
One-Dimensional Arrays
Random-access lists of elements

1

CS10003 PROGRAMMING AND DATA STRUCTURES

Array

Many applications require multiple data items that have common characteristics.
• In mathematics, we often express such groups of data items in indexed form:

x
1
, x

2
, x

3
, …, x

n

Array is a data structure which can represent a collection of data items which
have the same data type (float / int / char /…).

2

3

int a, b, c;

scanf(“%d”, &a);

scanf(“%d”, &b);

scanf(“%d”, &c);

printf(“%d ”, c);

printf(“%d ”, b);

printf(“%d \n”, a);

int a, b, c, d;

scanf(“%d”, &a);

scanf(“%d”, &b);

scanf(“%d”, &c);

scanf(“%d”, &d);

printf(“%d ”, d);

printf(“%d ”, c);

printf(“%d ”, b);

printf(“%d \n”, a);

3 numbers

4 numbers

Example: Printing Numbers in Reverse

The Problem

Suppose we have 10 numbers to handle
Or 20
Or 100

Where do we store the numbers ? Use 100 variables ?

How to tackle this problem?
Solution:

•Use arrays

4

Using Arrays
All the data items constituting the group share the same name

int x[10];

Individual elements are accessed by specifying the index

x[0] x[1] x[2] x[9]

x is a 10-element one
dimensional array

5

Declaring Arrays
Like variables, the arrays used in a program must be declared before they are used

General syntax:
 type array-name [size];

• type specifies the type of elements that will be contained in the array (int, float, char, etc.)
• size is an integer constant which indicates the maximum number of elements that can be

stored inside the array

• Example: marks is an array that can store a maximum of 5 integers:

6

int marks[5];

Array Declarations: examples
Examples:

 int x[10];
 char line[80];

 float points[150];

 char name[35];

If we are not sure of the exact size of the array that we will need, we can define an array of a large
enough size:
 int marks[50];

though in a particular run we may only be using, say, 10 elements.

7

Accessing Array Elements
A particular element of the array can be accessed by specifying two things:

• Name of the array
• Index (relative position) of the element in the array

Important to remember: In C, the index of an array starts from 0, not 1

Example:
• An array is defined as int x[10];
• The first element of the array x can be accessed as x[0], fourth element as x[3], tenth

element as x[9], etc.

8

A First Example
int main()
{
 int i;
 int data[10];
 for (i=0; i<10; i++)
 data[i]= i;
 i=0;
 while (i<10)
 {
 printf("Data[%d] = %d\n", i, data[i]);
 i++;
 }
 return 0;
}

 “data” is a block of 10 integer variables:
data[0], data[1], …, data[9]

 Array size should be a constant

Data[0] = 0

Data[1] = 1

Data[2] = 2

Data[3] = 3

Data[4] = 4

Data[5] = 5

Data[6] = 6

Data[7] = 7

Data[8] = 8

Data[9] = 9

Output

9

How is an array stored in memory?
Starting from a given memory location, the successive array elements are allocated space in

consecutive memory locations

• Let x: starting address of the array in memory
 k: number of bytes allocated per array element (e.g., 4 for each int, 1 for each char)

• The array element A[i] is allocated memory location at address x + i * k

10

Array A

A Special Operator: AddressOf (&)
Remember that each variable is stored at a memory location with a unique address.

Putting & before a variable name gives the starting address of the variable in the memory (where
it is stored, not the value).

Can be put before any variable (with no blank in between)
int a =10;

 printf (“Value of a is %d, and address of a is %d\n”, a, &a);

Similarly, if we have an array, say, int Data[10];

Memory address of the first array element is &Data[0]

Memory address of the second array element is &Data[1]

Memory address of the third array element is &Data[2]

11

Example
int main()

{

 int i;

 int data[10];

 for (i=0; i<10; i++)

 printf("&Data[%d] = %u\n", i, &data[i]);

 return 0;

}

&Data[0] = 3221224480

&Data[1] = 3221224484

&Data[2] = 3221224488

&Data[3] = 3221224492

&Data[4] = 3221224496

&Data[5] = 3221224500

&Data[6] = 3221224504

&Data[7] = 3221224508

&Data[8] = 3221224512

&Data[9] = 3221224516

Output

Note: memory addresses are being printed as
unsigned integers using %u in printf. The better
format is %p that prints the address in hexadecimal.

Typically, variables are allocated memory locations
whose addresses are multiple of 4.

12

How to read the elements of an array?
By reading them one element at a time.

Suppose we have declared an array: float a[25];

 for (j=0; j<25; j++)
 scanf (“%f”, &a[j]);

Note the ampersand (&) in scanf.

The elements can be entered all in one line or in different lines.

13

Reading into an array: example
int main() {

 const int MAX_SIZE = 100;

 int i, size;

 float marks[MAX_SIZE];

 float total;

 scanf("%d", &size);

 for (i=0, total=0; i<size; i++) {

 scanf("%f", &marks[i]);

 total = total + marks[i];

 }

 printf("Total = %f \n Avg = %f\n",

 total, total/size);

 return 0;

}

4

2.5

3.5

4.5

5

Total = 15.500000

 Avg = 3.875000

Output

Input a list of marks from the user
and compute their total and average

14

Printing in Reverse Using Arrays
int main()

{

 int n, A[100], i;

 printf (“How many numbers to read? “);

 scanf (“%d”, &n);

 for (i=0; i < n; ++i)

 scanf (“%d”, &A[i]); // input the i-th array element

 for (i=n-1; i >= 0; --i) // note – loop counts downward

 printf (“%d ”, A[i]); // output the i-th array element

 printf(“\n”);

 return 0;

}

15

Indexes into Arrays
The array index can be any expression that evaluates to an integer between 0 and n-1 where n is
the maximum number of elements possible in the array.

 a[x+2] = 25;
 b[3*x-y] = a[10-x] + 5;

Remember that each array element is a variable in itself, and can be used anywhere a variable
can be used (in expressions, assignments, conditions,…)

16

Initialization of Arrays
General form:

 type array_name[size] = { comma-separated list of values };

Examples:
 int marks[5] = {72, 83, 65, 80, 76};
 char name[4] = {‘A’, ‘m’, ‘i’, ‘t’};

The size may be omitted if all initializers are specified. In such cases the compiler automatically
allocates enough space for all initialized elements:

 int flag[] = {1, 1, 1, 0};
 char name[] = {‘A’, ‘m’, ‘i’, ‘t’};

17

A Warning
In C, while accessing array elements, array bounds are not checked.

Example:
int marks[5];

:

:
marks[8] = 75;

• The above assignment would not necessarily cause an error.
• Rather, it may result in unpredictable program results, which are very hard to debug.

18

How to copy the elements of one array to another?
By copying individual elements:

 for (j=0; j<25; j++)
 a[j] = b[j];

The element assignments will follow the rules of assignment expressions.

Destination array must have sufficient size.

19

int a[25], b[25];

Things you cannot do

You cannot:
• use = to assign one array variable to another

 a = b; /* a and b are arrays */
Indeed, a or b cannot be an l-value in any assignment.

• use == to compare arrays element by element
 if (a == b) ………
This is valid C syntax, but does not make element-by-element comparison

• directly scanf or printf arrays
(works, but not recommended unless purposefully made)

printf (“……”, a);

 scanf (“……”, a);

20

int a[25], b[25];

Example: Find the minimum of a set of 10 numbers

21

int main()

{

 int a[10], i, min;

 for (i=0; i<10; i++)

 scanf (“%d”, &a[i]);

 min = a[0];

 for (i=1; i<10; i++)

 {

 if (a[i] < min)

 min = a[i];

 }

 printf (“\n Minimum is %d”, min);

 return 0;

}

22

#define size 10

int main()

{

 int a[size], i, min;

 for (i=0; i<size; i++)

 scanf (“%d”, &a[i]);

 min = a[0];

 for (i=1; i<size; i++)

 {

 if (a[i] < min)

 min = a[i];

 }

 printf (“Minimum is %d\n”, min);

 return 0;

}

Alternate Version 1

Change only one
 line to change

the
problem size

int main()

{

 int a[100], i, min, n;

 scanf (“%d”, &n); /* Number of elements */

 for (i=0; i<n; i++)

 scanf (“%d”, &a[i]);

 min = a[0];

 for (i=1; i<n; i++)

 {

 if (a[i] < min)

 min = a[i];

 }

 printf (“Minimum is %d\n”, min);

 return 0;

}

Alternate Version 2

Define an array of
large size and use
only the required

number of elements

23

Example: Computing Grade Point Average

24

const int nsub = 6;

int main()

{

 int grade_pt[nsub], cred[nsub], i, gp_sum=0, cred_sum=0;

 double gpa;

 for (i=0; i<nsub; i++)

 scanf (“%d %d”, &grade_pt[i], &cred[i]);

 for (i=0; i<nsub; i++)

 {

 gp_sum += grade_pt[i] * cred[i];

 cred_sum += cred[i];

 }

 gpa = ((float) gp_sum) / cred_sum;

 printf (“Grade point average is %f\n”, gpa);

 return 0;

}

Handling two
arrays

at the same time

cred[j] stores credit of subject j

grade_pt[j] stores grade point
obtained by a student in subject j

Example: Find largest contiguous sequence of equal numbers
#include<stdio.h>
int main()
{
 int i, n, A[20], k, maxbegin, maxcount, ssbegin, count;
 scanf ("%d", &n);
 for (i=0; i<n; i++) scanf ("%d", &A[i]);
 printf ("A = ");
 for (i=0; i<n; i++) printf ("%d, ", A[i]); printf("\n");
 maxbegin = 0; maxcount = 1;
 ssbegin = 0; count = 1; k = 1;
 while (k < n) {
 if (A[k] == A[k-1]) {
 count++;
 if (count > maxcount) {
 maxbegin = ssbegin;
 maxcount = count;
 }
 } else {
 ssbegin = k; count = 1;
 }
 k++;
 }
 printf ("Sequence starting from A[%d] of Length = %d, Value = %d \n",
 maxbegin, maxcount, A[maxbegin]);
} 25

10
1 2 2 2 3 2 2 2 2 7
A = 1, 2, 2, 2, 3, 2, 2, 2, 2, 7,
Sequence starting from A[5] of Length = 4, Value = 2

Passing Arrays to a Function

26

How to pass arrays to a function?
An array name can be used as an argument to a function.

• Permits the entire array (not exactly) to be passed to the function.
• The way it is passed differs from that for ordinary variables.

Rules:
• Function definition: corresponding formal argument is declared by writing the array name

followed by a pair of empty brackets.

f (int A[])
{
 ...
}

• Function call: the array name must appear by itself as argument, without brackets or
subscripts.

f(A), f(B)

27

main()
{
 int n;
 float list[100], avg;
 :
 avg = average(n,list);
 :
}

float average(int a, float x[])
{
 :
 sum = sum + x[i];
}

We can also write
 float x[100]
The compiler completely
ignores the size 100.
You can pass arrays of any size
to the function. There is no
obligation that only an array of
size 100 has to be passed.

28

Example: Minimum of a set of numbers
#include <stdio.h>
int minimum (int x[], int y);

main()
{
 int a[100], i, n;

 scanf (”%d”, &n);
 for (i=0; i<n; i++)
 scanf (”%d”, &a[i]);

 printf (“\n Minimum is %d”,
 minimum(a,n));
}

int minimum(int x[], int size)
{
 int i, min = 99999;

 for (i=0;i<size;i++)
 if (min > x[i])
 min = x[i];
 return (min);
}

Note: When a function takes an array as argument, it does not care about how big the array is declared to be.
Moreover, the user is not forced to use the entire allocated array.
The programmer must specify to the function “I am using only these many elements of the array.” 29

The Actual Mechanism
When an array is passed to a function, the values of the array elements are not passed

to the function.

• The array name is interpreted as the address of the first array element.

• The formal argument therefore becomes a pointer to the first array element.

• When an array element is accessed inside the function, the address is calculated
using the formula stated before.

• Changes made to the array elements inside the called function are also reflected
in the calling function.

30

Parameters are passed in C using call-by-value.

Passing the starting address when an array is sent as argument simulates call-by-reference.

Basically what it means:
• If a function changes the elements of an array that is passed as argument, these changes

will be made to the original array that is passed to the function.
• This does not apply when an individual element of an array is passed as argument.

31

void f (int A[], int B)
{
 A[2] = 10;
 B = 10;
}
int main ()
{
 int A[] = {1,2,3,4,5}, B[] = {1,2,3,4,5};
 f(A,B[2]);
 printf(“A[2] = %d, B[2] = %d\n”, A[2], B[2]);
}

A[2] = 10, B[2] = 3

Example: Square each element of array
#include <stdio.h>
void square (int a[], int b);

main()
{
 int a[100], i, n;

 scanf (”%d”, &n);
 for (i=0; i<n; i++)
 scanf (”%d”, &a[i]);

 square (a, n);

 printf (“\nNew array is: “);
 for (i=0; i<n; i++)
 printf (“ %d”, a[i]);
 printf(“\n”);
}

void square (int x[], int size)
{
 int i;

 for (i=0;i<size;i++)
 x[i] = x[i]*x[i];

 return;
}

Address of parameter x (an array) is
passed, but parameter size is passed
normally by value.

32

Practice Problems
1. Read in an integer n (n < 25). Read n integers in an array A. Then do the following (write separate

programs for each, only the reading part is common).
a) Find the sum of the absolute values of the integers.
b) Copy the positive and negative integers in the array into two additional arrays B and C

respectively. Print A, B, and C.
c) Exchange the values of every pair of values from the start (so exchange A[0] and A[1], A[2] and

A[3] and so on). If the number of elements is odd, the last value should stay the same.

2. Read in two integers n and m (n, m < 50). Read n integers in an array A. Read m integers in an array
B. Then do the following (write separate programs for each part, only the reading part is common).

a) Find if there are any two elements x, y in A and an element z in B, such that x + y = z
b) Copy in another array C all elements that are in both A and B (intersection)
c) Copy in another array C all elements that are in either A and B (union)
d) Copy in another array C all elements that are in A but not in B (difference)

33

