Sorting

CS10003 PROGRAMMING AND DATA STRUCTURES

The Basic Problem

Given an array: $\mathrm{x}[0], \mathrm{x}[1], \ldots, \mathrm{x}[$ size-1] reorder the elements so that

$$
x[0]<=x[1]<=\ldots<=x[\text { size }-1]
$$

- That is, reorder entries so that the list is in increasing (non-decreasing) order.

We can also sort a list of elements in decreasing (non-increasing) order.

We prefer not to use additional arrays for the element rearrangement.

Example

Original list:

$$
10,30,20,80,70,10,60,40,70
$$

Sorted in non-decreasing order:

$$
10,10,20,30,40,60,70,70,80
$$

Sorted in non-increasing order:

$$
80,70,70,60,40,30,20,10,10
$$

Selection Sort

SELECTION SORT: The idea

General situation :

Steps:

- Initialize k $=0$.
- Find smallest element, mval, in the array segment $\times[k$. . .size-1]
- Swap smallest element with $\mathrm{x}[\mathrm{k}]$, then increase k .

Subproblem

```
/* Find index of smallest element in x[k...size-1] */
int min_loc (int x[ ], int k, int size)
{
    int j, pos;
    pos = k;
    for (j=k+1; j<size; j++)
        if (x[j] < x[pos])
                pos = j;
    return pos;
}
```


Selection Sort Function

```
/* Sort x[0..size-1] in non-decreasing order */
int sel_sort (int x[], int size) {
    int k, m, temp;
    for (k = 0; k < size-1; k++) {
        m = min_loc (x, k, size);
        /* Swap x[k], x[m]*/
        temp = x[k];
        x[k] = x[m];
        x[m] = temp;
    }
}
```


Example

x:	3	12	-5	6	142	21	-17	45	x:	-17	-5	3	6	12	21	142	45
x :	-17	12	-5	6	142	21	3	45	x :	-17	-5	3	6	12	21	142	45
x :	-17	-5	12	6	142	21	3	45	x :	-17	-5	3	6	12	21	45	142
x :	-17	-5	3	6	142	21	12	45	x:	-17	-5	3	6	12	21	45	142
x :	-17	-5	3	6	142	21	12	45									

Bubble Sort

BUBBLE SORT: The idea

General situation:

In every pass, we go on comparing neighboring pairs, and swap them if out of order.
for $\mathrm{j}=0$ to $\mathrm{k}-1$
if ($\mathrm{x}[\mathrm{j}]>\mathrm{x}[\mathrm{j}+1 \mathrm{j}$)
interchange them.
At the end of this iteration, the 'next largest' element (among the unsorted part) will settle at $x[k]$.

Lighter elements bubble up.
Heavier elements settle down.

Bubble Sort

```
void bubble_sort (int x[], int size) {
    int t;
    for (i = 0; i < size; i++)
        for (j = 0; j < size-i-1; j++)
            if (x[j] > x[j+1]) {
                // swap a[j] and a[j+1]
                t = a[j];
                a[j] = a[j+1];
                a[j+1] = t;
            }
}
```

How do the passes proceed?
In pass 1, we consider index 0 to size-1 In pass 2, we consider index 0 to size-2 In pass 3, we consider index 0 to size-3
\qquad

In pass size-1, we consider index 0 to 1.

A more efficient sorting method: Mergesort

A popular sorting algorithm based on the divide-and-conquer approach.

Basic idea (divide-and-conquer method)

```
sort (list)
{
    if the list has length greater than 1
        {
        Partition the list into lowlist and highlist;
        sort (lowlist);
        sort (highlist);
        combine (lowlist, highlist);
        }
}
```


Merge Sort


```
void merge_sort (int *A, int n)
{
    int i, j, k, m;
    int *B, *C;
    if (n > 1) {
        k = n/2; m = n - k;
        B = (int *) malloc (k * sizeof(int));
        C = (int *) malloc (m * sizeof(int));
        for (i=0; i<k; i++) B[i] = A[i];
        for (j=k; j<n; j++) C[j-k] = A[j];
        // B contains first half of A
        // C contains second half of A
        merge_sort (B, k);
        merge_sort (C, m);
        merge (B, C, A, k, m); // destination array is A
        free(B); free(C);
    }
}
```


Merging two sorted arrays

Array a

Copy element from a (indexed by i) if its value is smaller than the element in b pointed by j ; otherwise, copy the element from b (indexed by j).
If one of the arrays a or b get exhausted, simply copy the rest of the other array.

```
void merge (int *a, int *b, int *c, int m, int n)
    // c is the destination array
{
    int i=0, j=0, k=0, p;
    // loop as long as neither array a nor array b is completed
    while ((i<m) && (j<n)) {
        if (a[i] < b[j])
            { c[k] = a[i]; i++; }
        else
            {c[k] = b[j]; j++; }
        k++;
    }
    if (i == m) { // array a completed; copy rest of array b to array c
        for (p=j; p<n; p++)
            { c[k] = b[p]; k++; }
    } else { // array b completed; copy rest of array a to array c
        for (p=i; p<m; p++)
        { c[k] = a[p]; k++; }
    }
}
```


Example: showing the merge phase only

Initial array A contains 16 elements:

- 66, 33, 40, 22, 55, 88, 60, 11, 80, 20, 50, 44, 77, 30, 47, 23

Pass 1 :: Merge each pair of elements

- $(33,66)(22,40)(55,88)(11,60)(20,80)(44,50)(30,70)(23,47)$

Pass 2 :: Merge each pair of pairs

- $22,33,40,66)(11,55,60,88)(20,44,50,80)(23,30,47,77)$

Pass 3 :: Merge each pair of sorted quadruplets

- (11, 22, 33, 40, 55, 60, 66, 88) ($20,23,30,44,47,50,77,80$)

Pass 4 :: Merge the two sorted subarrays to get the final list

- $11,20,22,23,30,33,40,44,47,50,55,60,66,77,80,88)$

```
void merge_sort (int *A, int n)
{
    int i, j, k, m;
    int *B, *C;
    if (n > 1) {
        k = n/2; m = n - k;
        B = (int *) malloc (k * sizeof(int));
        C = (int *) malloc (m * sizeof(int));
        for (i=0; i<k; i++)
            B[i] = A[i];
        for (j=k; j<n; j++)
            C[j-k] = A[j];
        // B contains first half of A
        // C contains second half of A
            merge_sort (B, k);
            merge_sort (C, m);
            merge (B, C, A, k, m); // dest A
            free(B); free(C);
        }
}
```

void merge (int *a, int *b, int *c, int m, int n)
\{
int $i=0, j=0, k=0, p$;
while $((i<m) \& \&(j<n)) \quad\{$
if (a[i] < b[j])
$\{\mathrm{c}[\mathrm{k}]=\mathrm{a}[\mathrm{i}] ; \mathrm{i}++;\}$
else
$\{\mathrm{c}[\mathrm{k}]=\mathrm{b}[\mathrm{j}] ; \mathrm{j}++;\}$
k++;
\}
if (i == m) \{
for ($p=j ; p<n ; p++$)
$\{\mathrm{c}[\mathrm{k}]=\mathrm{b}[\mathrm{p}] ; \mathrm{k}++;\}$
\} else \{
for ($p=i ; p<m ; p++$)
$\{\mathrm{c}[\mathrm{k}]=\mathrm{a}[\mathrm{p}] ; \mathrm{k}++;\}$
\}
\}

Time complexity of merge sort

If n denotes the number of elements to be sorted, then the number of comparisons required in merge sort is approximately proportional to $n \log n$.

We need extra storage space as we have to temporarily create space for the arrays B and C.

Practically best sorting method: Quicksort

Introduction to Quick Sort

- Merge sort is a theoretically best (optimal) sorting algorithm.
- Quick sort is the practically best general-purpose sorting algorithm.
- Problems of merge sort:
- Extra space requirement
- Merging step is difficult to carry out without extra arrays.
- Quick sort is another recursive sorting algorithm.
- Quick sort takes a divide-and-conquer approach.
- In merge sort, the main work (merging) is done after the recursive calls return.
- In quick sort, the main work (partitioning) is done before the recursive calls are made.
- Basic idea of quick sort
- Choose an element p of the array A as the pivot.
- Decompose the array in three parts: L consisting the elements of A less than (or equal to) p, R consisting of the elements of A larger than p, and the single element p.
- Recursively sort L and R.
- Output sorted(L) followed by p followed by sorted(R).
- If partitioning is done in A itself, then there is no task left after the recursive calls.

Quick sort: Skeleton of the algorithm

```
void quicksort ( int A[], int n )
{
    int pivotidx;
    if (n <= 1) return;
    pivotidx = partition (A, n);
    quicksort (A, pivotidx);
    quicksort (A+pivotidx+1, n-pivotidx-1);
}
```


Partitioning using extra arrays

```
int partition ( int A[], int n )
{
    int *L, *R, p, i, j, l, r;
    if (n <= 1) return n-1;
    L = (int *)malloc(n * sizeof(int));
    R = (int *)malloc(n * sizeof(int));
    p = A[n-1]; // Choose the last element of A as pivot
    l = r = 0; // Initialize the sizes of L and R
    for (i=0; i<=n-2; ++i)
        if (A[i] <= p) L[l++] = A[i]; else R[r++] = A[i];
    for (i=0; i<l; ++i) A[i] = L[i]; // Copy L to A
        A[i++] = p; // Append p to A
        for (j=0; j<r; ++j) A[i++] = R[j]; // Append R to A
        free(L); free(R); // No further needs for L and R
        return l;
}
```


In-place partitioning

- Possibility of partitioning A without any extra arrays make quick sort attractive and efficient.
- There are many variants of the in-place partitioning algorithm.
- We follow the CLRS variant:

Cormen , Leiserson, Rivest, and Stein, Introduction to Algorithms, 4th Edition, MIT Press

- We take $p=A[n-1]$ as the pivot.
- The array A is always maintained as the concatenation LRUp, where
- L consists of elements <=p
- R consists of elements >p
- U is the unprocessed part (elements in U are not yet classified to go to L or R)
- Each iteration processes one element from U, and sends that element to L or R as appropriate.
- After $\mathrm{n}-1$ iterations, there are no unprocessed elements, so the array is of the form LRp.
- It is then converted to the form LpR.
- Blocks (L and R) are never fully shifted. Only element swaps are used.
- This may destroy the order of the (equal) keys in the partitioned array.

In-place partitioning

After end of loop

In-place partitioning: The code

```
int partition ( int A[], int n )
{
    int lend = -1, i;
    int p, t;
    p = A[n-1]; // Last element of A is the pivot
    for (i=0; i<=n-2; ++i) {
        if (A[i] <= p) { // Region L grows
        ++lend;
                t = A[lend]; A[lend] = A[i]; A[i] = t;
        }
        // else Region R grows, ++i will do it
    }
    i = lend + 1; // i is the first index of Region R
    t = A[i]; A[i] = A[n-1]; A[n-1] = t;
    return i;
}
```

In-place partitioning: An example
lend i

$\mathbf{1 0}$	$\mathbf{2 1}$	$\mathbf{8}$	$\mathbf{3}$	$\mathbf{1 5}$	$\mathbf{2 7}$	$\mathbf{9}$	$\mathbf{1 6}$	$\mathbf{5}$	$\mathbf{1 5}$
-1	0	1	2	3	4	5	6	7	8

lend i

$\mathbf{1 0}$	$\mathbf{2 1}$	$\mathbf{8}$	$\mathbf{3}$	$\mathbf{1 5}$	$\mathbf{2 7}$	$\mathbf{9}$	$\mathbf{1 6}$	$\mathbf{5}$	$\mathbf{1 5}$
0	1	2	3	4	5	6	7	8	9

lend i

$\mathbf{1 0}$	$\mathbf{8}$	$\mathbf{2 1}$	$\mathbf{3}$	$\mathbf{1 5}$	$\mathbf{2 7}$	$\mathbf{9}$	$\mathbf{1 6}$	$\mathbf{5}$	$\mathbf{1 5}$
0	1	2	3	4	5	6	7	8	9

lend i

$\mathbf{1 0}$	$\mathbf{8}$	$\mathbf{3}$	$\mathbf{2 1}$	$\mathbf{1 5}$	$\mathbf{2 7}$	$\mathbf{9}$	$\mathbf{1 6}$	$\mathbf{5}$	$\mathbf{1 5}$
0	1	2	3	4	5	6	7	8	9

lend i

$\mathbf{1 0}$	$\mathbf{8}$	$\mathbf{3}$	$\mathbf{1 5}$	$\mathbf{2 1}$	$\mathbf{2 7}$	$\mathbf{9}$	$\mathbf{1 6}$	$\mathbf{5}$	$\mathbf{1 5}$
0	1	2	3	4	5	6	7	8	9

lend \boldsymbol{i}									
$\mathbf{1 0}$	$\mathbf{8}$	$\mathbf{3}$	$\mathbf{1 5}$	$\mathbf{2 1}$	$\mathbf{2 7}$	$\mathbf{9}$	$\mathbf{1 6}$	$\mathbf{5}$	$\mathbf{1 5}$
0	1	2	3	4	5	6	7	8	9

$\mathbf{1 0}$									
$\mathbf{1 0}$	$\mathbf{8}$	$\mathbf{3}$	$\mathbf{1 5}$	$\mathbf{9}$	$\mathbf{2 7}$	$\mathbf{2 1}$	$\mathbf{1 6}$	$\mathbf{5}$	$\mathbf{1 5}$
0	1	2	3	4	5	6	7	8	9

lend									
$\mathbf{1 0}$	$\mathbf{8}$	$\mathbf{3}$	$\mathbf{1 5}$	$\mathbf{9}$	$\mathbf{2 7}$	$\mathbf{2 1}$	$\mathbf{1 6}$	$\mathbf{5}$	$\mathbf{1 5}$
0	1	2	3	4	5	6	7	8	9

lend								\boldsymbol{c}	
$\mathbf{1 0}$	$\mathbf{8}$	$\mathbf{3}$	$\mathbf{1 5}$	$\mathbf{9}$	$\mathbf{5}$	$\mathbf{2 1}$	$\mathbf{1 6}$	$\mathbf{2 7}$	$\mathbf{1 5}$
0	1	2	3	4	5	6	7	8	9

lend i

$\mathbf{1 0}$	$\mathbf{8}$	$\mathbf{3}$	$\mathbf{1 5}$	$\mathbf{9}$	$\mathbf{5}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{2 7}$	$\mathbf{2 1}$
0	1	2	3	4	5	6	7	8	9

Performance of quick sort

- Running times are specified as "roughly proportional to a function of the input size."
- No (comparison-based) sorting algorithm can run faster than $\mathrm{n} \log \mathrm{n}$ is the worst case.
- For merge sort:
- All cases are the same. No specific best / worst / average case.
- Each case has running time n log n for merge sort.
- For quick sort:
- Best case: Partitioning divides the array roughly into two equal halves
- Worst case: Partitioning always gives one subarray of size one less than the array.
- Average case: The pivot is any one element (smallest to largest) with equal probability.
- Example of worst case: The array is already sorted in ascending or descending order.
- Running time of quick sort:
- Best and average case: $\mathrm{n} \log \mathrm{n}$
- Worst case: n^{2}
- Quick sort is not theoretically optimal.
- In practice, quick sort is considered the fastest sorting algorithm for "general" arrays.

