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Number 
Representation
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Number System :: The Basics

We are accustomed to using the so-called 
decimal number system

Ten digits ::  0,1,2,3,4,5,6,7,8,9
Every digit position has a weight which is a 
power of 10
Base or radix is 10

Example:
234 =  2 x 102 +  3 x 101 +  4 x 100

250.67 =  2 x 102 +  5 x 101 +  0 x 100 +  6 x 
10-1 +  7 x 10-2
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Binary Number System
Two digits:

0 and 1
Every digit position has a weight which is a 
power of 2
Base or radix is 2

Example:
110 =  1 x 22 +  1 x 21 +  0 x 20

101.01 =  1 x 22 +  0 x 21 +  1 x 20 +  0 x 2-1 +  
1 x 2-2
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Positional Number Systems (General)

Decimal Numbers:
10 Symbols {0,1,2,3,4,5,6,7,8,9}, Base or Radix is 10
136.25 = 1 × 102  +  3 × 101  +  6 × 100 +  2 × 10–1   +  3 × 10–2  
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Positional Number Systems (General)

Decimal Numbers:
10 Symbols {0,1,2,3,4,5,6,7,8,9}, Base or Radix is 10
136.25 = 1 × 102  +  3 × 101  +  6 × 100 +  2 × 10–1   +  3 × 10–2  

Binary Numbers:
2 Symbols {0,1}, Base or Radix is 2
101.01 = 1 × 22  +  0 × 21  +  1 × 20 +  0 × 2–1   +  1 × 2–2  
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Positional Number Systems (General)

Decimal Numbers:
10 Symbols {0,1,2,3,4,5,6,7,8,9}, Base or Radix is 10
136.25 = 1 × 102  +  3 × 101  +  6 × 100 +  2 × 10–1   +  5 × 10–2  

Binary Numbers:
2 Symbols {0,1}, Base or Radix is 2
101.01 = 1 × 22  +  0 × 21  +  1 × 20 +  0 × 2–1   +  1 × 2–2  

Octal Numbers:
8 Symbols {0,1,2,3,4,5,6,7},  Base or Radix is 8
621.03 = 6 × 82  +  2 × 81  +  1 × 80 +  0 × 8–1   +  3 × 8–2  
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Positional Number Systems (General)

Decimal Numbers:
10 Symbols {0,1,2,3,4,5,6,7,8,9}, Base or Radix is 10
136.25 = 1 × 102  +  3 × 101  +  6 × 100 +  2 × 10–1   +  3 × 10–2  

Binary Numbers:
2 Symbols {0,1}, Base or Radix is 2
101.01 = 1 × 22  +  0 × 21  +  1 × 20 +  0 × 2–1   +  1 × 2–2  

Octal Numbers:
8 Symbols {0,1,2,3,4,5,6,7},  Base or Radix is 8
621.03 = 6 × 82  +  2 × 81  +  1 × 80 +  0 × 8–1   +  3 × 8–2  

Hexadecimal Numbers:
16 Symbols {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}, Base is 16

6AF.3C = 6 × 162  +  10 × 161  +  15 × 160 +  3 × 16–1   +  12 × 16–2  
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Binary-to-Decimal Conversion
Each digit position of a binary number has 
a weight

Some power of 2
A binary number:

B = bn-1 bn-2 …..b1 b0 . b-1 b-2 ….. b-m

Corresponding value in decimal:

D = Σ bi 2i

i = -m

n-1
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Examples
101011  1x25 + 0x24 + 1x23 + 0x22 + 1x21 + 1x20

= 43
(101011)2 = (43)10

.0101      0x2-1 + 1x2-2 + 0x2-3 + 1x2-4

= .3125
(.0101)2 = (.3125)10

101.11    1x22 + 0x21 + 1x20 + 1x2-1 + 1x2-2

= 5.75
(101.11)2 = (5.75)10
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Decimal to Binary: Integer Part
Consider the integer and fractional parts separately.
For the integer part:

Repeatedly divide the given number by 2, and go on 
accumulating the remainders, until the number becomes zero.
Arrange the remainders in reverse order.

10
012
122
152
0112
0222
1442

892

RemNumbBase

(89)10 = (1011001)2
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Decimal to Binary: Integer Part
Consider the integer and fractional parts separately.
For the integer part:

Repeatedly divide the given number by 2, and go on 
accumulating the remainders, until the number becomes zero.
Arrange the remainders in reverse order.

10
012
122
152
0112
0222
1442

892

RemNumbBase

(89)10 = (1011001)2

10
012
022
042
082
1162
0332

662

(66)10 = (1000010)2
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Decimal to Binary: Integer Part
Consider the integer and fractional parts separately.
For the integer part:

Repeatedly divide the given number by 2, and go on 
accumulating the remainders, until the number becomes zero.
Arrange the remainders in reverse order.

10
012
122
152
0112
0222
1442

892

RemNumbBase

(89)10 = (1011001)2

10
012
022
042
082
1162
0332

662

112
10

132
072
1142
1292
1592
11192

2392

(66)10 = (1000010)2 (239)10 = (11101111)2



13

Decimal to Binary: Fraction Part
Repeatedly multiply the given fraction by 2.

Accumulate the integer part (0 or 1).
If the integer part is 1, chop it off.

Arrange the integer parts in the order they are obtained.

Example: 0.634
.634  x  2   =   1.268
.268  x  2   =   0.536
.536  x  2   =   1.072
.072  x  2   =   0.144
.144  x  2   =   0.288

:
:

(.634)10 = (.10100……)2
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Decimal to Binary: Fraction Part
Repeatedly multiply the given fraction by 2.

Accumulate the integer part (0 or 1).
If the integer part is 1, chop it off.

Arrange the integer parts in the order they are obtained.

Example: 0.634
.634  x  2   =   1.268
.268  x  2   =   0.536
.536  x  2   =   1.072
.072  x  2   =   0.144
.144  x  2   =   0.288

:
:

(.634)10 = (.10100……)2

Example: 0.0625
.0625  x  2   =   0.125
.1250  x  2  =    0.250
.2500  x  2   =   0.500
.5000  x  2   =   1.000

(.0625)10 = (.0001)2
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Decimal to Binary: Fraction Part
Repeatedly multiply the given fraction by 2.

Accumulate the integer part (0 or 1).
If the integer part is 1, chop it off.

Arrange the integer parts in the order they are obtained.

Example: 0.634
.634  x  2   =   1.268
.268  x  2   =   0.536
.536  x  2   =   1.072
.072  x  2   =   0.144
.144  x  2   =   0.288

:
:

(.634)10 = (.10100……)2

Example: 0.0625
.0625  x  2   =   0.125
.1250  x  2  =    0.250
.2500  x  2   =   0.500
.5000  x  2   =   1.000

(.0625)10 = (.0001)2

(37)10 =  (100101)2

(.0625)10 =  (.0001)2

(37.0625)10 =  (100101.0001)2
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Hexadecimal Number System
A compact way of representing binary numbers
16 different symbols (radix = 16)

0  0000 8  1000
1  0001 9  1001
2  0010 A  1010
3  0011 B  1011
4  0100 C  1100
5  0101 D  1101
6  0110 E  1110
7  0111 F  1111
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Binary-to-Hexadecimal 
Conversion

For the integer part,
Scan the binary number from right to left
Translate each group of four bits into the 
corresponding hexadecimal digit

Add leading zeros if necessary

For the fractional part,
Scan the binary number from left to right
Translate each group of four bits into the 
corresponding hexadecimal digit

Add trailing zeros if necessary
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Example

1. (1011 0100 0011)2 =   (B43)16

2. (10 1010 0001)2 =   (2A1)16

3. (.1000 010)2 =   (.84)16

4. (101 . 0101 111)2 =   (5.5E)16
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Hexadecimal-to-Binary 
Conversion

Translate every hexadecimal digit into its 
4-bit binary equivalent

Examples:
(3A5)16 =   (0011 1010 0101)2

(12.3D)16 =   (0001 0010 . 0011 1101)2

(1.8)16 =   (0001 . 1000)2
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Unsigned Binary Numbers
An n-bit binary number

B  =  bn-1bn-2 …. b2b1b0
2n distinct combinations are possible, 0 to 2n-1.

For example, for n = 3, there are 8 distinct 
combinations

000, 001, 010, 011, 100, 101, 110, 111
Range of numbers that can be represented

n=8 0  to  28-1  (255)
n=16 0  to  216-1 (65535)
n=32 0  to  232-1 (4294967295)
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Signed Integer Representation

Many of the numerical data items that are used 
in a program are signed (positive or negative)

Question:: How to represent sign?

Three possible approaches:
Sign-magnitude representation
One’s complement representation
Two’s complement representation
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Sign-magnitude Representation

For an n-bit number representation
The most significant bit (MSB) indicates sign

0  positive
1  negative

The remaining n-1 bits represent magnitude

b0b1bn-2bn-1

MagnitudeSign
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Contd.
Range of numbers that can be 
represented:

Maximum  ::  + (2n-1 – 1)
Minimum   ::  − (2n-1 – 1)

A problem:
Two different representations of zero

+0   0 000….0
-0    1 000….0
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One’s Complement 
Representation

Basic idea:
Positive numbers are represented exactly as in 
sign-magnitude form
Negative numbers are represented in 1’s 
complement form

How to compute the 1’s complement of a number?
Complement every bit of the number (1 0 and 
0 1)
MSB will indicate the sign of the number

0  positive
1  negative
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Example  ::  n=4
0000  +0
0001  +1
0010  +2
0011  +3
0100  +4
0101  +5
0110  +6
0111  +7

1000  -7
1001  -6
1010  -5
1011  -4
1100  -3
1101  -2
1110  -1
1111  -0

To find the representation of, say, -4, first note that

+4  =  0100

-4   =  1’s complement of 0100  =  1011
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Contd.
Range of numbers that can be represented:

Maximum  ::  + (2n-1 – 1)
Minimum   ::  − (2n-1 – 1)

A problem:
Two different representations of zero.

+0   0 000….0
-0    1 111….1

Advantage of 1’s complement representation
Subtraction can be done using addition
Leads to substantial saving in circuitry
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Two’s Complement 
Representation

Basic idea:
Positive numbers are represented exactly as in 
sign-magnitude form
Negative numbers are represented in 2’s 
complement form

How to compute the 2’s complement of a number?
Complement every bit of the number (1 0 and 
0 1), and then add one to the resulting number
MSB will indicate the sign of the number

0  positive
1  negative
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Example :  n=4
0000  +0
0001  +1
0010  +2
0011  +3
0100  +4
0101  +5
0110  +6
0111  +7

1000  -8
1001  -7
1010  -6
1011  -5
1100  -4
1101  -3
1110  -2
1111  -1

To find the representation of, say, -4, first note that

+4  =  0100
-4   =  2’s complement of 0100  =  1011+1  =  1100

Rule :  Value = – msb*2(n–1) + [unsigned value of rest]
Example: 0110  =  0 + 6 =  6                   1110 = – 8 + 6  =  – 2
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Contd.
Range of numbers that can be represented:

Maximum  ::  + (2n-1 – 1)
Minimum   ::  − 2n-1

Advantage:
Unique representation of zero
Subtraction can be done using addition
Leads to substantial saving in circuitry

Almost all computers today use the 2’s complement 
representation for storing negative numbers
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Contd.

In C
short int

16 bits   + (215-1)  to  -215

int or long int
32 bits   + (231-1)  to  -231

long long int
64 bits   + (263-1)  to  -263
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Adding Binary Numbers

Basic Rules:
0+0=0
0+1=1
1+0=1
1+1=0 (carry 1)

Example:

01101001
00110100
-------------
10011101
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Subtraction Using Addition :: 1’s 
Complement

How to compute A – B ?
Compute the 1’s complement of B (say, B1).
Compute R = A + B1
If the carry obtained after addition is ‘1’

Add the carry back to R  (called end-around carry)
That is, R = R + 1
The result is a positive number

Else
The result is negative, and is in 1’s complement 
form
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Example 1  ::  6 – 2
1’s complement of 2  =  1101

6   ::   0110
-2   ::   1101

1 0011
1

0100    +4

Assume 4-bit 
representations

Since there is a carry, it is 
added back to the result

The result is positive

End-around 
carry

R
B1

A
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Example 2  ::  3 – 5

1’s complement of 5  =  1010

3   ::   0011
-5   ::   1010

1101
Assume 4-bit representations

Since there is no carry, the 
result is negative

1101 is the 1’s complement of 
0010, that is, it represents –2

A

B1

R

-2
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Subtraction Using Addition :: 2’s 
Complement

How to compute A – B ?
Compute the 2’s complement of B (say, B2)
Compute R = A + B2

If the carry obtained after addition is ‘1’
Ignore the carry
The result is a positive number

Else
The result is negative, and is in 2’s complement 
form
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Example 1  ::  6 – 2

2’s complement of 2  =  1101 + 1  =  1110

6   ::   0110
-2   ::   1110

1 0100

Assume 4-bit 
representations

Presence of carry indicates 
that the result is positive

No need to add the end-
around carry like in 1’s 
complement

A

B2

R

Ignore carry
+4
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Example 2  ::  3 – 5

2’s complement of 5  =  1010 + 1  =  1011

3   ::   0011
-5   ::   1011

1110                      
Assume 4-bit representations

Since there is no carry, the 
result is negative

1110 is the 2’s complement of 
0010, that is, it represents –2

A
B2

R

-2
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2’s complement arithmetic: More 
Examples

Example 1: 18-11 = ?
18 is represented as 00010010
11 is represented as 00001011

1’s complement of 11 is 11110100
2’s complement of 11 is 11110101

Add 18 to 2’s complement of 11

00010010
+  11110101
----------------

00000111 (with a carry of 1
which is ignored)

00000111 is 7
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Example 2: 7 - 9 = ?
7 is represented as 00000111
9 is represented as 00001001

1’s complement of 9 is 11110110
2’s complement of 9 is 11110111
Add 7 to 2’s complement of 9

00000111
+  11110111
----------------

11111110 (with a carry of 0
which is ignored)

11111110 is -2
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Overflow/Underflow:
Adding two +ve (-ve) numbers  should not produce a 
–ve (+ve) number. If it does, overflow  (underflow) occurs
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Another equivalent condition : carry in and carry 
out from Most Significant Bit (MSB) differ.

Overflow/Underflow:
Adding two +ve (-ve) numbers  should not produce a 
–ve (+ve) number. If it does, overflow  (underflow) occurs
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Another equivalent condition : carry in and carry 
out from Most Significant Bit (MSB) differ.

(64)  01000000
( 4)   00000100

--------------
(68) 01000100

carry (out)(in)
0    0

Overflow/Underflow:
Adding two +ve (-ve) numbers  should not produce a 
–ve (+ve) number. If it does, overflow  (underflow) occurs
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Another equivalent condition : carry in and carry 
out from Most Significant Bit (MSB) differ.

(64)  01000000
( 4)   00000100

--------------
(68) 01000100

carry (out)(in)
0    0

(64)  01000000
(96)  01100000

--------------
(-96) 10100000

carry  out in
0   1

differ:

overflow

Overflow/Underflow:
Adding two +ve (-ve) numbers  should not produce a 
–ve (+ve) number. If it does, overflow  (underflow) occurs
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Floating-point Numbers
The representations discussed so far applies only to 
integers

Cannot represent numbers with fractional parts
We can assume a decimal point before a signed 
number

In that case, pure fractions (without integer parts) 
can be represented

We can also assume the decimal point somewhere in 
between

This lacks flexibility
Very large and very small numbers cannot be 
represented
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Representation of Floating-Point 
Numbers

A floating-point number F is represented by a 
doublet  <M,E> :

F  =  M  x  BE

B  exponent base (usually 2)
M  mantissa
E  exponent

M is usually represented in 2’s complement 
form, with an implied binary point before it

For example, 
In decimal,  0.235 x 106

In binary,    0.101011 x 20110
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Example  ::  32-bit representation

M represents a 2’s complement fraction
1  >  M  >  -1

E represents the exponent (in 2’s complement form)
127  >  E  >  -128

Points to note:
The number of significant digits depends on the 
number of bits in M

6 significant digits for 24-bit mantissa
The range of the number depends on the number of 
bits in E

1038 to  10-38 for 8-bit exponent.

M E

24 8
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A Warning
The representation for floating-point numbers as 
shown is just for illustration
The actual representation is a little more 
complex
Example: IEEE 754 Floating Point format
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IEEE 754 Floating-Point Format
(Single Precision)

S: Sign (0 is +ve, 1 is –ve) 
E: Exponent (More bits gives a higher range)
M: Mantissa (More bits means higher precision)
[8 bytes are used for double precision] 

M (Mantissa)
(22 … 0)

E (Exponent)
(30 … 23)

S
(31)

Value of a Normal Number:

(-1)S× (1.0 + 0.M) × 2(E – 127)
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An example
M (Mantissa)

(22 … 0)
E (Exponent)

(30 … 23)
S

(31)

Value of a Normal Number:
= (-1)S× (1.0 + 0.M) × 2(E – 127)

= (-1)1× (1.0 + 0.1101100) × 2(10001100 – 1111111)

= − 1.1101100 × 21101  = − 11101100000000 
= − 15104.0 ( in decimal)

11011000000000000000000100011001



50

Representing 0.3
M (Mantissa)

(22 … 0)
E (Exponent)

(30 … 23)
S

(31)

0.3 (decimal)
= 0.0100100100100100100100100…
= 1.00100100100100100100100100… × 2 −2 

= 1.00100100100100100100100100… × 2 125 −127 

= (-1)S× (1.0 + 0.M) × 2(E – 127)

00100100100100100100100011111010

What are the largest and smallest numbers that 
can be represented in this scheme?
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Representing 0
M (Mantissa)

(22 … 0)
E (Exponent)

(30 … 23)
S

(31)

00000000000000000000000000000000

00000000000000000000000000000001

Representing Inf (∝)

00000000000000000000000111111110

00000000000000000000000111111111

Representing NaN (Not a Number)
Non zero111111110

Non zero111111111
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Representation of Characters
Many applications have to deal with non-numerical data.

Characters and strings
There must be a standard mechanism to represent 
alphanumeric and other characters in memory

Three standards in use:
Extended Binary Coded Decimal Interchange Code 
(EBCDIC)

Used in older IBM machines
American Standard Code for Information Interchange 
(ASCII)

Most widely used today
UNICODE

Used to represent all international characters.
Used by Java
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ASCII Code
Each individual character is numerically encoded into a 
unique 7-bit binary code

A total of 27 or 128 different characters
A character is normally encoded in a byte (8 bits), 
with the MSB not been used.

The binary encoding of the characters follow a regular 
ordering

Digits are ordered consecutively in their proper 
numerical sequence (0 to 9)
Letters (uppercase and lowercase) are arranged 
consecutively in their proper alphabetic order
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Some Common ASCII Codes

‘A’ ::  41 (H) 65 (D)
‘B’ ::  42 (H) 66 (D)
………..
‘Z’ ::  5A (H) 90 (D)

‘a’ ::  61 (H) 97 (D)
‘b’ ::  62 (H) 98 (D)
………..
‘z’ ::  7A (H) 122 (D)

‘0’ ::  30 (H) 48 (D)
‘1’ ::  31 (H) 49 (D)
………..
‘9’ ::  39 (H) 57 (D)

‘(‘ ::  28 (H) 40 (D)
‘+’ ::  2B (H) 43 (D)
‘?’ ::   3F (H) 63 (D)
‘\n’ ::  0A (H) 10 (D)
‘\0’ ::   00 (H) 00 (D)
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Character Strings
Two ways of representing a sequence of characters in 
memory

The first location contains the number of characters in 
the string, followed by the actual characters

The characters follow one another, and is terminated 
by a special delimiter

oeH5 ll

⊥leH ol
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String Representation in C
In C, the second approach is used

The ‘\0’ character is used as the string delimiter

Example:
“Hello”

A null string “” occupies one byte in memory.
Only the ‘\0’ character

‘\0’leH ol


