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Abstract
The art gallery problem enquires about the least number of guards that are sufficient to ensure that an art gallery, rep-

resented by a polygon P , is fully guarded. In 1998, the problems of finding the minimum number of point guards, vertex
guards, and edge guards required to guard P were shown to be APX-hard by Eidenbenz, Widmayer and Stamm. In 1987,
Ghosh presented approximation algorithms for vertex guards and edge guards that achieved a ratio ofO(log n), which was
improved toO(log logOPT ) by King and Kirkpatrick in 2011. Ghosh also conjectured that constant-factor approximation
algorithms exist for these problems. We settle the conjecture for the special class of polygons that are weakly visible from
an edge and contain no holes by presenting a 6-approximation algorithm for finding the minimum number of vertex guards
that runs in O(n2) time. Contrastingly, for weak visibility polygons with holes, we present a reduction from Set Cover to
show that there cannot exist a polynomial time algorithm for the vertex guard problem with an approximation ratio better
than 1−ε

12 lnn for any ε > 0, unless NP = P .

Introduction
The art gallery problem enquires about the least number of guards that are sufficient to ensure that an art
gallery (represented by a polygon P ) is fully guarded, assuming that a guards field of view covers 360◦ as
well as an unbounded distance. This problem was first posed by Victor Klee in 1973, and in the course of
time, it has become one of the most well-studied problems in computational geometry.

A polygon P is defined to be a closed region in the plane bounded by a finite set of line segments, called
edges of P , such that, between any two points of P , there exists a path which does not intersect any edge
of P . If the boundary of a polygon P consists of two or more cycles, then P is called a polygon with holes.
Otherwise, P is called a simple polygon or a polygon without holes. An art gallery can be viewed as an
n-sided polygon P (with or without holes) and guards as points inside P . A point z ∈ P is said to be visible
from a guard g if the line segment zg does not intersect the exterior of P . In general, guards may be placed
anywhere inside P . If the guards are allowed to be placed only on vertices of P , they are called vertex
guards. If there is no such restriction, guards are called point guards. Point and vertex guards together are
also referred to as stationary guards. If guards are allowed to patrol along a line segment inside P , they are
called mobile guards. If they are allowed to patrol only along the edges of P , they are called edge guards.
In 1975, Chvtal showed that bn3c stationary guards are sufficient and sometimes necessary for guarding a
simple polygon.

The decision version of the art gallery problem is to determine, given a polygon P and a number k as
input, whether the polygon P can be guarded with k or fewer guards. The problem was first proved to be
NP-complete for polygons with holes by ORourke and Supowit. For simple polygons, it was proved to be
NP-complete for vertex guards by Lee and Lin, and their proof was generalized to work for point guards
by Aggarwal. The problem was shown to be NP-hard even for simple orthogonal polygons.

In 1987, Ghosh provided an O(log n)-approximation algorithm for the case of vertex and edge guards
by discretizing the input polygon and treating it as an instance of Set Cover. For guarding simple poly-
gons using vertex guards and perimeter guards, King and Kirkpatrick obtained an approximation ratio of
O(log logOPT ) in 2011. In 1998, Eidenbenz, Stamm and Widmayer proved that the problem is APX-
complete, implying that an approximation ratio better than a fixed constant cannot be achieved unless
P=NP. They also proved that if the input polygon is allowed to contain holes, then there cannot exist a
polynomial time algorithm for the problem with an approximation ratio better than ((1 − ε)/12) lnn for
any ε > 0, unless NP ⊆ TIME(nO(log log n)). Contrastingly, in the case of simple polygons without holes,
the existence of a constant-factor approximation algorithm for vertex guards and edge guards has been
conjectured by Ghosh since 1987. However, this conjecture has not been settled till date.

Our Contributions
A polygon P is said to be a weak visibility polygon if every point in P is visible from some point of an
edge. We present a 6-approximation algorithm, having a running time of O(n2), for vertex guarding poly-
gons that are weakly visible from an edge and contain no holes. This result settles Ghosh’s conjecture for
a special class of polygons. By presenting a reduction from Set Cover, we also show that, for the special
class of polygons containing holes that are weakly visible from an edge, there cannot exist a polynomial
time algorithm for the vertex guard problem with an approximation ratio better than ((1 − ε)/12) lnn for
any ε > 0, unless NP = P.

Placement of vertex guards in weak visibility polygons
Let P be a simple polygon. If there exists an edge uv in P (where u is the next clockwise vertex of v) such
that P is weakly visible from uv, then it can be located in O(n2) time. Henceforth, we assume that such
an edge uv has been located. Let bdc(p, q) (or, bdcc(p, q)) denote the clockwise (respectively, counterclock-
wise) boundary of P from a vertex p to another vertex q. Note that, by definition, bdc(p, q) = bdcc(q, p).
The visibility polygon of P from a point z, denoted by V P (z), is defined to be the set of all points in P that
are visible from z, i.e. V P (z) = {q ∈ P : q is visible from z}.

The shortest path tree of P rooted at any point s of P , denoted by SPT (s), is the union of Euclidean
shortest paths from s to all the vertices of P (see Figure 1). This union of paths is a planar tree, rooted at
r, which has n nodes, namely the vertices of P . For every vertex x of P , let pu(x) and pv(x) denote the
parent of x in SPT (u) and SPT (v) respectively.

Suppose a guard is placed on every non-leaf vertex of SPT (u) and SPT (v). It is obvious that these guards
see all points of P . However, the number of guards required may be very large compared to the size of
an optimal guarding set. In order to reduce the number of guards, placing guards on every non-leaf vertex
should be avoided. Let A be a subset of vertices of P . Let SA denote the set which consists of the parents
pu(z) and pv(z) of every vertex z ∈ A. Then, A should be chosen such that all vertices of P are visible
from guards placed at vertices of SA. We present below a naive algorithm for choosing A and SA.

Algorithm 1 An O(n2)-algorithm for computing a guard set SA for all vertices of P
1: Compute SPT (u) and SPT (v)
2: Initialize all the vertices of P as unmarked
3: Initialize A← ∅, SA← ∅ and z ← u
4: while z 6= v do
5: z ← the vertex next to z clockwise on bdc(u, v)
6: if z is unmarked then
7: A← A ∪ {z} and SA← SA ∪ {pu(z), pv(z)}
8: Place guards on pu(z) and pv(z)
9: Mark vertices of P visible from pu(z) or pv(z)

10: end if
11: end while
12: return the guard set SA

Lemma 1. Let Sopt denote an optimal set of vertex guards. If, for all z ∈ A, every vertex of
bdc(pu(z), pv(z)) is visible from pu(z) or pv(z), then |A| ≤ |Sopt|.
Theorem 2. If every vertex z ∈ A is such that all vertices of bdc(pu(z), pv(z)) are visible from pu(z) or
pv(z), then |SA| ≤ 2|Sopt|.
Proof. It is easy to see that |SA| = 2|A|. By Lemma 1, |A| ≤ |Sopt|. So, |SA| = 2|A| ≤ 2|Sopt|.
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Figure 1: Euclidean shortest path tree rooted at s.
The parents of vertices x, y and z in SPT (s) are
marked as ps(x), ps(y) and ps(z) respectively.
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Figure 2: Instance where guard set SA computed by Algorithm 1 is arbi-
trarily large compared to Sopt.

However, the above bound does not hold if there exists z ∈ A such that some vertices of bdc(pu(z), pv(z))
are not visible from pu(z) or pv(z). Consider Figure 2. For each i ∈ {1, 2, . . . , k − 1}, zi+1 is not
visible from pu(zi) or pv(zi), which forces Algorithm 1 to place guards at pu(zi+1) and pv(zi+1). There-
fore, Algorithm 1 includes z1, z2, z3, . . . , zk in A and ends up placing a total of 2k guards at vertices
u, pv1, pu2, pv2, . . . , puk, pvk. However, all vertices of P are visible from just two guards placed at u and g.
Hence, |SA| = 2k whereas |Sopt| = 2. Since the construction in Figure 2 can be extended for any arbitrary
integer k, |SA| can be arbitrarily large compared to |Sopt|. So we now present a new algorithm which gives
us a 4-approximation.

In the new algorithm, described in pseudocode as Algorithm 2, bdc(u, v) is scanned to identify a set of
unmarked vertices, denoted as B, such that all vertices of P are visible from guards in SB = {pu(z)|z ∈
B} ∪ {pv(z)|z ∈ B}. However, unlike the previous algorithm (see Algorithm 1), the new algorithm does
not blindly include in B every next unmarked vertex that it encounters during the scan. During the scan, if
z denotes the current unmarked vertex under consideration, then it may either choose to include z in B or
skip ahead to the next unmarked vertex along the scan depending on certain properties of z.

Algorithm 2 An O(n2)-algorithm for computing a guard set S for all vertices of P
1: Compute SPT (u) and SPT (v)
2: Initialize all the vertices of P as unmarked
3: Initialize B ← ∅, SB ← ∅ and z ← u
4: while there exists an unmarked vertex in P do
5: z ← the first unmarked vertex on bdc(u, v) from z
6: if every unmarked vertex of bdc(z, pv(z)) is visible from pu(z) or pv(z) then
7: B ← B ∪ {z} & SB ← SB ∪ {pu(z), pv(z)}
8: Mark all vertices visible from pu(z) or pv(z)
9: z ← pv(z)

10: else
11: z′← the first unmarked vertex on bdc(z, v)
12: while every unmarked vertex of bdc(pu(z′), z′) is visible from pu(z

′) or pv(z′) do
13: z ← z′

14: z′← the first unmarked vertex on bdc(z′, v)
15: end while
16: B ← B ∪ {z} & SB ← SB ∪ {pu(z), pv(z)}
17: Mark all vertices visible from pu(z) or pv(z)
18: y ← z
19: while ∃ an unmarked vertex on bdc(u, z) do
20: y ← first unmarked vertex on bdcc(pu(y), u)
21: B ← B ∪ {y} & SB ← SB ∪ {pu(y), pv(y)}
22: Mark all vertices visible from pu(y) or pv(y)
23: end while
24: end if
25: end while
26: return the guard set SB

Lemma 3. If Sopt denotes an optimal set, |B| ≤ 2|Sopt|.
Theorem 4. |SB| ≤ 4|Sopt|.
Proof. It is easy to see that |SB| = 2|B|. By Lemma 3, |B| ≤ 2|Sopt|. So, |SB| = 2|B| ≤ 4|Sopt|.
It is not guaranteed that all interior points of P are visible from guards in SB. Consider the scenario shown
in Figure 3. While scanning bdc(u, v), Algorithm 2 places guards at pu(z) and pv(z) as all vertices of
bdc(pu(z), pv(z)) become visible from pu(z) or pv(z). Observe that in fact all vertices of P become visible
from these two guards. But, V P (pu(z)) has several left pockets and V P (pv(z)) has several right pockets
which intersect pairwise to create multiple invisible cells. In order to guard these invisible cells, a set S′ of
additional guards need to be placed.
Theorem 5. There exists an algorithm with running timeO(n2) that returns a guard set S′ for guarding all
interior points of P such that |S′| ≤ 6|Sopt|.
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Figure 3: Multiple invisible cells exist that are not visible from the guards placed at pu(z) and pv(z).

An Inapproximability Result
For polygons with holes, Eidenbenz, Stamm and Widmayer proved in 1998 that there cannot exist a poly-
nomial time algorithm for the art gallery problem with an approximation ratio better than ((1− ε)/12) lnn
for any ε > 0, unless NP ⊆ TIME(nO(log log n)). Modifying their technique, and taking into consideration
a recent result by Dinur and Steurer, we obtained the following result.
Theorem 6. For weak visibility polygons with holes, there cannot exist a polynomial time algorithm for
Vertex Guard with an approximation ratio better than ((1− ε)/12) lnn for every ε > 0, unless NP = P.
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