt|.

Theorem 2. |S| ≤ 4|Sopt|.

Proof. By arguments similar to those in the proof of Lemma 4, it can be shown
that |SB| = 2|B|. Also, by Corollary 1, |B| ≤ 2|Sopt|. Therefore, |S| = |SB| =
2|B| ≤ 4|Sopt|.



Vertex Guarding in Weak Visibility Polygons 53

2.2 Guarding All Interior Points of a Polygon

In the previous subsection, we presented an algorithm (see Algorithm 2.2) which
returns a guard set S such that all vertices of P are visible from guards in S.
However, it may not always be true that all interior points of P are also visible
from guards in S. Consider the polygon shown in Fig. 9. While scanning bdc(u, v),
our algorithm places guards at pu(z) and pv(z) as all vertices of bdc(pu(z), pv(z))
become visible from pu(z) or pv(z). Observe that in fact all vertices of P become
visible from these two guards. However, the triangular region P \ (V P (pu(z)) ∪
V P (pv(z))), bounded by the segments x1x2, x2x3 and x3x1, is not visible from
pu(z) or pv(z). Also, one of the sides x1x2 of the triangle x1x2x3 is a part of
the polygonal edge a1a2. In fact, for any such region invisible from guards in
S, one of the sides must always be a part of a polygonal edge. Otherwise, there
should exist another guard g (see Fig. 9) from which the entire polygonal side
(x1x2) of the region is visible and yet some portion of the region (including x3)
is not visible. However, such a vertex g cannot be weakly visible from the edge
uv, which is a contradiction. Henceforth, any such region invisible from guards
in S is referred to as an invisible cell, and the polygonal edge which contributes
as a side to the invisible cell is referred to as its corresponding partially invisible
edge. One additional guard is required in order to see each invisible cell entirely.
For example, in Fig. 9, an extra guard is required at a vertex of bdc(z, w), since
none of the vertices outside this boundary can see all points of the triangular
invisible cell x1x2x3.

The boundary of the visibility polygon V P (s) of any vertex s consists of
polygonal edges and constructed edges. A constructed edge yx is an edge formed
by extending the segment sy (which could be either an edge of P or an internal
segment), where y is some other vertex of P , till it touches the boundary of P
at a point x. If y lies on bdc(s, x), the region of P bounded by bdc(y, x) and xy
is referred to as the left pocket of V P (z). Similarly, if y lies on bdcc(s, x), then
the region of P bounded by bdcc(y, x) and xy is referred to as the right pocket
of V P (z). In both these cases, we refer to the vertex y as the lid vertex and the
point x as the lid point of the corresponding left or right pocket.

pv(z)

a1 a2

pu(z)

u v

z

x1 x2

w

x3

g

Fig. 9. All vertices are visible from pu(z)
or pv(z), but triangle x1x2x3 is invisible

pv(z)

a1 a2

pu(z)
u v

z

x1 x2

x3

w

q

Fig. 10. The left pocket of V P (pu(z)) can
contain only one invisible cell
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Observe that each invisible cell must be wholly contained within the intersec-
tion region (which is a triangle) of a left pocket and a right pocket. For example,
in Fig. 9, the invisible cell x1x2x3 is actually the entire intersection region of the
left pocket of V P (pu(z)) and the right pocket of V P (pv(z)). Also, z is the lid
vertex and x2 is the lid point of the left pocket of V P (pu(z)). Similarly, w is the
lid vertex and x1 is the lid point of the right pocket of V P (pv(z)).

Suppose bdc(z, x2) contains reflex vertices (see Fig. 10). In that case, in addi-
tion to the invisible cell x1x2x3, the left pocket of V P (pu(z)) may contain several
regions that are not visible from pv(z). However, in each such region there exists
a vertex, say q, that is not visible from pv(z), which contradicts the fact that all
vertices of bdc(pu(z), pv(z)) are visible from pu(z) or pv(z). So, the left pocket
of V P (pu(z)) can contain only one invisible cell. Analogously, the right pocket
of V P (pv(z)) can contain only one invisible cell.

Now consider the situation (as shown in Fig. 11) where V P (pu(z)) has several
left pockets and V P (pv(z)) has several right pockets which intersect pairwise to
create multiple invisible cells. In order to guard these invisible cells, additional
guards are placed as follows. Let c1 be the lid point of the left pocket containing
the first invisible cell in clockwise order. Then, guards are placed at pu(c1) and
pv(c1). Now, for every invisible cell T , the portions of T are removed that are
visible from pu(c1) or pv(c1). Note that some of these cells may turn out to be
totally visible and hence may be eliminated altogether. This process is repeated
until all invisible cells become totally visible.

pv(z)

a1
a2

a3d1

d2
d3

pu(z)
u v

z

c1

c2
c3c′1

c′2
c′3

Fig. 11. Multiple invisible cells exist within the polygon that are not visible from the
guards placed at pu(z) and pv(z)

In general, we may have a situation where multiple invisible cells are created
by the intersection of the left and right pockets of arbitrary pairs of guards
belonging to S (see Fig. 12). In this scenario, all invisible cells are guarded by
introducing a set of additional guards S′ as follows. Initially, both C and S′ are
empty. Scan bdc(u, v) from u in clockwise order to locate the first edge aidi that
is not totally visible from guards in S ∪S′, where di is the next clockwise vertex
of ai. Let c′ici be the portion of aidi that is not visible from guards in S ∪ S′,
where c′i ∈ bdc(ai, ci) and ci ∈ bdc(c

′
i, di). In other words, c′ici is the polygonal
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side of the first invisible cell. Add pu(ci) and pv(ci) to S′. Also, add ci to C.
Repeat this process until all the edges of P are totally visible from guards in
S ∪ S′. At its termination, let us assume that C = {c1, c2, . . . , ck}. The entire
procedure is described in pseudocode as follows.

Algorithm 2.3. An O(n2)-algorithm for computing a guard set S ∪ S′ for
guarding P entirely

Compute SPT (u) and SPT (v)
Compute the set of guards S using Algorithm 2.2.
Initialize C ← ∅, S′ ← ∅ and z ← u
while there exists an edge in P that is partially visible from guards in S ∪ S′ do

z′ ← the vertex next to z in clockwise order on on bdc(u, v)
if if the edge zz′ is partially visible from guards in S ∪ S′ then

ci ← the lid point of the left pocket on zz′

C ← C ∪ {ci} and S′ ← S′ ∪ {pu(ci), pv(ci)}
end if
z ← z′

end while
return the guard set S ∪ S′

Theorem 3. The running time of Algorithm 2.3 is O(n2).

Proof. SPT (u) and SPT (v) can be computed in O(n) time [15]. Then, the com-
putation of the guard set S takes O(n2) time, since it involves scanning the
boundary of P and identifying vertices to be marked whenever new guards are
placed. The number of lid points on an edge can be at most O(n). Therefore,
each time a new vertex is added to S′, the invisible portion of the first par-
tially visible edge in clockwise order can be determined in O(n) time. Hence, the
overall running time of Algorithm 2.3 is O(n2).

Theorem 4. 2|C| = |S′| ≤ 2|Sopt|.
Proof. For every ci ∈ C, there exists an invisible cell Ti. For every such invisible
cell Ti, let li and ri respectively denote the lid vertices of the left and right

pv(b2)
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a3d1
d2

d3

g = pu(b1)

u v

l1

c1
c2

c3

r1 l2 l3
r2

r3

pu(c2)

pu(c3)

c′1
c′2

c′3

b1

pv(b1)

pu(b2)

b2

Fig. 12. Placement of guards to in order to see all invisible cells
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pockets intersecting to form Ti (see Fig. 12). Let g ∈ S be the guard such that
li is the lid vertex of a left pocket of V P (g). Similarly, let g′ ∈ S be the guard
such that ri is the lid vertex of a right pocket of V P (g′).

Assume that, for every Ti, there exists at least one guard in Sopt that sees
all points of Ti. Now, consider any guard gopt ∈ Sopt that sees all points of Ti.
Then, gopt can lie on bdc(li, ri). Also, gopt can lie on bdc(pu(ci), g), but only
when pu(ci) 
= li and pu(ci) lies on bdc(u, g). Now, let z be the vertex such that
pv(z) = g′. Then, no vertex of bdc(z, g

′) is visible from any vertex of bdc(g
′, v).

Further, if z is such that pu(z) = g, then z has to lie on bdc(g, li). Otherwise, z
has to lie on bdc(li, c

′
i). In either case, gopt cannot lie on bdc(g

′, v) since c′i lies
on bdc(z, g

′).
Since the guard set S′ includes pu(x) and pv(x) for every z ∈ C, clearly

|S′| = 2|C|. If for every i, there exists an unique vertex belonging to Sopt that
sees all points of Ti, then obviously |S′| ≤ 2|Sopt|. Consider the special situation
where li+1 = ri for some i (see Fig. 11) so that both Ti and Ti+1 are totally
visible from ri. Since all points of Ti are visible from ri, it must be the case
that pv(ci) = ri. Moreover, ri can be a vertex of Sopt. Therefore, no additional
guards are chosen for Ti+1 because all points of Ti+1 become visible from the
guard already placed at ri.

If no vertex of bdc(li, ri) belongs to Sopt, then there must be a vertex of Sopt ly-
ing on bdc(pu(ci), g) and pu(ci) must belong to bdc(u, g). If pu(ci−1) also belongs
to bdc(u, g), then Sopt must have a vertex on the boundary bdc(pu(ci), pv(ci−1))
in order to see Ti−1 because li−1 is the lid vertex of a left pocket of V P (pu(ci−1)).
Hence, 2|C| = |S′| ≤ 2|Sopt|.

Finally, if we remove the assumption that there exists at least one guard in
Sopt that sees all points of Ti, then the size of Sopt increases but the size of
our guard set S′ remains the same. Therefore, the bound |S′| ≤ 2|Sopt| is still
preserved.

Theorem 5. |S ∪ S′| ≤ 6|Sopt|.
Proof. By Theorem 2, |S| ≤ 4|Sopt| and by Theorem 4, |S′| ≤ 2|Sopt|.
Therefore, |S ∪ S′| ≤ |S|+ |S′| ≤ 4|Sopt|+ 2|Sopt| ≤ 6|Sopt|.
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