
Pointers: Basics

What is a pointer?

� First of all, it is a variable, just like other

variables you studied

� So it has type, storage etc.

� Difference: it can only store the address

22

� Difference: it can only store the address

(rather than the value) of a data item

� Type of a pointer variable – pointer to the type

of the data whose address it will store

� Example: int pointer, float pointer,…

� Can be pointer to any user-defined types also like

structure types

� They have a number of useful applications

� Enables us to access a variable that is defined

outside the function

� Can be used to pass information back and forth � Can be used to pass information back and forth

between a function and its reference point

� More efficient in handling data tables

� Reduces the length and complexity of a program

� Sometimes also increases the execution speed

Basic Concept

� As seen before, in memory, every stored data item

occupies one or more contiguous memory cells

� The number of memory cells required to store a

data item depends on its type (char, int, double,

44

etc.).

� Whenever we declare a variable, the system

allocates memory location(s) to hold the value of the

variable.

� Since every byte in memory has a unique

address, this location will also have its own

(unique) address.

Contd.

� Consider the statement

int xyz = 50;

�This statement instructs the compiler to

55

�This statement instructs the compiler to

allocate a location for the integer variable xyz,

and put the value 50 in that location

�Suppose that the address location chosen is

1380 xyz ���� variable

50 ���� value

1380 ���� address

Contd.

� During execution of the program, the system always
associates the name xyz with the address 1380

� The value 50 can be accessed by using either the
name xyz or the address 1380

� Since memory addresses are simply numbers, they

66

� Since memory addresses are simply numbers, they
can be assigned to some variables which can be
stored in memory

� Such variables that hold memory addresses are
called pointers

� Since a pointer is a variable, its value is also
stored in some memory location

Contd.

� Suppose we assign the address of xyz to a

variable p

� p is said to point to the variable xyz

77

Variable Value Address

xyz 50 1380

p 1380 2545

p = &xyz;

Address vs. Value

� Each memory cell has an address

associated with it

88

......
101 102 103 104 105 ...

Address vs. Value

� Each memory cell has an address

associated with it

� Each cell also stores some value

99

23 42
101 102 103 104 105 ...

Address vs. Value

� Each memory cell has an address

associated with it

� Each cell also stores some value

� Don’t confuse the address referring to a

1010

� Don’t confuse the address referring to a

memory location with the value stored in that

location

23 42
101 102 103 104 105 ...

Values vs Locations

� Variables name memory locations, which hold

values

1111

32

x

1024:

address
name

value

Pointers
�A pointer is just a C variable whose value can

contain the address of another variable
�Needs to be declared before use just like any other

variable
�General form:

1212

data_type *pointer_name;

�Three things are specified in the above declaration:
� The asterisk (*) tells that the variable

pointer_name is a pointer variable
� pointer_name needs a memory location
� pointer_name points to a variable of type

data_type

Example

int *count;

float *speed;

char *c;

1313

� Once a pointer variable has been declared, it can be made

to point to a variable using an assignment statement like

int *p, xyz;

:

p = &xyz;

� This is called pointer initialization

� Pointers can be defined for any type, including
user defined types

� Example

struct name {struct name {
char first[20];
char last[20];

};
struct name *p;

� p is a pointer which can store the address of a struct
name type variable

Accessing the Address of a

Variable
� The address of a variable is given by the & operator

� The operator & immediately preceding a variable

returns the address of the variable

� Example:

p = &xyz;

1515

p = &xyz;

� The address of xyz (1380) is assigned to p

� The & operator can be used only with a simple variable

(of any type, including user-defined types) or an array

element

&distance

&x[0]

&x[i-2]

Illegal Use of &

� &235
� Pointing at constant

� int arr[20];
:

1616

:
&arr;

� Pointing at array name

� &(a+b)
� Pointing at expression

In all these cases, there is no storage,
so no address either

Example

#include <stdio.h>

int main()

{

int a;

float b, c;

double d;

1717

double d;

char ch;

a = 10; b = 2.5; c = 12.36; d = 12345.66; ch = ‘A’;

printf (“%d is stored in location %u \n”, a, &a) ;

printf (“%f is stored in location %u \n”, b, &b) ;

printf (“%f is stored in location %u \n”, c, &c) ;

printf (“%lf is stored in location %u \n”, d, &d) ;

printf (“%c is stored in location %u \n”, ch, &ch) ;

return 0;

}

10 is stored in location 3221224908

2.500000 is stored in location 3221224904

Output

1818

2.500000 is stored in location 3221224904

12.360000 is stored in location 3221224900

12345.660000 is stored in location 3221224892

A is stored in location 3221224891

Accessing a Variable Through

its Pointer

� Once a pointer has been assigned the address

of a variable, the value of the variable can be

accessed using the indirection operator (*).

1919

int a, b;

int *p;

p = &a;

b = *p;

Equivalent to b = a;

Example

#include <stdio.h>

int main()

{

int a, b;

int c = 5;

int *p;

Equivalent

2020

int *p;

a = 4 * (c + 5) ;

p = &c;

b = 4 * (*p + 5) ;

printf (“a=%d b=%d \n”, a, b);

return 0;

}

a=40 b=40

Example

int main()

{

int x, y;

int *ptr;

x = 10 ;

ptr = &x ;

y = *ptr ;

2121

y = *ptr ;

printf (“%d is stored in location %u \n”, x, &x);

printf (“%d is stored in location %u \n”, *&x, &x);

printf (“%d is stored in location %u \n”, *ptr, ptr);

printf (“%d is stored in location %u \n”, y, &*ptr);

printf (“%u is stored in location %u \n”, ptr, &ptr);

printf (“%d is stored in location %u \n”, y, &y);

*ptr = 25;

printf (“\nNow x = %d \n”, x);

return 0;

}

Address of x: 3221224908

Address of y: 3221224904

Address of ptr: 3221224900

Suppose that

Then output is

2222

10 is stored in location 3221224908

10 is stored in location 3221224908

10 is stored in location 3221224908

10 is stored in location 3221224908

3221224908 is stored in location 3221224900

10 is stored in location 3221224904

Now x = 25

Then output is

Example

32
x

1024:

int x;

int ∗∗∗∗ xp ;

pointer to int

2323

1024

xp

xp = &x ;

address of x

∗∗∗∗xp = 0; /* Assign 0 to x */

∗∗∗∗xp = ∗∗∗∗xp + 1; /* Add 1 to x */

Value of the pointer

�Declaring a pointer just allocates space to hold the
pointer – it does not allocate something to be
pointed to!

�Local variables in C are not initialized, they may contain
anything

2424

�After declaring a pointer:
int *ptr;

ptr doesn’t actually point to anything yet. We can
either:

�make it point to something that already exists, or
�allocate room in memory for something new that

it will point to… (dynamic allocation, to be done
later)

Example

Memory and Pointers:

0

1500

2525

2300

Memory and Pointers:

int *p, v;
arbitrary value

0

v: 1500

2626

arbitrary value 2300p:

Memory and Pointers:

int v, *p;

p = &v;
arbitrary value

0

1500v:

2727

p = &v;

1500 2300p:

Memory and Pointers:

int v, *p;

p = &v;
17

0

1500v:

2828

p = &v;

v = 17;
1500 2300p:

Memory and Pointers:

int v, *p;

p = &v;

v = 17;25

0

1500v:

2929

v = 17;

*p = *p + 4;

v = *p + 4
1500 2300p:

More Examples of Using Pointers

in Expressions

� If p1 and p2 are two pointers, the following
statements are valid:

sum = *p1 + *p2;

3030

sum = *p1 + *p2;
prod = *p1 * *p2;
prod = (*p1) * (*p2);
*p1 = *p1 + 2;
x = *p1 / *p2 + 5;

� Note that this unary * has higher precedence
than all arithmetic/relational/logical operators

*p1 can appear on

the left hand side

Things to Remember
� Pointer variables must always point to a data item of

the same type

float x;

int *p;

:

3131

:

p = &x;

will result in wrong output

� Never assign an absolute address to a pointer
variable

int *count;

count = 1268;

Pointer Expressions

� Like other variables, pointer variables can
appear in expressions

� What are allowed in C?

3232

� What are allowed in C?

�Add an integer to a pointer

�Subtract an integer from a pointer

�Subtract one pointer from another (related)

� If p1 and p2 are both pointers to the same array,

then p2 – p1 gives the number of elements

between p1 and p2

Contd.

� What are not allowed?

�Adding two pointers.

p1 = p1 + p2;

3333

p1 = p1 + p2;

�Multiply / divide a pointer in an expression

p1 = p2 / 5;

p1 = p1 – p2 * 10;

Scale Factor

� We have seen that an integer value can be
added to or subtracted from a pointer variable

int *p1, *p2;
int i, j;

:

3434

:
p1 = p1 + 1;
p2 = p1 + j;
p2++;
p2 = p2 – (i + j);

� In reality, it is not the integer value which is
added/subtracted, but rather the scale factor times
the value

Contd.

Data Type Scale Factor

char 1

int 4

3535

float 4

double 8

� If p1 is an integer pointer, then

p1++

will increment the value of p1 by 4

� The scale factor indicates the number of bytes
used to store a value of that type
� So the address of the next element of that type can

only be at the (current pointer value + size of data)

3636

only be at the (current pointer value + size of data)

� The exact scale factor may vary from one
machine to another

� Can be found out using the sizeof function
� Gives the size of that data type

� Syntax:

sizeof (data_type)

Exampleint main()

{

printf (“No. of bytes in int is %u \n”, sizeof(int));

printf (“No. of bytes in float is %u \n”, sizeof(float));

printf (“No. of bytes in double is %u \n”, sizeof(double));

printf (“No. of bytes in char is %u \n”, sizeof(char));

printf (“No. of bytes in int * is %u \n”, sizeof(int *));

printf (“No. of bytes in float * is %u \n”, sizeof(float *));

printf (“No. of bytes in double * is %u \n”, sizeof(double *));

3737

printf (“No. of bytes in double * is %u \n”, sizeof(double *));

printf (“No. of bytes in char * is %u \n”, sizeof(char *));

return 0;

}
No. of bytes in int is 4

No. of bytes in float is 4

No. of bytes in double is 8

No. of bytes in char is 1

No. of bytes in int * is 4

No. of bytes in float * is 4

No. of bytes in double * is 4

No. of bytes in char * is 4

Output on a PC

� Note that pointer takes 4 bytes to store,
independent of the type it points to

� However, this can vary between machines
� Output of the same program on a server

No. of bytes in int is 4

No. of bytes in float is 4

No. of bytes in double is 8

No. of bytes in char is 1

� Always use sizeof() to get the correct size`

� Should also print pointers using %p (instead of %u
as we have used so far for easy comparison)

No. of bytes in char is 1

No. of bytes in int * is 8

No. of bytes in float * is 8

No. of bytes in double * is 8

No. of bytes in char * is 8

Example
int main()

{

int A[5], i;

printf(“The addresses of the array elements are:\n”);

for (i=0; i<5; i++)

printf(“&A[%d]: Using \%p = %p, Using \%u = %u”, i, &A[i], &A[i]);

return 0;

}

3939

&A[0]: Using %p = 0x7fffb2ad5930, Using %u = 2997705008

&A[1]: Using %p = 0x7fffb2ad5934, Using %u = 2997705012

&A[2]: Using %p = 0x7fffb2ad5938, Using %u = 2997705016

&A[3]: Using %p = 0x7fffb2ad593c, Using %u = 2997705020

&A[4]: Using %p = 0x7fffb2ad5940, Using %u = 2997705024

Output on a server machine

0x7fffb2ad5930 = 140736191093040 in decimal (NOT 2997705008)

so print with %u prints a wrong value (4 bytes of unsigned int cannot

hold 8 bytes for the pointer value)

