
1

Expressions

2

Expressions
Variables and constants linked with operators

Arithmetic expressions
Uses arithmetic operators
Can evaluate to any value

Logical expressions
Uses relational and logical operators
Evaluates to 1 or 0 (true or false) only

Assignment expression
Uses assignment operators
Evaluates to value depending on assignment

3

Arithmetic Operators
Binary operators

Addition: +
Subtraction: –
Division: /
Multiplication: *
Modulus: %

Unary operators
Plus: +
Minus: –

2*3 + 5 – 10/3
–1 + 3*25/5 – 7
distance / time
3.14* radius * radius
a * x * x + b*x + c
dividend / divisor
37 % 10

Examples

4

Contd.
Suppose x and y are two integer variables,
whose values are 13 and 5 respectively

x + y 18
x – y 8
x * y 65
x / y 2

x % y 3

5

All operators except % can be used with
operands of all of the data types int, float,
double, char (yes! char also! We will see
what it means later)
% can be used only with integer operands

6

Operator Precedence
In decreasing order of priority

1. Parentheses :: ()
2. Unary minus :: –5
3. Multiplication, Division, and Modulus
4. Addition and Subtraction

For operators of the same priority, evaluation is
from left to right as they appear
Parenthesis may be used to change the
precedence of operator evaluation

7

Examples:
Arithmetic expressions

a + b * c – d / e a + (b * c) – (d / e)

a * – b + d % e – f a * (– b) + (d % e) – f

a – b + c + d (((a – b) + c) + d)

x * y * z ((x * y) * z)

a + b + c * d * e (a + b) + ((c * d) * e)e)

8

Type of Value of an Arithmetic
Expression

If all operands of an operator are integer
(int variables or integer constants), the
value is always integer

Example: 9/5 will be 1, not 1.8
Example:

int a=9, b=5;
printf(“%d”, a/b)

will print 1 and not 1.8

9

If at least one operand is real, the value is real
Caution: Since floating-point values are rounded to
the number of significant digits permissible, the final
value is an approximation of the final result
Example: 1/ 3.0 * 3.0 may have the value 0.99999
and not 1.0
So checking if 1/ 3.0 * 3.0 is equal to 1.0 may
return false!!

10

The type of the final value of the
expression can be found by applying these
rules again and again as the expression is
evaluated following operator precedence

11

We have a problem!!
int a=10, b=4, c;
float x;
c = a / b;
x = a / b;

The value of c will be 2
The value of x will be 2.0
But we want 2.5 to be stored in x

We will take care of this a little later

12

Assignment Expression
Uses the assignment operator (=)
General syntax:

variable_name = expression
Left of = is called l-value, must be a modifiable
variable
Right of = is called r-value, can be any expression
Examples:

velocity = 20
b = 15; temp = 12.5
A = A + 10
v = u + f * t
s = u * t + 0.5 * f * t * t

13

Contd.
An assignment expression evaluates to a
value same as any other expression
Value of an assignment expression is the
value assigned to the l-value
Example: value of

a = 3 is 3
b = 2*4 – 6 is 2
n = 2*u + 3*v – w is whatever the arithmetic
expression 2*u + 3*v – w evaluates to given
the current values stored in variables u, v, w

14

Contd.
Several variables can be assigned the same
value using multiple assignment operators

a = b = c = 5;
flag1 = flag2 = ‘y’;
speed = flow = 0.0;

Easy to understand if you remember that
the assignment expression has a value
Multiple assignment operators are right-to-left
associative

15

Example
Consider a= b = c = 5

Three assignment operators
Rightmost assignment expression is c=5, evaluates
to value 5
Now you have a = b = 5
Rightmost assignment expression is b=5, evaluates
to value 5
Now you have a = 5
Evaluates to value 5
So all three variables store 5, the final value the
assignment expression evaluates to is 5

16

Types of l-value and r-value
Usually should be the same
If not, the type of the r-value will be internally
converted to the type of the l-value, and then
assigned to it
Example:

double a;
a = 2*3;

Type of r-value is int and the value is 6
Type of l-value is double, so stores 6.0

17

This can cause strange problems
int a;
a = 2*3.2;

Type of r-value is float/double and the value is
6.4
Type of l-value is int, so internally converted to 6
So a stores 6, not the correct result
But an int cannot store fractional part anyway
So just badly written program
Be careful about the types on both sides

18

More Assignment Operators
+=, -=, *=, /=, %=
Operators for special type of assignments
a += b is the same as a = a + b
Same for -=, *=, /=, and %=
Exact same rules apply for multiple
assignment operators

19

Contd.
Suppose x and y are two integer variables,
whose values are 5 and 10 respectively.

x += y Stores 15 in x
Evaluates to 15

x –= y Stores -5 in x
Evaluates to -5

x *= y Stores 50 in x
Evaluates to 50

x /= y Stores 0 in x
Evaluates to 0

20

Logical Expressions

Uses relational and logical operators in
addition
Informally, specifies a condition which can
be true or false
Evaluates to value 0 or 1

0 implies the condition is false
1 implies the condition is true

21

Logical Expressions

(count <= 100)

((math+phys+chem)/3 >= 60)

((sex == ’M’) && (age >= 21))

((marks >== 80) && (marks < 90))

((balance > 5000) | | (no_of_trans > 25))

(! (grade == ’A’))

22

Relational Operators
Used to compare two quantities.

< is less than

> is greater than

<= is less than or equal to

>= is greater than or equal to

== is equal to

!= is not equal to

23

Examples
10 > 20 is false, so value is 0
25 < 35.5 is true, so value is 1
12 > (7 + 5) is false, so value is 0
32 != 21 is true, so value is 1

When arithmetic expressions are used on either
side of a relational operator, the arithmetic
expressions will be evaluated first and then the
results compared

a + b > c – d is the same as (a+b) > (c+d)

24

Logical Operators
Logical AND (&&)

Evalutes to 1 if both the operands are non-zero
Logical OR (||)

Result is true if at least one of the operands is
non-zero

X Y X && Y X | | Y
0 0 0 0
0 non-0 0 non-0

non-0 0 0 non-0
non-0 non-0 non-0 non-0

25

Contd

Unary negation operator (!)
Single operand
Value is 0 if operand is non-zero
Value is 1 if operand is 0

26

Example
(4 > 3) && (100 != 200)

4 > 3 is true, so value 1
100 != 200 is true so value 1
Both operands 1 for &&, so final value 1

(!10) && (10 + 20 != 200)
10 is non-0, so value !10 is 0
10 + 20 != 200 is true so value 1
Both operands NOT 1 for &&, so final value 0

(!10) || (10 + 20 != 200)
Same as above, but at least one value non-0, so
final value 1

27

a = 3 && b = 4
No parenthesis, so need to look at precedence and
associativity
= has higher precedence than &&
b=4 is an assignment expression, evaluates to 4
a = 3 is an assignment expression, evaluates to 3
Both operands of && are non-0, so final value of the
logical expression is 1

Note that changing to b = 0 would have made the
final value 0

28

Example: Use of Logical Expressions

void main () {
int i, j;
scanf(“%d%d”,&i,&j);
printf (“%d AND %d = %d, %d OR %d=%d\n”,

i,j,i&&j, i,j, i||j) ;
}

If 3 and 0 are entered from keyboard, output will be

3 AND 0 = 0, 3 OR 0 = 1

29

A Special Operator: AddressOf (&)
Remember that each variable is stored at a
location with an unique address
Putting & before a variable name gives the
address of the variable (where it is stored, not
the value)
Can be put before any variable (with no blank in
between)

int a =10;
printf(“Value of a is %d, and address of a is

%d\n”, a, &a);

30

More on Arithmetic Expressions

31

Recall the earlier problem
int a=10, b=4, c;
float x;
c = a / b;
x = a / b;

The value of c will be 2
The value of x will be 2.0
But we want 2.5 to be stored in x

32

Solution: Typecasting

Changing the type of a variable during its use
General form

(type_name) variable_name
Example

x = ((float) a)/ b;

Now x will store 2.5 (type of a is considered to be
float for this operation only, now it is a mixed-
mode expression, so real values are generated)

33

Not everything can be typecast to anything
float/double should not be typecast to int (as
an int cannot store everything a float/double
can store)
int should not be typecast to char (same
reason)

General rule: make sure the final type can
store any value of the initial type

34

Example: Finding Average of 2
Integers

int a, b;
float avg;
scanf(“%d%d”, &a, &b);
avg = (a + b)/2;
printf(“%f\n”, avg);

int a, b;
float avg;
scanf(“%d%d”, &a, &b);
avg = ((float) (a + b))/2;
printf(“%f\n”, avg);

int a, b;
float avg;
scanf(“%d%d”, &a, &b);
avg = (a + b)/2.0;
printf(“%f\n”, avg);

Wrong program

Correct programs

average-1.c

average-2.c

35

More Operators: Increment (++)
and Decrement (--)

Both of these are unary operators; they
operate on a single operand
The increment operator causes its operand
to be increased by 1

Example: a++, ++count
The decrement operator causes its operand
to be decreased by 1.

Example: i--, --distance

36

Pre-increment versus post-
increment

Operator written before the operand (++i, --i))
Called pre-increment operator (also sometimes
called prefix ++ and prefix --)
Operand will be altered in value before it is utilized
in the program

Operator written after the operand (i++, i--)
Called post-increment operator (also sometimes
called postfix ++ and postfix --)
Operand will be altered in value after it is utilized in
the program

37

Examples
Initial values :: a = 10; b = 20;

x = 50 + ++a; a = 11, x = 61
x = 50 + a++; x = 60, a = 11
x = a++ + --b; b = 19, x = 29, a = 11
x = a++ – ++a; ??

Called side effects (while calculating some values,
something else gets changed)

38

Precedence
among different
operators (there
are many other
operators in C,
some of which we
will see later)

Operator Class Operators Associativity
Unary postfix++, -- Left to Right

Unary prefix ++, --
─ ! & Right to Left

Binary * / % Left to Right
Binary + ─ Left to Right

Binary < <= > >= Left to Right

Binary == != Left to Right
Binary && Left to Right
Binary || Left to Right

Assignment = += ─ =
*= /= &= Right to Left

39

Statements in a C program
Parts of C program that tell the computer what to do
Different types

Declaration statements
Declares variables etc.

Assignment statement
Assignment expression, followed by a ;

Control statements
For branching and looping, like if-else, for, while, do-
while (to be seen later)

Input/Output
Read/print, like printf/scanf

40

Example

int a, b, larger;
scanf(“%d %d”, &a, &b);
larger = b;
if (a > b)

larger = a;
printf(“Larger number is %d\n”, larger);

Declaration statement

Assignment
statement

Control
statement

Input/Output
statement

41

Compound statements
A sequence of statements enclosed within {
and }
Each statement can be an assignment
statement, control statement, input/output
statement, or another compound statement
We will also call it block of statements
sometimes informally

42

Example

int n;
scanf(“%d”, &n);
while(1) {

if (n > 0) break;
scanf(“%d”, &n);

}

Compound statement

