
Stamp / Signature of the Invigilator

 Roll Number Section Name

 Subject Number C S 1 0 0 0 3 Subject Name Programming and Data Structures

 Department / Center of the student Additional Sheets

Important Instructions and Guidelines for Students

To be filled in by the examiner

 Question Number 1 2 3 4 5 6 7 8 9 10 Total

 Marks obtained

Marks Obtained (in words) Signature of the Examiner Signature of the Scrutineer

INDIAN INSTITUTE OF TECHNOLOGY
KHARAGPUR

EXAMINATION (Mid Semester / End Semester) SEMESTER (Autumn / Spring)

1. You must occupy your seat as per the Examination Schedule/Sitting Plan.

2. Do not keep mobile phones or any similar electronic gadgets with you even in the switched off mode.

3. Loose papers, class notes, books or any such materials must not be in your possession, even if they are irrelevant to the subject
 you are taking examination.

4. Data book, codes, graph papers, relevant standard tables/charts or any other materials are allowed only when instructed by the
 paper-setter.

5. Use of instrument box, pencil box and non-programmable calculator is allowed during the examination. However, exchange of
 these items of any other papers (including question papers) is not permitted.

6. Write on both sides of the answer script and do not tear off any page. Use last page(s) of the answer script for rough work.
 Report to the Invigilator if the answer script has torn or distorted page(s).

7. It is your responsibility to ensure that you have signed the Attendance Sheet. Keep your Admit Card/Identity Card on the desk for
 checking by the invigilator.

8. You may leave the examination hall for wash room or for drinking water for a very short period. Record your absence from the
 Examination Hall in the register provided. Smoking and the consumption of any kind of beverages are strictly prohibited inside the
 Examination Hall.

9. Do not leave the Examination Hall without submitting your answer script to the invigilator. In any case, you are not allowed to
 take away the answer script with you. After the completion of the examination, do not leave the seat until the invigilators collect
 all the answer scripts.

10. During the examination, either inside or outside the Examination Hall, gathering information from any kind of sources or exchanging
 Information with others or any such attempt will be treated as ‘unfair means’. Do not adopt unfair means and do not indulge in
 unseemly behavior.

Violation of any of the above instructions may lead to severe punishment.

Signature of the Student

CS10003 / CS10001 PROGRAMMING AND DATA STRUCTURES

SPRING 2024 – 2025
MID-SEMESTER EXAMINATION

9AM – 11AM, 19-FEBRUARY-2025
MAXIMUM MARKS: 100

Instructions to students

• Write your answers in the question paper itself.

• Answer all questions.

• All programs must be written in the C programming language.

• Write in the blank / empty spaces provided in the questions. Do rough work in the designated places. For
additional rough work, you may ask for supplementary sheets from the invigilators. The answers to all the
questions must be written in this question paper only.

• Not all blanks carry equal marks. Evaluation will depend on your overall performance.

• Do not change the intended meaning (as described in the text) of the variables and functions in the questions.

• Unless otherwise specified, you are not allowed to introduce extra variables.

• Do not write anything on this page. Questions start from the next page (Page 3).

― PAGE 2 OF 16 ―

1. (a) Fill in the blanks for a switch statement equivalent to the following nested if-else statement. You may assume
that the user enters a non-negative integer as input. [8]

Nested if-else statement

int i;
printf("Enter a non-negative integral value for i: ");
scanf("%d", &i);

if ((i >= 0) && (i < 4))
 printf("A\n");
else if ((i > 4) || (i % 4))
 printf("B\n");
else if (i = 5)
 printf("C\n");
else
 printf("D\n");

Equivalent switch statement

int i;
printf("Enter a non-negative integral value for i: ");
scanf("%d", &i);

switch (i) {

case ________________ :

case ________________ :

case ________________ :

case ________________ :

 printf("________________\n");

 ________________ ;

 case ________________ :

 printf("________________\n");

 ________________ ;

default: printf("________________\n");
}

(b) Fill in the blanks of the program on the next page, where the user enters an amount of money. Your task is to
output the minimum numbers of notes required to realize this amount using the denominations {500, 100, 50}, or
say that this amount cannot be realized using these denominations. For example, the minimum numbers of notes
with which 3750 INR can be realized are seven 500-INR notes, two 100-INR notes, and one 50-INR note. On the
other hand, 3740 INR cannot be realized using the notes of the given denominations. Assume that the user enters a
positive amount. [12]

― PAGE 3 OF 16 ―

0

1

2

3

break

B

4

i = 5; break

C

A

 The statement i = 5 preserves the side effects.
 Students are not required to write this.

int main()
{
 int n, copy, a, b, c;
 /* n will store the amount input by the user, and copy is a copy of n.
 The other variables are for storing the numbers of notes for the 3 denominations */

 printf("Enter a positive amount in INR: ");

 /* Assume that the user enters a positive value for n */

 scanf("%________________", __________________________);

 copy = n;

 if (__________________________) { /* Use the variable n in the condition */

 a = __________________________ ;

 n = n – __________________________ ;

 } else {

 __________________________ ;
 }

 if (__________________________) {

 b = __________________________ ;

 n = n – __________________________ ;

 } else {

 __________________________ ;
 }

 if (__________________________) {

 c = __________________________ ;

 n = n – __________________________ ;

 } else {

 __________________________ ;
 }

 if (__________________________)

 printf("%d cannot be realized with the denominations 500, 100, 50\n", __________________________);

 else

 printf("%d INR is realized by %d 500-INR notes, %d 100-INR notes, and %d 50-INR notes",

 __________________ , ___________________ , __________________ , __________________);

 /* In this printf statement, some of the denominations may have 0 notes being used */
}

― PAGE 4 OF 16 ―

&nd

n >= 500

n / 500

a * 500

n >= 100

n / 100

b * 100

n >= 50

n / 50

c * 50

n > 0

copy

copy a b c

a = 0

b = 0

c = 0

2. (a) The following program computes the reverse of a user-specified positive integer N, after ensuring that N has at
least four digits. It begins by taking N as input, validates that N is positive (terminating if negative), and calculates
its digit count to verify that it meets the minimum requirement of four digits. If the length condition is not
satisfied, the program terminates; otherwise, it proceeds to reverse the digits of N using mathematical operations
like remainder and division. The reversed number is then printed. The long int data type is used to handle N and
its reverse. Fill in the blanks below so that the program works as intended. [10]

#include <stdio.h>

int main() {
 long int N, reverseN = 0;
 int lengthN = 0;

 printf("Enter a positive integer with more than 4 digits: ");

 scanf(" __________________________________ ", &N);

 if (__________________________________) {

 printf("The number must be positive.\n");

 return 0;
 }

 long int temp = N;

 while (__________________________________) {

 __________________________________ ;

 __________________________________ ;
 }

 printf("Length of N is %d\n", lengthN);

 if (__________________________________) {

 printf("The number must have at least 4 digits.\n");

 return 0;
 }

 while (__________________________________) {

 int digit = __________________________________ ;

 reverseN = __________________________________ ;

 __________________________________ ;
 }

 printf("The reversed number is %ld\n", reverseN);

 return 0;
}

― PAGE 5 OF 16 ―

%ld

N <= 0

temp > 0

temp /= 10

lengthN++

lengthN < 4

N > 0

N % 10

reverseN * 10 + digit

N /= 10

(b) The following program is meant for finding and printing all perfect numbers between two integers entered by
the user. A perfect number is one that is equal to the sum of its proper divisors (excluding itself). For example, 6
is a perfect number because 1 + 2 + 3 = 6, and 28 is a perfect number too because 1 + 2 + 4 + 7 + 14 = 28. The
program prompts the user to enter a positive lower limit and a positive upper limit, validates the input to ensure the
limits are correctly defined, and then uses two for loops to compute the sum of proper divisors for each number in
the range. The outer loop goes through each number in the given range, and the inner loop performs the necessary
calculations to determine the relevant properties of the current number. If a particular condition is satisfied based
on these calculations, the number is identified as a perfect number, and is printed. If no perfect numbers are found
in the given range, the program prints an appropriate message. Fill in the blanks in the code below so that the
program works as intended. [10]

#include <stdio.h>

int main() {
 int low, high;

 printf("Enter the lower limit: ");

 scanf("______________", &low);

 printf("Enter the upper limit: ");

 scanf("______________", &high);

 if (__) {

 printf("Invalid limit(s).\n");
 return 1;
 }

 printf("Perfect numbers between %d and %d are:\n", low, high);

 int found = 0;
 int num, i;

 for (num = ______________________________ ; ______________________________ ; num++) {

 int sum = 0;

 for (i = 1 ; ______________________________ ; i++) {

 if (______________________________) {

 ______________________________ ;
 }
 }

 if (______________________________) {

 printf("%d\n", num);
 found = 1;
 }
 }

 if (______________________________) {
 printf("No perfect numbers found in the given range.\n");
 }

 return 0;
}

― PAGE 6 OF 16 ―

%d

%d

(low <= 0) || (high <= 0) || (low > high)

low num <= high

i <= num / 2

num % i == 0

sum += i

sum == num

!found

low + 1 and high – 1 are also given credit

3. (a) Consider an array A[] of n distinct positive integers which are sorted in strictly increasing order, that is,

0 < A[0] < A[1] < A[2] < . . . < A[n – 1].

The following function takes A and n as its only arguments, and finds all the triples from the array, that form a
geometric progression with an integral common ratio r. In other words, it prints all triples (A[i], A[j], A[k])
satisfying 0 ⩽ i < j < k ⩽ n – 1 such that A[j] / A[i] = A[k] / A[j] (call this r), and the common ratio r is an integer. If
A[] contains no such triples, the output will be blank. Also, if there are less than 3 elements in the array, the
function will print that there are not enough elements. As an example, let A[] = {1, 2, 6, 8, 12, 15, 16, 18, 30, 32,
54, 64}, and n = 12. Then, the triples to be reported are (2,6,18), (2,8,32), (1,8,64), (8,16,32), (6,18,54), and
(16,32,64). Notice that 12 / 8 = 18 / 12, so (8, 12, 18) is also a GP triple. But the common ratio for this triple is 3/2
which is not an integer, so this triple should not be printed.

Instead of checking whether A[j] / A[i] = A[k] / A[j], the function checks whether A[i] × A[k] = A[j] × A[j]. The
two sides of the last equation are stored in the variables s and t, respectively. The function has a outer loop on j,
implying that the middle element in potential triples is fixed first. The inner loop runs on both i and k, and always
maintains i < j < k. Each iteration of the inner loop either decrements i or increments k or does both. The given
assumptions on A[] guarantee the correctness of the function.

Fill in the blanks below so that the function works as intended. [12]

void findGPT (int A[], int n)
{
 int i, j, k, s, t;

 if (n <= 2) {
 printf("Not enough elements\n");
 return;
 }

 for (j = 0; j < n; j++) {

 t = A[j] * A[j]; /* t remains constant in the iterations of the inner loop */

 /* Initialize i and k for the inner loop */

 i = ______________________________ ; k = ______________________________ ;

 /* Inner loop is on (i,k) */

 while (___) {

 s = A[i] * A[k]; /* s needs to be recomputed for each potential candidate (i, j, k) */

 if (s == t) {

 if (___)

 printf("(%d,%d,%d)\n", A[i], A[j], A[k]);

 } else if (s < t)

 } else {

 }
 }
 }
}

― PAGE 7 OF 16 ―

j - 1 j + 1

(i >= 0) && (k < n)

A[j] % A[i] == 0

i--; k++;

k++;

i--;

(b) The following program is meant to count the total number of words in a string. For example, if the input string
is "This is programming and data structures course", then the output should be 7. Assume that the string
consists only of lower-case and upper-case letters, and two consecutive words are separated by a single space or a
single tab. Assume also that the string is non-empty, that is, at least one word exists in the string. Fill in the blanks
below so that the program works as intended. [8]

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define str_size 1000 /* Declare the maximum size of the string */

int main() {
 char str[str_size];
 int i, wrd;

 printf("Input the string : ");
 fgets(str, 1000, stdin);
 /* fgets() reads a line including spaces from the terminal, and appends the new-line character
 followed by the null character at the end of the line, and stores the appended input to str
 as a (null-terminated) string. Assume that the length of the input line is < 1000. */

 i = 0;
 wrd = 1;

 while (__) {

 if (__) {

 __ ;
 }
 i++;
 }

 printf("Total number of words in the string is %d\n", ____________________________________);

return 0;
}

― PAGE 8 OF 16 ―

str[i] != '\0'

(str[i] == ' ') || (str[i] == '\t') || (str[i] == '\n')

++wrd

wrd - 1

4. In this exercise, you need to find the k-th derivative of a univariate polynomial p(x) = a0 + a1 x + a2 x2 + . . . + an xn

of degree n, where ai are real-valued coefficients. The polynomial p(x) is represented by an (n + 1)-element array
poly[] = {a0, a1, . . . , an}, where the coefficient ai for xi (0 ⩽ i ⩽ n) is stored in the i-th index of the array, that is, as
poly[i]. The function inputPoly() builds the array poly[] by taking inputs from the user. The function also reads
and returns the value of k (the degree of the derivative to be computed later). The function printPoly() prints the
polynomial by only outputting the non-zero terms of the form of ai xi with ai ≠ 0. The function derivePoly() finds
the k-th derivative of the polynomial, reconstructs the poly[] array to store the derivative (starting from index 0),
and returns the degree of the polynomial after the derivative. For example, if p(x) = 1 + 3x + 4.5x5 – 7x10, and k = 3,
then p(k)(x) = p′′′(x) = 270x2 – 5040x7. So the array poly[] was initially { 1, 3, 0, 0, 0, 4.5, 0, 0, 0, 0, –7 }. After the
derivative computation, it changes the array in place to { 0, 0, 270, 0, 0, 0, 0, –5040 }, and returns 7.

Fill in the blanks of the following C program that is intended to perform the task stated above.

#include <stdio.h>

#define MAX 100000

________________ inputPoly (________________________________) [6]
{
 int expt, k;

 printf("Enter the Polynomial:\n");
 /* iterate over every term of the polynomial */

 for (expt = 0; ________________________________ ; ++expt) {

 printf("-- Enter coefficient of x^%d: ", expt);
 /* scan and store coefficients of each term of the polynomial */

 scanf("%_______________", ______________________________);
 }

 printf("Enter derivative degree: ");
 scanf("%d", &k);
 return k;
}

void printPoly (________________________________) [6]
{
 int expt;

 printf("The Polynomial:\n");
 /* iterate over every term of the polynomial */

 for (expt = 0; ________________________________; ++expt) {

 /* check & proceed to print only non-zero coefficient terms */

 if (________________________________) {
 /* print coefficients of each term of the polynomial */

 printf(" + (%____________) ", ________________________);

 if (expt > 0) printf("x");

 if (expt > 1) printf("^%d ", expt);
 }
 }

 printf("\n");
}

― PAGE 9 OF 16 ―

double poly[], int dint

expt <= d

lf &poly[expt]

double poly[], int d

expt <= d

poly[expt]

poly[expt]lf

__________________ derivePoly (___) [8]
{
 int expt, i, coef;

 /* prepare initially coef = k! */
 for (i = k, coef = 1; i > 0; --i) coef = coef * i;

 /* update the coefficient of terms from xk, xk+1, ... xd */

 for (expt = k; expt <= d; ++expt) {
 /* update the poly[] array coefficients */

 poly[__________________] = poly[__________________] * coef;

 /* prepare coef for next iteration */

 coef = ___ ;
 }

 /* return the final degree after k-th derivative */

 return (________________________________) ;
}

int main()
{
 double poly[MAX];
 int degree, derivative;

 /* reads user inputs, and check for erroneous inputs */
 printf("Enter the degree of polynomial: ");
 scanf("%d", °ree);
 if (degree < 0) return 1;

 derivative = inputPoly(poly, degree);
 if (derivative < 0) return 2;

 /* print the polynomial before taking derivative*/
 printf("Before taking derivative: ");
 printPoly(poly, degree);

 /* calculate derivative and final degree */
 degree = derivePoly(poly, degree, derivative);

 /* print the polynomial after taking derivative */
 printf("After taking derivative: ");
 printPoly(poly, degree);

 if (degree < 0)
 printf("Degree of polynomial is less than the derivative to be taken!\n");
 else
 printf("Degree of polynomial (after taking %d-th derivative) is %d\n", derivative, degree);

 return 0;
}

― PAGE 10 OF 16 ―

int double poly[], int d, int k

expt – k expt

coef / (expt – k + 1) * (expt + 1)

d – k

5. (a) Consider the following recursive function. Its return value equals the total number of calls of the function
(including the outermost call).

int f (int n)
{
 int r; /* variable storing the return value */

 r = 1; /* This call counts as 1 */

 if (n > 1) {
 if (n % 2 == 0) /* if n is even */
 r += f(n/2); /* one recursive call */
 else /* n is odd */
 r += f(n-1) + f(n+1); /* two recursive calls */
 }

 return r;
}

Derive the return value of f(9). Show all your calculations. [6]

(b) Let n be a positive integer. A composition of n is a way of expressing n as a sum of positive integer-valued
summands (terms). For example, 2 + 1 + 2 + 5 is a composition of 10. Compositions are called ordered if we treat
the order of the summands in the sum as important. For example, the ordered composition 2 + 1 + 2 + 5 of 10 is
not the same as the ordered composition 2 + 5 + 1 + 2 of 10. An ordered composition is called palindromic if the
summands read the same both forward and backward. Two examples are given below.

All palindromic ordered compositions of 5 All palindromic ordered compositions of 6

1 + 1 + 1 + 1 + 1
1 + 3 + 1
2 + 1 + 2

5

1 + 1 + 1 + 1 + 1 + 1
1 + 1 + 2 + 1 + 1

1 + 2 + 2 + 1
1 + 4 + 1

2 + 1 + 1 + 2
2 + 2 + 2

3 + 3
6

In this part, we develop a recursive function palin() to print all palindromic ordered compositions of a positive
integer n supplied by the user in the main() function. The function works as follows.

― PAGE 11 OF 16 ―

It is a good idea to compute f(1), f(2), . . . , f(9) [although we do not need some of these values].

f(1) = 1
f(2) = 1 + f(1) = 2
f(3) = 1 + f(2) + f(4) = 1 + 2 + 1 + f(2) = 1 + 2 + 1 + 2 = 6
f(4) = 1 + f(2) = 1 + 1 + f(1) = 3
f(5) = 1 + f(4) + f(6) = 1 + 3 + 1 + f(3) = 1 + 3 + 1 + 6 = 11
f(6) = 1 + f(3) = 1 + 6 = 7
f(7) = 1 + f(6) + f(8) = 1 + 7 + 1 + f(4) = 1 + 7 + 1 + 3 = 12
f(8) = 1 + f(4) = 1 + 3 = 4
f(9) = 1 + f(8) + f(10) = 1 + 4 + 1 + f(5) = 1 + 4 + 1 + 11 = 17

The function uses an array A[] for storing the summands to the left of the center. Since we are interested in
palindromic compositions only, the summands to the right of the center appear in the reverse order as they appear
in A[]. Suppose that the first k summands are selected so far. The array A[] stores these as A[0], A[1], A[2], . . . ,
A[k – 1]. This corresponds to a (partially prepared) composition of the form:

 n = A[0] + A[1] + A[2] + . . . + A[k – 1] + + A[k – 1] + . . . + A[2] + A[1] + A[0].

The remaining sum r at the center, to be broken down further, is r = n – 2×(A[0] + A[1] + A[2] + . . . + A[k – 1]).
There are three possibilities. If r = 0, then we already have a composition of n. Then, consider r > 0. We can
choose the next summand a as any of the values 1, 2, 3, . . . , ⎣r / 2⎦. For each such value of a, we set A[k] = a, and
make a recursive call. Finally, we can also choose a = r, and obtain a composition of n. Fill out the details of the
program below, that uses this idea. The variables n, A, k, and r should be used as described above. [14]

void palin (int n , int A[] , int k , int r)
{
 int a, i;

 /* Choose a from the allowed values, and make a recursive call for each choice of a */

 for (; ;) { /* loop on a */

 A[k] = a ;

 palin(, , ,);

 }

 /* Now, handle the two cases r = 0 and a = r, and print the composition obtained. */
 /* A single + sign should be used between two consecutive summands, but not at beginning or end. */

 a = r; /* Choose the next summand as the entire of r (r may be 0) */

 if () { /* print A[] forward */

 }

 if () printf("%d", a);

 if () { /* print A[] backward */

 }

 printf("\n");

}

int main ()
{
 int n, A[100];

 printf("Enter a positive integer: "); scanf("%d", &n); /* Assume that n is positive */

 palin(, , ,);
 return 0;
}

― PAGE 12 OF 16 ―

a = 1 ++a

n k + 1 r – 2 * a

k > 0

k > 0

a > 0

for (i = k-1; i >= 0; --i) printf(" + %d", A[i]);

n A 0 n

printf("%d", A[0]);
for (i = 1; i < k; ++i) printf(" + %d", A[i]);
if (a) printf(" + ");

A

a <= r / 2

remaining sum r to be realized

This line was missing in the question paper.
Students are not required to write this statement.

Space for rough work
__

― PAGE 13 OF 16 ―

Space for rough work
__

― PAGE 14 OF 16 ―

Space for rough work
__

― PAGE 15 OF 16 ―

Space for rough work
__

― PAGE 16 OF 16 ―

