
Sorting
CS10003 PROGRAMMING AND DATA STRUCTURES

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
2

The Basic Problem

Given an array: x[0], x[1], ... , x[size-1] reorder the elements so that
 x[0] <= x[1] <= ... <= x[size-1]

• That is, reorder entries so that the list is in increasing (non-decreasing) order.

We can also sort a list of elements in decreasing (non-increasing) order.

We prefer not to use additional arrays for the element rearrangement.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
3

Example
Original list:

 10, 30, 20, 80, 70, 10, 60, 40, 70

Sorted in non-decreasing order:
 10, 10, 20, 30, 40, 60, 70, 70, 80

Sorted in non-increasing order:
 80, 70, 70, 60, 40, 30, 20, 10, 10

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
4

Selection Sort

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 5

SELECTION SORT: The idea

General situation :

remainder, unsortedsmallest elements, sorted
0 size-1k

 Steps:
• Initialize k = 0.
• Find smallest element, mval, in the array segment x[k...size-1]
• Swap smallest element with x[k], then increase k.

x:

0 k size-1mval

swap

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
6

Subproblem

/* Find index of smallest element in x[k...size-1] */

int min_loc (int x[], int k, int size)

{

int j, pos;

pos = k;

for (j=k+1; j<size; j++)

 if (x[j] < x[pos])

 pos = j;

return pos;

}

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
7

Selection Sort Function
/* Sort x[0..size-1] in non-decreasing order */

int sel_sort (int x[], int size) {

int k, m, temp;

for (k = 0; k < size-1; k++) {

 m = min_loc (x, k, size);

/* Swap x[k], x[m]*/

 temp = x[k];

 x[k] = x[m];

 x[m] = temp;

}

}

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
8

Example

-17 12 -5 6 142 21 3 45x:

3 12 -5 6 21 -17 45x:

-17 -5 12 6 142 21 3 45x:

-17 -5 3 6 142 21 12 45x:

-17 -5 3 6 142 21 12 45x:

-17 -5 3 6 12 21 142 45x:

-17 -5 3 6 12 21 142 45x:

-17 -5 3 6 12 45 142x:

142

21

12-17 -5 3 6 21 45 142x:

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
9

Bubble Sort

BUBBLE SORT: The idea
General situation:

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
10

Lighter elements bubble up.
Heavier elements settle down.

0

size-1

k

sorted

unsorted

In every pass, we go on comparing
neighboring pairs, and swap them if out
of order.
 for j = 0 to k-1
 if (x[j] > x[j+1])
 interchange them.
At the end of this iteration, the ‘next
largest’ element (among the unsorted
part) will settle at x[k].

0

size-1

k-1

sorted

unsorted

x: x:

k

Bubble Sort

void bubble_sort (int x[], int size) {
 int t;

 for (i = 0; i < size; i++)

 for (j = 0; j < size-i-1; j++)

 if (x[j] > x[j+1]) {

 // swap a[j] and a[j+1]

 t = a[j];

 a[j] = a[j+1];

 a[j+1] = t;

 }

}

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
11

How do the passes proceed?

In pass 1, we consider index 0 to size-1
In pass 2, we consider index 0 to size-2
In pass 3, we consider index 0 to size-3
……
……
In pass size-1, we consider index 0 to 1.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
12

A more efficient sorting method:
Mergesort

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
13

 A popular sorting algorithm based on the divide-and-conquer approach.

Basic idea (divide-and-conquer method)
sort (list)

{

 if the list has length greater than 1

 {

 Partition the list into lowlist and highlist;

 sort (lowlist);

 sort (highlist);

 combine (lowlist, highlist);

 }

}

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
14

Merge Sort

Input Array

Part-I Part-II

Part-I Part-IIPart-I Part-II

Split
Merge

Sorted Arrays

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
15

void merge_sort (int *A, int n)
{
 int i, j, k, m;
 int *B, *C;

 if (n > 1) {
 k = n/2; m = n - k;
 B = (int *) malloc (k * sizeof(int));
 C = (int *) malloc (m * sizeof(int));
 for (i=0; i<k; i++) B[i] = A[i];
 for (j=k; j<n; j++) C[j-k] = A[j];

// B contains first half of A
// C contains second half of A

 merge_sort (B, k);
 merge_sort (C, m);
 merge (B, C, A, k, m); // destination array is A
 free(B); free(C);
 }
}

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
16

Merging two sorted arrays

0
Sorted Array Sorted Array

0m n

Array a Array b

Merged sorted array

0 m+n-1

Array c

i j

Copy element from a (indexed by i) if its value is smaller than the element in b pointed by j ; otherwise,
copy the element from b (indexed by j).

 If one of the arrays a or b get exhausted, simply copy the rest of the other array.

k

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
17

void merge (int *a, int *b, int *c, int m, int n)
 // c is the destination array
{
 int i=0, j=0, k=0, p;

 // loop as long as neither array a nor array b is completed
 while ((i<m) && (j<n)) {
 if (a[i] < b[j])
 { c[k] = a[i]; i++; }
 else
 { c[k] = b[j]; j++; }
 k++;
 }

 if (i == m) { // array a completed; copy rest of array b to array c
 for (p=j; p<n; p++)
 { c[k] = b[p]; k++; }
 } else { // array b completed; copy rest of array a to array c

 for (p=i; p<m; p++)
 { c[k] = a[p]; k++; }
 }
}

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
18

Example: showing the merge phase only

Initial array A contains 16 elements:
• 66, 33, 40, 22, 55, 88, 60, 11, 80, 20, 50, 44, 77, 30, 47, 23

Pass 1 :: Merge each pair of elements
• (33, 66) (22, 40) (55, 88) (11, 60) (20, 80) (44, 50) (30, 70) (23, 47)

Pass 2 :: Merge each pair of pairs
• (22, 33, 40, 66) (11, 55, 60, 88) (20, 44, 50, 80) (23, 30, 47, 77)

Pass 3 :: Merge each pair of sorted quadruplets
• (11, 22, 33, 40, 55, 60, 66, 88) (20, 23, 30, 44, 47, 50, 77, 80)

Pass 4 :: Merge the two sorted subarrays to get the final list
• (11, 20, 22, 23, 30, 33, 40, 44, 47, 50, 55, 60, 66, 77, 80, 88)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
19

void merge_sort (int *A, int n)

{

 int i, j, k, m;

 int *B, *C;

 if (n > 1) {

 k = n/2; m = n - k;

 B = (int *) malloc (k * sizeof(int));

 C = (int *) malloc (m * sizeof(int));

 for (i=0; i<k; i++)

 B[i] = A[i];

 for (j=k; j<n; j++)

 C[j-k] = A[j];

 // B contains first half of A

 // C contains second half of A

 merge_sort (B, k);

 merge_sort (C, m);

 merge (B, C, A, k, m); // dest A

 free(B); free(C);

 }

}

void merge (int *a, int *b, int *c, int m, int n)

{

 int i=0, j=0, k=0, p;

 while ((i < m) && (j < n)) {

 if (a[i] < b[j])

 { c[k] = a[i]; i++; }

 else

 { c[k] = b[j]; j++; }

 k++;

 }

 if (i == m) {

 for (p=j; p<n; p++)

 { c[k] = b[p]; k++; }

 } else {

 for (p=i; p<m; p++)

 { c[k] = a[p]; k++; }

 }

}

Time complexity of merge sort
If n denotes the number of elements to be sorted, then the number of comparisons required in
merge sort is approximately proportional to n log n.

We need extra storage space as we have to temporarily create space for the arrays B and C.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
20

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
21

Practically best sorting method:
Quicksort

Introduction to Quick Sort
● Merge sort is a theoretically best (optimal) sorting algorithm.
● Quick sort is the practically best general-purpose sorting algorithm.
● Problems of merge sort:

■ Extra space requirement
■ Merging step is difficult to carry out without extra arrays.

● Quick sort is another recursive sorting algorithm.
● Quick sort takes a divide-and-conquer approach.
● In merge sort, the main work (merging) is done after the recursive calls return.
● In quick sort, the main work (partitioning) is done before the recursive calls are made.
● Basic idea of quick sort

■ Choose an element p of the array A as the pivot.
■ Decompose the array in three parts: L consisting the elements of A less than (or equal

to) p, R consisting of the elements of A larger than p, and the single element p.
■ Recursively sort L and R.
■ Output sorted(L) followed by p followed by sorted(R).
■ If partitioning is done in A itself, then there is no task left after the recursive calls. 22

Quick sort: Skeleton of the algorithm

void quicksort (int A[], int n)

{

 int pivotidx;

 if (n <= 1) return;

 pivotidx = partition (A, n);

 quicksort (A, pivotidx);

 quicksort (A+pivotidx+1, n-pivotidx-1);

}

23

Original array

L p R

Partitioning

Recursive calls

Sorted array

Partitioning using extra arrays
int partition (int A[], int n)
{
 int *L, *R, p, i, j, l, r;

 if (n <= 1) return n-1;

 L = (int *)malloc(n * sizeof(int));
 R = (int *)malloc(n * sizeof(int));
 p = A[n-1]; // Choose the last element of A as pivot
 l = r = 0; // Initialize the sizes of L and R
 for (i=0; i<=n-2; ++i)
 if (A[i] <= p) L[l++] = A[i]; else R[r++] = A[i];
 for (i=0; i<l; ++i) A[i] = L[i]; // Copy L to A
 A[i++] = p; // Append p to A
 for (j=0; j<r; ++j) A[i++] = R[j]; // Append R to A
 free(L); free(R); // No further needs for L and R
 return l;
} 24

In-place partitioning

● Possibility of partitioning A without any extra arrays make quick sort attractive and efficient.
● There are many variants of the in-place partitioning algorithm.
● We follow the CLRS variant:

Cormen , Leiserson, Rivest, and Stein, Introduction to Algorithms, 4th Edition, MIT Press
● We take p = A[n–1] as the pivot.
● The array A is always maintained as the concatenation LRUp, where

■ L consists of elements <= p
■ R consists of elements > p
■ U is the unprocessed part (elements in U are not yet classified to go to L or R)

● Each iteration processes one element from U, and sends that element to L or R as appropriate.
● After n – 1 iterations, there are no unprocessed elements, so the array is of the form LRp.
● It is then converted to the form LpR.
● Blocks (L and R) are never fully shifted. Only element swaps are used.
● This may destroy the order of the (equal) keys in the partitioned array.

25

In-place partitioning

26

<= p > p Unprocessed p > p Unprocessed p<= p
i i

<= p > p Unprocessed p
i

Case 1: A[i] > p Case 2: A[i] <= p

<= p > p Unprocessed p
i

> p Unprocessed p<= p
i

After end of loop

<= p > p p <= p p > p

In-place partitioning: The code
int partition (int A[], int n)
{
 int lend = -1, i;
 int p, t;

 p = A[n-1]; // Last element of A is the pivot
 for (i=0; i<=n-2; ++i) {
 if (A[i] <= p) { // Region L grows
 ++lend;
 t = A[lend]; A[lend] = A[i]; A[i] = t;
 }
 // else Region R grows, ++i will do it
 }
 i = lend + 1; // i is the first index of Region R
 t = A[i]; A[i] = A[n-1]; A[n-1] = t;
 return i;
}

27

In-place partitioning: An example

28

Performance of quick sort

● Running times are specified as “roughly proportional to a function of the input size.”
● No (comparison-based) sorting algorithm can run faster than n log n is the worst case.
● For merge sort:

■ All cases are the same. No specific best / worst / average case.
■ Each case has running time n log n for merge sort.

● For quick sort:
■ Best case: Partitioning divides the array roughly into two equal halves
■ Worst case: Partitioning always gives one subarray of size one less than the array.
■ Average case: The pivot is any one element (smallest to largest) with equal probability.

● Example of worst case: The array is already sorted in ascending or descending order.
● Running time of quick sort:

■ Best and average case: n log n
■ Worst case: n2

● Quick sort is not theoretically optimal.
● In practice, quick sort is considered the fastest sorting algorithm for “general” arrays.

29

