Multi-Dimensional Arrays

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR N



Two Dimensional Arrays

We have seen that an array variable can store a list of values.

Many applications require us to store a table of values.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Student 1 75 82 90 65 76
Student 2 68 75 80 70 72
Student 3 88 74 85 76 80
Student 4 50 65 68 40 70

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR N



Two Dimensional Arrays

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Student 1 75 82 90 65 76
Student 2 68 75 80 70 72
Student 3 88 74 85 76 80
Student 4 50 65 68 40 70

The table contains a total of 20 values, five in each line.

* The table can be regarded as a matrix consisting of four rows and five columns.

C allows us to define such tables of items by using two-dimensional arrays.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR




Declaring 2-D Arrays

General form:

type array name[row size] [column size];

Examples:

int marks[4][5];
float sales[12][25];
double matrix[100]1[100];

First index indicates row, second index indicates column.
Both row index and column index start from 0 (similar to what we had for 1-d arrays)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR <



Declaring 2-D Arrays

int m[4][5];

Column 0 Column 1 Column 2 Column 3 Column 4
Row 0 m[0][0] | m[O][1] | m[O0][2] | m[O][3] | m[O][4]
Row 1 m[1][0] | m[1][1] | m[1][2] | m[1][3] | m[1][4]
Row 2 m2][0] | m[2][1] | m[2][2] | m[2][3] | m[2][4]
Row 3 m[3][0] | m[3][1] | m[3][2] | m[3][3] | m[3][4

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR ol



Accessing Elements of a 2-D Array

Similar to that for 1-D array, but use two indices.

* First index indicates row, second index indicates column.
* Both the indices should be expressions which evaluate to integer values.

Examples:
x[m] [n] = 0;

c[1i] [k] += a[i][]J] * b[J][k]~
val = sqgrt( arr[j*3] [k+1] ),

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR ©



How is a 2-D array stored in memory?

Starting from a given memory location (starting address of the array), the elements are stored
row-wise in consecutive memory locations.

« X: starting address of the array in memory
* ¢: number of columns
* k: number of bytes allocated per array element, e.g., sizeof(int)

*a[i] [j] is allocated memory location ataddress x + (i * ¢ + j) * k

a[0][0] a[0][1] a[0][2] a[0][3]  a[1][0] a[1][1] a[1][2] a[1][3]  a[2][0] a[2][1] a[2][2] a[2][3]

Row 0 Row 1 Row 2

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR




Array Addresses

Output

int main ()
{
int a[3][5];

int i, 3;

for (i=0; i<3;i++)
{
for (j=0; 3j<5; Jj++)
printf ("$u\n", &al[il[jl);
printf ("\n");
}

return 0O;

}

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

3221224480
3221224484
3221224488
3221224492
3221224496

3221224500
3221224504
3221224508
3221224512
3221224516

3221224520
3221224524
3221224528
3221224532
3221224536




How to read the elements of a 2-D array?

By reading them one element at a time

for (i=0; i<nrow,; i++)
for (j=0; j<ncol; j++)
scanf (“%f”, &al[il[j]);
« The ampersand (&) is necessary.

 The elements can be entered all in one line or in different lines.

We can also initialize a 2-D array at the time of declaration:
int a[MAX ROWS] [MAX COLS] { {1,2,3}, {4,5,6}, {7,8,9} };

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR &



How to print the elements of a 2-D array?

By printing them one element at a time.

for (i=0; i<nrow,; i++)
for (j=0; j<ncol; j++)
printf (“%f ”, al[il[jl):

for (1i=0; i<nrow,; i++) {
for (jJ=0; j<ncol; jJ++)
printf (“%f ”, alill[j]):;
printf (“\n”) ;

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

This will print all
elements in one line.

This will print the
elements with one row in
each line (matrix form).




Example: Matrix addition

int main|()
{
int a[l100][100], b[100][100],
c[100] [100], p, 9, m, n;

printf (“Enter dimensions: ”);

scanf (“%d %d4”, &m, &n);

for (p=0; p<m; p++)
for (g=0; g<n; qg++)
scanf (“%d”, &al[pllql):

for (p=0; p<m; p++)
for (g=0; g<n; qg++)
scanf (“%d”, &b[pllql):

for (p=0; p<m; p++)
for (g=0; g<n; q++)
c[pl[a]l = a[pllq] + b[pllal:

for (p=0; p<m; p++)
{
for (g=0; g<n; g++)

printf (“%d ”, c[pllqal):

printf (“\n”);
}

return O;

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

11




A 2-D array is an array or 1-D arrays, and so a row pointer

#include <stdio.h>
int main ()

{

int i, j, A[4]1(51 = {( { 7, 14, 3, 16, 6}, {11, 5, 9, 13, 18},
{ 2, 15, 20, 1, 19}, {10, 4, 12, 17, 8} };
for (i=0; i<4; ++i) {

for (j=0; j<5; ++j) printf("%sp ", &A[i][]]);

printf("\n");

}
printf("sizeof(A) = %31lu, A = %p,
printf("sizeof(*A) = %31lu, *A %
printf("sizeof (&A) = %31lu, &A = %p,
return O;

} Output

O0x7£f£c314fel00 Ox7£ffc314fel04 0x7ffc314fel08 Ox7ffc314felOc 0x7ffc314£fell0
Ox7ffc314felld Ox7£ffc314fell8 O0x7ffc314fellc O0x7ffc314fel20 Ox7ffc314fel24

= 3p\n", sizeof(A), A, A + 1);
sp\n", sizeof(*A), *A, *A + 1);
= 3p\n", sizeof(&A), &A, &A + 1);

+ + +
=
Il

I

\

o

2
oo

O0x7ffc314fel28 O0x7ffc314fel2c 0x7£ffc314fel30 O0x7ffc314fel34 O0x7£ffc314fel38
Ox7ffc314fel3c O0x7£ffc314feld0 O0x7ffc314feldd 0x7£ffc314feld8 0x7ffc31l4feldc
sizeof (A) = 80, A = 0x7ffc314fel00, A+ 1 = 0x7ffc314felld
sizeof (*A) 20, *A = 0x7ffc314fel00, *A + 1 = 0x7ffc314fel04
sizeof (&A) = 8, = 0x7ffc314fel00, &A + 1 = 0x7ffc314fel50

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR



Passing 2-d arrays to functions

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR



Passing 2-D arrays to functions

Similar to that for 1-D arrays.

* The array contents are not copied into the function.
* Rather, the address of the first element is passed.

For calculating the address of an element in a 2-D array, the function needs:

* The starting address of the array in memory (say, x) al[i] [j] is located at memory
- Number of bytes per element (say, k) address x + (i"c+]j) *k

* Number of columns in the array, i.e., the size of each row (say, c)

The above three pieces of information must be known to the function.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR



Example

void add (int x[][25], int y[][25],
int rows, int cols)

int main() {

{

int a[15][25], b[15]25]; }

add (a, b, 15, 25);

We can also write
int x[15][25], y[15][25];

The first dimension is ignored.
But the second dimension must
be given.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR



Example: Matrix addition with functions

void ReadMatrix (int A[][100], int x, int y)
{
int i, j;
for (i=0; i<x; i++)
for (j=0; j<y; j++)
scanf (“%d”, &A[i][3]]):

void AddMatrix( int A[][100], int B[] [100], int C[][100], int x, int y)
{
int i, j;
for (i=0; i<x; i++)
for (j=0; Jj<y; j++)
Cl[i][3] = A[i][3j] + BI1i]1[31~

}
INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR




Example: Matrix addition

void PrintMatrix (int A[][100], int x, int y)
{

int i, j;

printf (“\n”);

for (i=0; i<x; i++)

{
for (j=0; j<y; j++)
printf (™ %547, A[i]l[j]):
printf (“\n”) ;
}

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

int main ()

{

int a[100][100], b[100][100]
c[100] [100], p, 9, m, n;

scanf (“%d%d”, &m, &n);

ReadMatrix(a, m, n);
ReadMatrix(b, m, n);

AddMatrix(a, b, ¢, m, n);

PrintMatrix(c, m, n);

return 0O;

4

17




Example:

<stdio.h>
int main() {
int a[l5][25], b[15][25], c[15][25];

int m, n;

#include

84",
for (p=0; p<m; p++)

(q=0; g<n; g++)
scanf (“%d”, &al[pllql):
for (p=0; p<m; p++)

scanf (“'% &m, &n);

for

for (g=0; g<n; g++)
scanf (“%d”, &blpllql):

add (a, b, m, n, c);
for (p=0; p<m; p++) {

(q=0; g<n; g++)
printf (“$f “, clpllqal):
printf (“\n”) ;
}

for

}

void add (int x[][25], int y[][25], int m,

int n, int z[][25])
int p, qg;
for (p=0; p<m; p++)
for (g=0; g<n; g++)
z[plal = x[pllq] + ylplIlqal;

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Note that the number of columns has to be
fixed in the function definition.

* There is no difference between
void add( int x[ ]J[295], ... ) and
void add( int x[15][25], ...)

« Specifying the first dimension is not
hecessary, but not a mistake.

18




Example: Transpose of a matrix

#include <stdio.h> main ()
{
void transpose (int x[][3], int n) int a[3][3], p, g’
{
int p, q, t; for (p=0; p<3; p++)
for (g=0; g<3; g++)
for (p=0; p<n; p++) scanf (”%d”, &alpllql):
for (g=0; g<n; qg++)
{ transpose (a, 3);
t = x[pllal;
x[pl [a]l = x[q] [p]; for (p=0; p<3; pt++)
x[qllp]l = t; {
} for (g=0; g<3; qg++)
} printf (”%d “, alpllql):’
printf (“\n”);
}
}

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR



Example: Transpose of a matrix

#include <stdio.h> main ()
{
void transpose (int x[][3], int n) int a[3][3], pP, g’
{
int p, q, t; for (p=0; p<3; pt++)
for (g=0; g<3; g++)
for (p=0; p<n; p++) scanf (”%d”, &alpllql):
for (g=0; g<n; qg++)
{ transpose (a, 3);
t = x[p]l [q]’
x[pl [a]l = x[q] [p]; for (p=0; p<3; pt++)
x[ql[p] = t; {
} for (g=0; g<3; qg++)
} printf (”“%d ”, a[pllql):
printf (“\n”);
}
This function is wrong. Why? }

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR



The Correct Version

void transpose (int x[][3], int n) 10 20 30
L 40 50 60
int p, q, t;
70 80 90
for (p = 0; p < n; pt++)
for (g =p; g < n; g++) ﬂ
{
t = x[pllql;
x[pllal = x[qllpl; 10 40 70
} x[q]l [p] = t; 20 50 80
} 30 60 90

21

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR



Dynamically allocating 2-d arrays
A brief discussion

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR



You may recall ...

We have discussed the issue of dynamically allocating space for 1-D arrays
 Using malloc () library function.

int *ptr;

ptr = (int*) malloc( 100 * sizeof(int) );

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR



How to dynamically allocate a 2-d array?

Many variations possible:

1. Fixed number of rows, but variable number of columns
2. Variable number of rows, but fixed number of columns

3. Both number of rows and columns variable

We will discuss only the first variation:

Fixed number of rows, but variable number of columns

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR



Fixed number of rows, but variable number of columns

Let us assume the number of rows is fixed to 3.

We can use an array of pointers of size 3, where the it" element of this array (a pointer) will point
to the it row of the 2-d array.

int *r[3], 1, c;

printf (”“Enter nos. of columns of the 2-d array:”);

scanf (”%$d”, &c); // each row will have c elements
for (i=0;i1<3;i++)

r[i] = (int *) malloc(c*sizeof(int)); // allocate i-th row

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR



Possible to have rows with different number of elements

r[0]
r[1]
r[2]
Statically allocated Dynamically allocated
pointer array memory

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR



#include <stdio.h>
#include <stdlib.h>
int main ()

{
int *r[3], i, j, col; Output
for (1=0; i1<3; ++1i) {
col = 2 * (i+l); 01
r[i] = (int *) malloc (col*sizeof (int)); 1234
for (j=0; j<col; ++j) 2 345617
r[i][3] =1 + J;

}
for (i=0; i<3; ++i) {
col =2 * (1+41);
for (j=0; j<col; ++j)
printf("sd ", r[il[]j])
printf ("\n") ;
}

return 0;

}
INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR




We have studied only 2-d arrays.
C allows arrays of higher dimensions as well.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR



Practice problems

1. Write a function that takes an n x n square matrix A as parameter (n < 100) and returns 1 if A is an upper-
triangular matrix, 0 otherwise.

2. Repeat 1 to check for lower-triangular matrix, diagonal matrix, identity matrix.

3. Consider a n x n matrix containing only 0 or 1. Write a function that takes such a matrix and returns 1 if the
number of 1’s in each row are the same and the number of 1’s in each column are the same; it returns 0
otherwise.

4. Write a function that reads in an m x n matrix A and an n x p matrix B, and returns the product of A and B in
another matrix C. Pass appropriate parameters.

5. Write a function to find the transpose of a non-square matrix A in a matrix B.

6. Repeat the last exercise when the transpose of A is computed in A itself. Use no additional 2-d arrays.

For each of the above, also write a main function that reads the matrices, calls the function, and prints the results
(a message, the result matrix etc.) o
INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR N




ADVANCED TOPICS

Pointers equivalent to two-dimensional arrays

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR



Generalization from one-dimensional arrays

Consider the statically allocated 1-d array:
int A[20];
A pointer that can browse through A is declared as:
int *p;
Such a pointer can be allocated dynamic memory and freed as:

p = (int *)malloc (20 * sizeof(int));
free(p);

o What are the analogous pointers for 2-d arrays that you have seen earlier?
o How can these pointers be allocated and deallocated their own memory?

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR




What are our 2-d arrays?

We have seen two types of 2-d arrays:

int A[10][20];
int *B[10];

Both these arrays are statically allocated.

o Ais an array of arrays, and has no dynamic component.
o B is an array of pointers. Individual pointers in B[] can be dynamically allocated.

As statically allocated arrays, both A and B suffer from the two standard disadvantages:

o Waste of space
o Inadequacy to handle larger than the allocated space

Dynamic versions of A and B overcome these shortcomings.
INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR




Dynamic version of A
int A[10][20];
A pointer matching A should be a pointer to an array of 20 int variables.

But
int *p[20];

declares an array of 20 int pointers, not a pointer to an array.
Three ways of defining the correct pointer equivalent to A:
Method1: int (*p)[20];

Method 2: typedef int row[20];
rYow *pj;

Method 3: typeof(int [20]) *p; Il Not available in the original C specification

In all the cases, p is a single pointer.
INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR




Dynamic version of B

int B[10];

B is an array of 10 int pointers.
The equivalent pointer is a pointer to an int pointer.

int **q;
A 2-d array declared by q is fully dynamic.

e The number of rows can be decided during the run of the program.
e The size of each row can also be decided individually during the run.

Note: Itis illegalto setg = A; orp = B; Expect segmentation fault if you do so (ignoring the warnings
issued by the compiler).

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR



Dynamic memory for p

p is a single pointer, and can be allocated and deallocated memory in a single shot.

e Method 1:
p = (int (*)[20])malloc (10 * 20 * sizeof(int));

e Method 2:

p = (row *)malloc(l0 * sizeof(row));

e Method 3:
p = (typeof(int [20]) *)malloc(10 * 20 * sizeof(typeof(int [20])));

Freeing requires only one call.

free(p);

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR



Dynamic memory for g

First, you allocate the required number of row headers, and then the rows individually.
q = (int **)malloc (10 * sizeof(int *));
for (i=0; 1i<10; ++i)
q[i] = (int *)malloc (20 * sizeof(int));

Freeing is also a multi-step process.

for (i=0; i<10; ++i) free(q[i]);
free(q);

Note: Free the individual rows before freeing the array of row headers.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR



Example: Vandermonde matrices

A Vandermonde matrix corresponding to n real-valued elements ay, a,, ..., a,. is defined as:

1 1 1 1
dy d d, dp-1
) ) 2 )
dy d, d, dp-1
a n-1 a n-1 azn 1 a 1n 1
n

An application works with Vandermonde matrices for n < 100. A static 2-d array would require a total storage
of 100 x 100 = 10,000 cells. This leads to waste if n is small.

We write a function genvdm(A,n) that obtains a,, a, ..., a,.1 from the 1-d array A, and returns a pointer to an
dynamically allocated array of rows.

The row size must be fixed beforehand. But we can allocate exactly n rows to reduce wastage.

37

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR



Dynamic memory for storing Vandermonde matrices

#include <stdio.h>
#include <stdlib.h>
#define MAXDIM 100
double (*genvdm ( double *A, int n )) [MAXDIM]
{
double (*p)[MAXDIM];
int i, j;
p = (double (*)[MAXDIM])malloc(n * MAXDIM * sizeof(double));
for (i=0; i<n; ++i) {
// i is an index in A, and a column in p. j is a row in p.
pIO][1] = 1; . N . . .
for (3=1; 3j<n; ++j) p[]J][1] = p[J-1]1[1] * A[1];
return p;
}
void prnvdm ( double M[][MAXDIM], int n )
{
int i, j;
for (i=0; i<n; ++1)
for (j=0; j<n; ++j) printf("%10.51f ", M[i][]j]);
printf("\n");
}
}

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR




Storage of Vandermonde matrices (continued)

int main ()
{
double A[MAXDIM], (*V)[MAXDIM];
int n, 1i;
printf ("Enter dimension of V: "); scanf("%d", &n);
printf ("Enter %d elements: ", n);
for (i=0; i<n; ++i) scanf("%$1f", A+i);
V = genvdm(A,n);
prnvdm(V,n) ; M
ex1t(0); Enter dimension of V: 5
} Enter 5 elements: -1 0.1 1.1 2.5 3.2
1.00000 1.00000 1.00000 1.00000 1.00000
-1.00000 0.10000 1.10000 2.50000 3.20000
Exercise: Free the 2-d 1.00000 0.01000 1.21000 6.25000 10.24000

-1.00000 0.00100 1.33100 15.62500 32.76800
1.00000 0.00010 1.46410 39.06250 104.85760

memory allocated to V.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR



Antisymmetric matrices

A symmetric matrix is an n x n matrix with a;; = aj; for all i, j.

An antisymmetric matrix is an n x n matrix with a;; = -a;; for all i, j. Since a;; = -a;;, the major
diagonal is filled by 0. Moreover, the entries below the main diagonal can be obtained from the
entries above the main diagonal.

5
-5 0 (-6 | -1
6

N (O | A~

2 1 -2 0 1

-4 (0 (-7 | -1 0

We use a fully dynamic 2-d array to store only the elements above the main diagonal.

The function genasm(n) returns a pointer to this array given n as input. Here, we take aj=i-J.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR



Compact storage of an antisymmetric matrix

#include <stdio.h>
#include <stdlib.h>
int **genasm ( int n )
{
int **q, i, j;
q = (int **)malloc((n-1) * sizeof(int *));
for (i=0; i<n-1; ++i) {
q[i] = (int *)malloc((n-i-1) * sizeof(int));
for (j=i+l; j<n; ++j) q[i1][j-1i-1] = i-3;
}
return q;
}

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR



Storage of antisymmetric matrices (continued)

void prmnasm ( int *U[], int n )
{
int i, j;
for (i=0; i<n; ++i) {
for (j=0; j<i; ++j) printf("%34d ", -U[j]l[i-j-1]);
printf(" 0 ");
for (j=i+l; j<n; ++j) printf("%3d ", U[i][j-i-1]);
printf("\n");

}

int main ()
{
int **U, n;
printf ("Enter dimension (n): "); scanf("%d", &n);
U = genasm(n);
prnasm(U,n);
exit (0);
}

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Exercise: Free the 2-d
memory allocated to U.

Output

Enter dimension (n):
o -1 -2
0O -1

1

2 1
3 2
4 3



Four types of 2-d arrays

Declaration

Number of rows

Number of columns

int A[10][20]; Static Static

int (*p)[20]; Dynamic Static
int *B[10]; Static Dynamic
int **q; Dynamic Dynamic

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR




