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The optimal control of planetary soft landings is a considerable problem in space

exploration, necessitating precise landings at designated sites while adhering to strin-

gent fuel and control limitations. We examine the non-convex control bounds and

heading limitations encountered in such missions, introducing an innovative ap-

proach for their convexification. Our methodology ensures a lossless convex relax-

ation, facilitating optimum solutions for the original non-convex issue via convex

optimization approaches. Through the formulation and resolution of the powered

descent guidance problem, we demonstrate that the solution attains fuel-optimal

trajectories while adhering to intricate limitations regarding thrust magnitude and

direction, an essential need for real-time planetary landing. We enhance and consol-

idate prior convexification methods, guaranteeing their applicability across diverse

restrictions, such as thrust orientation limitations, mass dynamics, and planetary

rotational influences.
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Chapter 1

Introduction

1.1 Introduction

Planetary exploration missions have emerged as a pivotal emphasis for scientific

and technological progress. An essential component of these missions entails the

accurate soft landing of spacecraft on planetary surfaces. The soft landing phase,

commonly known as the powered descent, necessitates directing a spacecraft from

a high altitude to a specified destination on the planet’s surface while optimizing

fuel consumption and complying with stringent operating parameters. This process

presents a significant problem in optimal control theory due to the intricacies of

state and control constraints, non-convexities resulting from thrust limitations, and

pointing restrictions.

Traditionally, the optimum control issue for soft landings entails establishing a fuel-

optimal thrust profile that adheres to limitations such as thrust magnitude lim-

its and spacecraft states (e.g., location, velocity). The limitations are intrinsically

non-convex due to the necessity of maintaining a minimum thrust level, restrict-

ing pointing direction, and fulfilling specified terminal requirements (e.g., achieving
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Chapter 1. Introduction 2

zero velocity upon landing). The resultant non-convexity complicates the identifica-

tion of globally optimum solutions by conventional nonlinear optimization methods,

particularly given the rigorous demands for onboard real-time calculations.

This study utilizes convexification techniques to convert the original non-convex

optimum control issue into a convex optimization problem. Convexification guaran-

tees that resolving the relaxed convex problem produces solutions that are optimum

for the original non-convex problem while maintaining feasibility—a characteristic

known as lossless convexification. We also integrate thrust aiming limits and other

essential mission parameters, including planetary rotational dynamics and real-time

computing viability, into the guiding formulation.

Convex optimization techniques have several advantages in this setting, such as

polynomial-time convergence assurances, resilience to disturbances, and effective

execution via interior-point approaches. Moreover, progress in real-time convex

optimization has facilitated onboard calculation, ultimately improving the autonomy

and safety of planetary descent and landing operations. Our methodology illustrates

the efficacy of utilizing lossless convexification to address the difficulties presented

by non-convex restrictions, hence enabling fuel-optimal and precision-controlled soft

landing paths.



Chapter 2

Problem Formulation

2.1 Problem Formulation

2.1.1 Original Nonconvex Problem

The planetary soft landing problem can be framed as a finite-horizon optimal control

problem that seeks to minimize fuel consumption while guiding a spacecraft to a

precise landing target. The problem formulation includes the state and control

dynamics, along with various constraints as described below.

2.1.1.1 System Dynamics

The dynamics of the spacecraft are given by:

ẋ(t) = A(ω)x(t) +B

(
g +

Tc(t)

m(t)

)
, (2.1)

ṁ(t) = −α∥Tc(t)∥, t ∈ [0, tf ], (2.2)

3



Chapter 2. Problem formulation 4

where:

• x(t) = [r(t), ṙ(t)]T ∈ R6 is the state vector containing position r(t) ∈ R3 and

velocity ṙ(t) ∈ R3.

• Tc(t) ∈ R3 is the control input representing the thrust vector.

• m(t) is the spacecraft mass, α > 0 is the fuel consumption rate constant, and

g ∈ R3 is the gravitational acceleration vector.

• A(ω) and B are system matrices that account for the dynamics of the space-

craft with respect to the planetary rotation.

The matrices A(ω) and B are defined as follows:

A(ω) =

 0 I

−S(ω)2 −2S(ω)

 , B =

0
I

 , (2.3)

where:

• S(ω) is the skew-symmetric matrix corresponding to the planet’s angular ve-

locity vector ω = (ω1, ω2, ω3)
T , given by:

S(ω) =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (2.4)

2.1.1.2 Objective Function

The objective of the problem is to minimize fuel consumption:

min
tf ,Tc(·)

∫ tf

0

∥Tc(t)∥ dt. (2.5)
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2.1.1.3 Constraints

The problem includes several constraints that govern the state and control behavior:

State Constraints

• Glide Slope Constraint: The trajectory must lie within a specified cone to

ensure a safe approach:

∥E(r(t)− r(tf ))∥ − cT (r(t)− r(tf )) ≤ 0, ∀t ∈ [0, tf ], (2.6)

where E =
[
eT2 eT3

]T
extracts position components, and c defines the cone’s

geometry.

• Velocity Constraint: The spacecraft’s velocity must remain below a speci-

fied maximum:

∥ṙ(t)∥ ≤ Vmax, ∀t ∈ [0, tf ]. (2.7)

Control Constraints

• Thrust Magnitude Bounds: The thrust is constrained between specified

bounds:

ρ1 ≤ ∥Tc(t)∥ ≤ ρ2, ∀t ∈ [0, tf ]. (2.8)

• Thrust Pointing Constraint: The thrust direction is limited relative to a

reference direction n̂:

n̂T Tc(t)

∥Tc(t)∥
≥ cos θ, ∀t ∈ [0, tf ]. (2.9)
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Initial and Terminal Conditions

x(0) = x0, m(0) = m0, (2.10)

x(tf ) = xf , ṙ(tf ) = 0. (2.11)

2.1.2 Formulation of the Nonconvex Optimal Control Prob-

lems

Problem 1 (Nonconvex Minimum Landing Error Problem):

min
tf ,Tc(·)

∥Er(tf )− q∥, (2.12)

subject to:

ẋ(t) = A(ω)x(t) +B

(
g +

Tc(t)

m(t)

)
, (2.13)

ṁ(t) = −α∥Tc(t)∥, t ∈ [0, tf ], (2.14)

x(t) ∈ X, ∀t ∈ [0, tf ], (2.15)

ρ1 ≤ ∥Tc(t)∥ ≤ ρ2, n̂TTc(t) ≥ ∥Tc(t)∥ cos θ, (2.16)

m(0) = m0, m(tf ) ≥ m0 −mf > 0, (2.17)

r(0) = r0, ṙ(0) = ṙ0, (2.18)

eT1 r(tf ) = 0, ṙ(tf ) = 0. (2.19)

Problem 2 (Nonconvex Minimum Fuel Problem):

min
tf ,Tc(·)

∫ tf

0

α∥Tc(t)∥ dt, (2.20)
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subject to:

dynamics and constraints as in Problem 1, (2.21)

∥Er(tf )− q∥ ≤ ∥d∗P − q∥, (2.22)

where d∗P denotes the closest reachable point to the target q.



Chapter 3

Convex Relaxation and convex

problem formulation

3.1 Convex Relaxation Derivation

The original nonconvex soft landing problem is challenging to solve due to the non-

convex constraints on thrust magnitude and pointing direction. To enable efficient

computation of globally optimal solutions, we introduce a convex relaxation of these

constraints, while guaranteeing that the relaxed problem remains equivalent to the

original problem under certain conditions (lossless convexification).

3.1.1 Relaxation of Thrust Constraints

The original control constraints on the thrust magnitude are:

ρ1 ≤ ∥Tc(t)∥ ≤ ρ2, ∀t ∈ [0, tf ]. (3.1)

8
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To convexify this constraint, we introduce a slack variable σ(t) such that:

∥Tc(t)∥ ≤ σ(t), ρ1 ≤ σ(t) ≤ ρ2. (3.2)

The slack variable ensures that the feasible set is convex. However, for the relaxed

problem to yield an equivalent solution to the original nonconvex problem, the op-

timal solution must satisfy ∥Tc(t)∥ = σ(t) almost everywhere.

3.1.2 Relaxation of Thrust Pointing Constraint

The original nonconvex constraint on the thrust direction is:

n̂T Tc(t)

∥Tc(t)∥
≥ cos θ, ∀t ∈ [0, tf ]. (3.3)

By introducing the slack variable σ(t) as defined above, this constraint becomes:

n̂TTc(t) ≥ σ(t) cos θ, ∀t ∈ [0, tf ], (3.4)

which is convex in the variables Tc(t) and σ(t).

3.1.3 Modified System Dynamics

The dynamics of the system are also modified to accommodate the slack variable.

The original mass consumption dynamics are given by:

ṁ(t) = −α∥Tc(t)∥. (3.5)
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In the relaxed problem, this becomes:

ṁ(t) = −ασ(t). (3.6)

3.2 Formulation of the Relaxed Convex Optimal

Control Problems

With these relaxations, we can now formulate the relaxed convex problems.

Problem 3 (Convex Relaxed Minimum Landing Error Problem):

min
tf ,Tc(·),σ(·)

∥Er(tf )− q∥, (3.7)

subject to:

ẋ(t) = A(ω)x(t) +B

(
g +

Tc(t)

m(t)

)
, (3.8)

ṁ(t) = −ασ(t), t ∈ [0, tf ], (3.9)

x(t) ∈ X, ∀t ∈ [0, tf ], (3.10)

∥Tc(t)∥ ≤ σ(t), ρ1 ≤ σ(t) ≤ ρ2, (3.11)

n̂TTc(t) ≥ σ(t) cos θ, (3.12)

m(0) = m0, m(tf ) ≥ m0 −mf > 0, (3.13)

r(0) = r0, ṙ(0) = ṙ0, (3.14)

eT1 r(tf ) = 0, ṙ(tf ) = 0. (3.15)
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Problem 4 (Convex Relaxed Minimum Fuel Problem):

min
tf ,Tc(·),σ(·)

∫ tf

0

ασ(t) dt, (3.16)

subject to:

ẋ(t) = A(ω)x(t) +B

(
g +

Tc(t)

m(t)

)
, (3.17)

ṁ(t) = −ασ(t), t ∈ [0, tf ], (3.18)

x(t) ∈ X, ∀t ∈ [0, tf ], (3.19)

∥Tc(t)∥ ≤ σ(t), ρ1 ≤ σ(t) ≤ ρ2, (3.20)

n̂TTc(t) ≥ σ(t) cos θ, (3.21)

m(0) = m0, m(tf ) ≥ m0 −mf > 0, (3.22)

r(0) = r0, ṙ(0) = ṙ0, (3.23)

eT1 r(tf ) = 0, ṙ(tf ) = 0, (3.24)

∥Er(tf )− q∥ ≤ ∥d∗P − q∥. (3.25)

The convex relaxation guarantees that the optimal solution to these problems coin-

cides with the solution to the original nonconvex problems under certain conditions,

thereby enabling efficient computation using convex optimization techniques.
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3.3 Change of Variables and Convex Approxima-

tion

One of the primary sources of nonconvexity in the original problem formulation arises

from the dynamics of the spacecraft, specifically the term involving the thrust-to-

mass ratio Tc(t)
m(t)

. This term appears in the state dynamics as:

ẋ(t) = A(ω)x(t) +B

(
g +

Tc(t)

m(t)

)
, (3.26)

where m(t) is the time-varying mass of the spacecraft, making the dynamics non-

linear and nonconvex.

To address this issue, we introduce a change of variables that linearizes the dynamics

while maintaining the feasibility of the solution. The following transformations are

applied:

σ(t) =
∥Tc(t)∥
m(t)

, (3.27)

u(t) =
Tc(t)

m(t)
, (3.28)

z(t) = ln(m(t)). (3.29)

3.3.1 Transformed Dynamics

With this change of variables, the mass depletion dynamics are reformulated as:

ż(t) =
ṁ(t)

m(t)
= −ασ(t), (3.30)
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where α > 0 is the fuel consumption rate constant. The state dynamics now become:

ẋ(t) = A(ω)x(t) +B (g + u(t)) . (3.31)

This transformation removes the nonlinearity in the term Tc(t)
m(t)

, resulting in linear

state dynamics with respect to the new control variable u(t).

3.3.2 Convex Constraints

In the transformed variables, the original nonconvex constraints on thrust magnitude

are replaced with convex constraints on σ(t) and u(t). Specifically, the constraints

become:

∥u(t)∥ ≤ σ(t), (3.32)

ρ1e
−z(t) ≤ σ(t) ≤ ρ2e

−z(t), (3.33)

where ρ1 and ρ2 are the minimum and maximum thrust magnitudes, respectively.

To ensure a convex formulation, we approximate the bounds on σ(t) using a second-

order cone (SOC) constraint:

ρ1e
−z0

(
1− (z(t)− z0) +

(z(t)− z0)
2

2

)
≤ σ(t) ≤ ρ2e

−z0 (1− (z(t)− z0)) , (3.34)

where z0(t) = ln(m0 − αρ2t) is an estimate of the mass trajectory. This approxi-

mation ensures that the constraints on σ(t) remain convex and compatible with the

overall convex optimization framework.
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3.3.3 Convex Approximation Analysis

The SOC approximation of the bounds on σ(t) introduces a small error relative

to the exact constraints, but this error is analytically bounded and shown to be

negligible in practical scenarios. The convex formulation ensures that the optimal

solution remains feasible and near-optimal for the original nonconvex constraints.

Furthermore, by leveraging efficient interior-point methods for second-order cone

programming (SOCP), the relaxed problem can be solved in polynomial time, mak-

ing it suitable for real-time applications in planetary landing missions.

This change of variables and convex approximation transform the original nonconvex

problem into a convex problem while preserving essential properties of the solution.

Consequently, the optimal control solution obtained using the relaxed problem re-

mains valid and near-optimal for the original problem formulation.



Chapter 4

Numerical Example

4.1 Numerical Example

In this section, we present a numerical example to demonstrate the proposed con-

vex relaxation approach applied to a planetary soft landing problem using specific

constraints and initial conditions. This example illustrates the performance of the

relaxed formulation under a particular set of conditions.

4.1.1 Problem Setup

The parameters for the numerical example are defined as follows:

• Time step: dt = 1 s

• Maximum thrust: Tmax = 24000N

• Initial mass: m0 = 2000 kg

• Final mass constraint: mf = 300 kg

15
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• Thrust magnitude bounds: ρ1 = 0.2× Tmax, ρ2 = 0.8× Tmax

• Fuel consumption rate: α = 5× 10−4 s/m

• Maximum allowable velocity: Vmax = 90m/s

• Gravity vector on Mars: g = (−3.71, 0, 0)T m/s2

• Planetary angular velocity vector: ω = (2.53×10−5, 0, 6.62×10−5)T rad/s

The initial state of the spacecraft is specified as:

r0 = (2400, 450,−330)m,

ṙ0 = (−40, 45, 0)m/s.

The constraints include a glide slope constraint with a minimum angle γgs = π
6
, a

thrust pointing constraint with θ = 2π
3
, and a reference direction vector n̂ = (1, 0, 0).

4.1.1.1 Thrust and Position Trajectories

The computed thrust and position trajectories are illustrated in Figure 4.1. Key

observations include:

• The thrust magnitude remains within the specified bounds [ρ1, ρ2] throughout

the descent.

• The trajectory successfully guides the spacecraft to the closest possible spot to

the target position, satisfying the glide slope constraint and the thrust pointing

constraint.
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4.1.1.2 Throttle Profile

The throttle profile, defined as the normalized thrust magnitude relative to the

maximum thrust Tmax, is shown in Figure 4.1. The throttle remains within the

specified bounds and adapts to the constraints on thrust direction.

(a) Position v/s Altitude (b) Speed v/s Time

(c) Throttle v/s Time (d) Angle from vertical v/s Time

(e) Altitude v/s Time (f) Mass v/s Time

Figure 4.1: Various parameters obtained by the algorithm developed

4.1.1.3 Discussion

The results demonstrate the effectiveness of the convex relaxation approach for sat-

isfying all specified constraints while achieving an optimal soft landing trajectory.
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As shown, tighter constraints on thrust direction and magnitude lead to adjustments

in the trajectory and throttle profile, highlighting the trade-offs inherent in precision

landing missions.

4.2 Conclusion

This numerical example illustrates the successful application of convex relaxation

techniques for planetary soft landing under specific constraints. The approach of-

fers an efficient method for real-time guidance, ensuring feasible and near-optimal

solutions suitable for practical space missions.



Appendix A

A.1 Proof of Equivalence Between Convex Relax-

ation and Original Nonconvex Problem

In this section, we prove that the convex relaxation described earlier produces the

same optimal solution as the original nonconvex problem under specific conditions.

This result is often referred to as a lossless convexification, meaning that the solution

of the relaxed problem is guaranteed to satisfy the constraints of the original problem

while achieving the same optimal value.

A.1.1 Theoretical Background and Lemma

The convex relaxation is based on relaxing the nonconvex constraints on thrust

magnitude and pointing direction by introducing a slack variable σ(t). We denote

the set of feasible solutions for the original nonconvex problem by Fnonconvex and for

the relaxed convex problem by Fconvex. The relaxation is considered lossless if:

∃ (T ∗
c (t), σ

∗(t)) ∈ Fconvex such that ∥T ∗
c (t)∥ = σ∗(t) a.e. on [0, tf ], (A.1)

19
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where (T ∗
c (t), σ

∗(t)) is an optimal solution of the convex problem.

Lemma A.1. Given an optimal solution (T ∗
c (t), σ

∗(t)) ∈ Fconvex such that ∥T ∗
c (t)∥ =

σ∗(t) almost everywhere on [0, tf ], the solution T ∗
c (t) also belongs to the feasible set

of the original nonconvex problem Fnonconvex.

Proof. Consider the relaxed constraints:

∥Tc(t)∥ ≤ σ(t), ρ1 ≤ σ(t) ≤ ρ2, (A.2)

n̂TTc(t) ≥ σ(t) cos θ. (A.3)

Let (T ∗
c (t), σ

∗(t)) be an optimal solution to the relaxed problem. By construction,

the slack variable σ(t) is introduced to ensure convexity while maintaining a feasible

set that contains the feasible region of the original problem. We need to show that:

∥T ∗
c (t)∥ = σ∗(t) a.e. on [0, tf ]. (A.4)

Since the cost function is minimized with respect to ∥Tc(t)∥ (e.g., total fuel consump-

tion), achieving equality ∥T ∗
c (t)∥ = σ∗(t) provides the minimum cost for the relaxed

problem. If ∥T ∗
c (t)∥ < σ∗(t) for any measurable subset of [0, tf ] with positive mea-

sure, reducing σ∗(t) to match ∥T ∗
c (t)∥ would strictly decrease the cost, contradicting

the optimality of (T ∗
c (t), σ

∗(t)).

Thus, the condition ∥T ∗
c (t)∥ = σ∗(t) holds almost everywhere, implying that the

solution T ∗
c (t) satisfies the original thrust magnitude constraints:

ρ1 ≤ ∥T ∗
c (t)∥ ≤ ρ2. (A.5)
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Furthermore, the thrust pointing constraint in the relaxed problem:

n̂TT ∗
c (t) ≥ σ∗(t) cos θ, (A.6)

combined with the condition ∥T ∗
c (t)∥ = σ∗(t), ensures that:

n̂T T ∗
c (t)

∥T ∗
c (t)∥

≥ cos θ. (A.7)

This satisfies the original nonconvex thrust pointing constraint.

Therefore, the optimal solution T ∗
c (t) for the relaxed problem is also an optimal

solution for the original nonconvex problem.

A.1.2 Conclusion

This proof establishes that the convex relaxation preserves the optimality and feasi-

bility of solutions for the original nonconvex problem. The approach enables efficient

computation through convex optimization while ensuring that the solutions remain

valid for the original problem, demonstrating the practical utility of the convexifi-

cation technique.
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