
CS10003 Programming and Data Structures
Spring 2024 – 2025, Class Test 2
April 03, 2025 (Thu), 6:45pm – 7:45pm
Maximum Marks: 40

[Write your answers in the question paper itself. Answer all questions. All programs must be written in C.

Fill in the blanks in the following codes to make them work as described. Do not use extra variables.
Not all blanks carry equal marks. Evaluation will depend on overall correctness.]

1. Jump Search is an algorithm for searching in sorted arrays. Although slower than binary search, jump
search is much faster than linear search. Jump search uses a doubly nested loop, and employs a jump
strategy at exponentially increasing indices. Like binary search, jump search maintains a search interval
I = [L, R]. To start with, the interval I encompasses the entire array. Each iteration of the outer loop
reduces the interval I to a strictly smaller sub-interval I′ = [L′, R′] determined as follows. It keeps on
looking at the indices 1, 2, 4, 8, 16, … relative to L until an index is found, at which the array element is
greater than or equal to the key, or the array size is exceeded. These comparisons help to choose the sub-
interval I′ to the correct one from [L, L], [L+1, L+1], [L+2, L+3], [L+4, L+7], [L+8, L+15], . . . , [L+2t, R].
In the next iterations, the same search mechanism is continued, on gradually shrinking intervals. The
loop stops when the interval length reduces to one. A final comparison of the key is made with the
element at the only index of the interval, and depending on the outcome of this comparison, L (key
found) or –1 (key not found) is returned. Fill in the blanks below so that the function jumpsearch()
works as intended. Assume that a sorted array is passed as A, and n > 0. [10]

int jumpsearch (int A[], int n, int key)
{
 int L, R, jump;
 /* Initialize the search interval I = [L, R] */

 L = ____________________________ ; R = ____________________________ ;
 /* Repeat until I shrinks to a single-element interval */

 while (____________________________) {
 jump = 1; /* jump is the next search index relative to L */
 while (1) { /* Repeat until the correct sub-interval is located */

 if (____________________________) break; /* Next search index is beyond R */

 /* Compare key with the array element indicated by jump */

 if (____________________________) { /* R is determined now */

 R = ____________________________ ; break;
 } else { /* Continue the search */

 L = ____________________________ ;

 jump = ____________________________ ;
 }
 }
 }
 /* Make a final comparison, and return L or –1 */

}

― Page 1 of 4 ―

 Roll No: _____________________________________

 Name: _____________________________________

0 n – 1

L < R

L + jump > R
(L + jump >= R is also OK)

key < A[L + jump]

L + jump – 1

L + jump

jump * 2

return (key == A[L]) ? L : –1;

(1+1)

(1)

(1)

(1)

(1)

(1)

(1)

(2)

2. The following C program attempts to reverse an array of integer elements by using both call-by-value
and call-by-reference swap functions. The call-by-value swap function (called fakeSwap) does not swap
values of external variables, whereas the call-by-reference swap function (called trueSwap) swaps
values of external variables. The function reverseElements still manages to reverse the array elements
(magically using a trick!) by periodic swapping of elements from the two ends of the array, using both
the functions fakeSwap and trueSwap (if you have a doubt, check the working of the function on arrays
with odd and even numbers of elements). With this understanding, complete the following C program
(by filling in the given blanks) so that it performs as indicated. [10]

#include <stdio.h>

/* erroneous swap routine which calls its arguments by value */

void fakeSwap (________________________________ , ________________________________) {

 int temp;

 /* swap values using the variable temp (write three assignments only) */

 __

}

/* correct swap routine which calls its arguments by reference/address */

void trueSwap (________________________________ , ________________________________) {

 int temp;

 /* swap values using the variable temp (write three assignments only) */

 __

}

/* tricky function for reversing the array */

void reverseElements (_____________________________ , _______________________________)

{

 int i, flag = 0;
 for (i = 0; i < n; ++i) {
 if (i != n–1–i) {
 if (flag) trueSwap(&A[i], &A[n-1-i]); else fakeSwap(A[i], A[n-1-i]);
 flag = !flag;
 }
 }
}

int main () {

 int *elm, n, i;

 printf("Enter number of elements: "); scanf("%d", &n);

 elm = (_______________________________)malloc(n * _______________________________);

 printf("Enter Array of %d integer elements:\n", n);

 for (i = 0; i < n; ++i) scanf("%d", ________________________________);

 reverseElements(elm, n);

 printf("Reversed array of %d integer elements:\n", n);

 for (i = 0; i < n; ++i) printf(" %d", *(________________________________));

 printf("\n");

 return 0;

}

― Page 2 of 4 ―

int a int b

int *a int *b

int A[] or int *A int n

sizeof(int)int *

&A[i] or A + i

A + i

temp = a; a = b; b = temp;

temp = *a; *a = *b; *b = temp;

(0.5+0.5)

(0.5+0.5)

(1+0.5)

(1+1)

(0.5)

(1)

(0.5 x 3)

(0.5 x 3)

3. In the partial C program given below, A is an array of n positive integers. We plan to sort A in place,
using an algorithm called digisort. This algorithm repeatedly sorts the array A, based on a digit position
starting from the least and going to the most significant ends of the numbers. As an example, take A =
{ 415, 73, 516, 923, 890, 318 }. In the first iteration, the array gets sorted based on the rightmost/least-
significant digits, and changes to { 890, 73, 923, 415, 516, 318 }. The second iteration sorts A using the
second/middle digits, changing A to { 415, 516, 318, 923, 73, 890 }. The third/last iteration looks at the
the leftmost/most-significant digits, and changes A to { 073, 318, 415, 516, 890, 923 }.

Not all elements of A are required to have the same number of digits (see the element 73 in the above
example). In order to address this issue, we first compute the maximum in A, and the number of digits in
that maximum element. All elements of A can now be considered to consist of these many digits. In this
exercise, you are not asked to write codes for these operations.

Each digit-based sorting iteration uses a two-dimensional array B with 10 rows, one for each of the digits
0, 1, 2, . . . , 9. One by one, the corresponding digit d of A[i] is extracted, and A[i] is appended to the d-th
row of B. A count array C of size 10 keeps track of how many elements of A are sent to the different rows
of B. After all A[i] are copied to their correct rows, the rows of B are copied sequentially, back to A.

Fill in the blanks below so that the digisort algorithm works as explained above. [10]

void digisort (int A[], int n)

{

 int max, maxdigitcnt, digitpos, tenpower, d, i, j;

 int B[10][MAX_SIZE], C[10];

 max = findmax(A,n); /* Find the maximum element in A[] */

 maxdigitcnt = digitcount(max); /* Find the number of digits in max */

 /* The following loop runs on digitpos from least to most significant positions */

 tenpower = 1; /* This will always store 10-to-the-power digitpos */

 for (__) {

 __ /* Initialize all counts to 0 */

 for (i = 0; i < n; ++i) {

 d = ____________________________ ; /* Compute the digitpos-th digit of A[i] */

 /* Append A[i] to the d-th list B[d] */

 __

 __

 }

 /* Copy back the digit-wise sub-lists from B to A. Index j is for writing to A. */

 j = 0;

 for (__) { /* Loop on d */

 for (___) { /* Loop on i */

 A[j] = _______________________________________ ; ++j;

 }

 tenpower = ___________________________ ; /* Update tenpower for next iteration */

 }

}

― Page 3 of 4 ―

digitpos = 0; digitpos < maxdigitcnt; ++digitpos

for (d = 0; d < 10; ++d) C[d] = 0;

(A[i] / tenpower) % 10

B[d][C[d]] = A[i];

++C[d];

d = 0; d < 10; ++d

i = 0; i < C[d]; ++i

B[d][i];

tenpower * 10

(1)

(1)

(1.5)

(1)

(1)

(1)

(1)

(0.5 x 3)

(1)

4. A two-dimensional array is defined in the main() function of a C program as: int *A[MAX_SIZE]. In
the main() function, the user supplies the number r of rows and the number c of columns in A. The
following function is then called to initialize the array with user inputs. Each row is allocated memory to
store exactly c int variables. Fill in the blanks to complete the function. [3]

void initMatrix (int ____________________ , int r, int c)
{
 int i, j;
 for (i = 0; i < r; ++i) { /* i is the row index */
 /* Allocate the exact amount of memory for allocating each row */

 A[i] = __ ;
 for (j=0; j<c; ++j) /* j is the column index */

 scanf("%d, ______________________________); /* Read the (i,j)-th element of A */
 }
}

The main() function then calls the following
function to print the diagonals of A. A diagonal of
A starts from the left or the top boundary, proceeds
toward south-east, and ends at the right or the
bottom boundary. Let us number the diagonals in
the south-west direction starting from top right. As
an example, the adjacent figure shows a 4 × 5
matrix. The elements are represented by black
dots. Note that not all the diagonals contain the
same number of elements. In the function below, d stands for the number of the diagonal (under the
numbering scheme mentioned above), the pair (i, j) runs over the indices on a diagonal, and the printing
of a diagonal starts at indices (row_start, col_start). Fill in the details of the function so that it
correctly prints the diagonals sequentially. [7]

void printDiagonals (int ____________________ , int r, int c)
{
 int d, i, j, row_start, col_start;

 /* Initialize the start indices for printing Diagonal 1 */

 row_start = ____________________ ; col_start = ____________________ ;

 for (d = 1; d <= ____________________ ; ++d) { /* d is the diagonal number */

 printf("Diagonal %d:", d);

 i = row_start; j = col_start; /* Indices of the first position on the diagonal */

 while (__) {

 printf(" %d", A[i][j]);

 /* Update both i and j to the next position on the diagonal */

 __
 }
 printf("\n"); /* Printing the d-th diagonal is complete */

 /* Prepare for printing the next diagonal */

 __
 }
}

― Page 4 of 4 ―

*A[]

(int *)malloc(c * sizeof(int));

&A[i][j]
or A[i] + j or *(A + i) + j

*A[]

0 c – 1

r + c – 1

(i < r) && (j < c)

++i; ++j;

if (col_start > 0) --col_start; else ++row_start;

(1)

(1)

(1)

(1)

(0.5+0.5)

(1)

(1)

(1)

(2)

