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Recursion

A process by which a function calls itself repeatedly.

• Either directly.
• F calls F.

• Or cyclically in a chain.
• F calls G, G calls H, and H calls F.

Used for repetitive computations in which each action is stated in terms of a previous result.

       fact(n) = n * fact (n-1)
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Basis and Recursion

For a problem to be written in recursive form, two conditions are to be satisfied:

• It should be possible to express the problem in recursive form.

• The problem statement must include a stopping condition

fact(n)  =  1,                      if  n = 0           /* Stopping criteria */
              =  n * fact(n − 1),   if  n > 0       /* Recursive form */



4

Examples:

• Factorial:
fact(0) = 1
fact(n) = n * fact(n − 1), if n > 0

• GCD (assume that m and n are non-negative and m ≥ n):
gcd (m, 0) = m
gcd (m, n) = gcd (n, m%n) , if n > 0

• Fibonacci sequence (0,1,1,2,3,5,8,13,21,…)
fib (0) = 0
fib (1) = 1
fib (n) = fib (n − 1) + fib (n − 2), if n > 1
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Example 1 :: Factorial

int  fact ( int n)
{
    if   (n = = 1)
        return (1);
    else
        return  (n * fact(n − 1));
} 
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Example 1 :: Factorial Execution

if   (1 = = 1) return (1);
else return  (1 * fact(0)); 

 fact(4)

if   (4 = = 1) return (1);
else return  (4 * fact(3)); 

if   (3 = = 1) return (1);
else return  (3 * fact(2)); 

if   (2 = = 1) return (1);
else return  (2 * fact(1)); 1

2

6

24

int  fact ( int n)
{
    if   (n = = 1) return (1);
    else return (n * fact(n − 1) );
} 



7

Example 2 :: Fibonacci number
Fibonacci number f(n) can be defined as:

        f(0)  =  0
        f(1)  =  1
        f(n)  =  f(n − 1) + f(n − 2),   if  n > 1
• The successive Fibonacci numbers are:

0, 1, 1, 2, 3, 5, 8, 13, 21, …..

int   f (int n)
{
     if  (n  < 2)   return (n);
     else  return ( f(n − 1) + f(n − 2) );
}



8

Tracing Execution

How many times is the function called when evaluating f(4) ?

Inefficiency:
• Same thing is computed several times.

f(4)

f(3) f(2)

f(2) f(1) f(1) f(0)

f(1) f(0)

called 9 times

int   f (int n)
{
     if  (n  < 2)   return (n);
     else  return ( f(n − 1) + f(n − 2) );
}
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Some points to note
Every recursive program can also be written without recursion

• Tail Recursion: Last thing a recursive function does is making a single recursive call (of itself) at the end.
• Easy to replace tail recursion by a loop.
• In general, removal of recursion may be a very difficult task (even if you have your own recursion stack).

 Recursion can be helpful in many situations

• Better readability
• Ease of programming
• Sometimes, recursion gives best-possible or best-known algorithms to solve problems

Recursion can also be a killer

• You solve the same subproblem multiple times (Example: Fibonacci numbers)
• Every recursive call incurs a (small) overhead

Use recursion with caution
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Example of tail recursion
Not a tail recursion:
int sum1 ( int n )
{

if (n == 0) return 0;
return n + sum1(n–1);

}

Call from main() as:

scanf(“%d”, &N);
s = sum2(N, 0);

Equivalent iterative function:

int sum3 ( int n )
{

int partialsum = 0;
while (n > 0) {

partialsum = n + partialsum;
n = n – 1;

}
return partialsum;

}

Tail recursion:
int sum2 ( int n, int partialsum )
{

if (n == 0) return partialsum;
return sum2(n – 1, n + partialsum);

}



Important things to remember

• Think how the current problem can be solved if you can solve exactly the same problem on one or more smaller 
instance(s). 

• Do NOT think how the problem will be solved on smaller instances, just call the function recursively and 
assume that the recursive calls do their jobs correctly.

• Do NOT forget to include the base cases to solve the problem on smallest instances.
• This is basically mathematical induction applied to programming.

• When you write a recursive function
• First, write the terminating/base condition
• Then, write the rest of the function
• Always double-check that you have both



Example: Sum of Squares
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Write a function that takes two integers m and n as arguments, and computes and returns the sum of 
squares of every integer in the range [m:n], both inclusive.

int sumSquares (int m, int n) 
{ 
     int middle ;
     if (m == n) return(m*m);
     else 
     { 
          middle = (m+n)/2; 
          return (sumSquares(m,middle)  + sumSquares(middle+1,n));
      }
}



Annotated Call Tree
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sumSquares(5,10)sumSquares(5,10)

sumSquares(5,7) sumSquares(5,10)sumSquares(8,10)

sumSquares(5,6) sumSquares(7,7) sumSquares(8,9) sumSquares(10,10)

sumSquares(5,5) sumSquares(6,6) sumSquares(8,8) sumSquares(9,9)

355

110

61 49

245

145 100

25 36 64 81

25 36 49 64 81 100

int sumSquares (int m, int n) 
{ 
     int middle ;
     if (m == n) return(m*m);
     else { 
          middle = (m+n)/2; 
          return (sumSquares(m,middle)  
                        + sumSquares(middle+1,n));
      }
}



Example: Printing the digits of an integer in reverse
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Print the last digit, then print the remaining number in reverse
• Ex: If integer is 743, then reversed is print 3 first, then print the reverse of 74

void printReversed( int i ) 
{
     if (i < 10)   {
        printf(“%d\n”, i); return;
     }
     else {
         printf(“%d”, i%10);
         printReversed(i/10);
     }
}



Example: Printing your name in reverse
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Output

Enter your name and hit return: Jane Doe
eoD enaJ

#include <stdio.h>

void readandprint ()
{

char c;

scanf("%c", &c);
if (c == '\n') return;
readandprint();
printf("%c", c);

}

int main ()
{

printf("Enter your name and hit return: ");
readandprint();
printf("\n");

}

Exercise: Rewrite this code so that the output 
looks as follows:

Enter your name and hit return: Jane Doe
Your name in reverse: eoD enaJ



Counting Zeros in a Positive Integer
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Check last digit from right
• If it is 0, number of zeros = 1 + number of zeroes in remaining part of the number
• If it is non-0, number of zeros = number of zeroes in remaining part of the number

int zeros(int number)
{
     if(number < 10) return 0;
     if (number % 10 == 0) 

    return( 1 + zeros(number/10) );
     else 
        return( zeros(number/10) );
}



Common Errors in Writing Recursive Functions

Non-terminating Recursive Function (Infinite recursion)
• No base case

• The base case is never reached

int badFactorial(int x) {
   return x * badFactorial(x-1); 
}

int anotherBadFactorial(int x) {
   if(x == 0) 
      return 1;
   else
      return x*(x-1)*anotherBadFactorial(x-2);
      // When x is odd, base case is never reached!! 
}

int badSum2(int x) 
{
   if(x==1) return 1;
   return(badSum2(x--));
}



Common Errors in Writing Recursive Functions

Mixing up loops and recursion

In general, if you have recursive function calls within a loop, think carefully if you need it.
Most recursive functions you will see in this course will not need this 

int anotherBadFactorial(int x) {
int i, fact = 0;
if (x == 0) return 1;
else {

for (i=x; i>0; i=i-1) {
fact = fact + x*anotherBadFactorial(x-1);

}
return fact;

}
}
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Example :: Towers of Hanoi Problem

5
4
3
2
1

LEFT CENTER RIGHT

The problem statement:
• Initially all the disks are stacked on the LEFT pole.
• Required to transfer all the disks to the RIGHT pole.

• Only one disk on the top can be moved at a time.
• A larger disk cannot be placed on a smaller disk.

• CENTER pole is used for temporary storage of disks.



Recursive Formulation
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Recursive statement of the general problem of n disks.
• Step 1: 

• Move the top (n-1) disks from LEFT to CENTER.
• Step 2: 

• Move the largest disk from LEFT to RIGHT.
• Step 3: 

• Move the (n-1) disks from CENTER to RIGHT.
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Phase-1: Move top n – 1 from LEFT to CENTER

3
2
1

LEFT CENTER RIGHT

3

LEFT CENTER RIGHT

12

3

LEFT CENTER RIGHT

12
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Phase-2: Move the nth disk from LEFT to RIGHT

3

LEFT CENTER RIGHT

12

LEFT CENTER RIGHT

12 3
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Phase-3: Move top n – 1 from CENTER to RIGHT

3
2
1

LEFT CENTER RIGHT

LEFT CENTER RIGHT

1 2 3

LEFT CENTER RIGHT

12 3
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#include  <stdio.h>
void  transfer (int n, char from, char to, char temp);

main( )
{ int  n;  /* Number of disks */

scanf (“%d”, &n);
transfer (n, ‘L’, ‘R’, ‘C’);

}

void  transfer (int n, char from, char to, char temp)
{

if  (n > 0)  {
transfer  (n-1, from, temp, to);
printf (“Move disk %d from %c to %c \n”, n, from, to);
transfer (n-1, temp, to, from);

}
return;

}
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With 3 discs

With 4 discs
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Recursion versus Iteration
Repetition

• Iteration:  explicit loop
• Recursion:  repeated nested function calls

Termination
• Iteration: loop condition fails
• Recursion: base case recognized

Both can have infinite loops
Balance 

• Understand the benefits / penalties of recursion in terms of
• Ease of implementation
• Readability
• Performance degradation / performance enhancement

• Take an educated decision
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More Examples



What do the following programs print?

void foo(  int n  )
 { 
       int data;
       if ( n == 0 ) return;
       scanf(“%d”, &data);
       foo ( n – 1 );
       printf(“%d\n”, data);
 }
 main ( )
 {     int k = 5;
       foo ( k );
 } 
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void foo(  int n  )
 { 
       int data;
       if ( n == 0 ) return;
       foo ( n – 1 );           
       scanf(“%d”, &data);
       printf(“%d\n”, data);
 }
 main ( )
 {     int k = 5;
       foo ( k );
 } 

void foo(  int n  )
 { 
       int data;
       if ( n == 0 ) return;
       scanf(“%d”, &data);
       printf(“%d\n”, data);
       foo ( n – 1 );
 }
 main ( )
 {     int k = 5;
       foo ( k );
 } 



Printing cumulative sum --  will this work?

int foo(  int n  )
 { 
       int data, sum ;
       if ( n == 0 ) return 0;
       scanf(“%d”, &data);
       sum = data + foo ( n – 1 );
       printf(“%d\n”, sum);
       return sum;
 }
 main ( ) {     
       int k = 5;
       foo ( k );
 } 
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Input:  1  2  3   4  5

Output:  5  9  12  14  15

How to rewrite this so that the output is: 1  3  6  10  15 ?



Printing cumulative sum (two ways)

int foo(  int n  )
 { 
       int data, sum ;
       if ( n == 0 ) return 0;
       sum = foo ( n – 1 );
       scanf(“%d”, &data);
       sum = sum + data;
       printf(“%d\n”, sum);
       return sum;
 }
 main ( ) {     
       int k = 5;
       foo ( k );
 } 
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Input:      1 2 3   4   5

Output:   1 3 6 10 15

void foo(  int n, int sum  )
 { 
       int data ;
       if ( n == 0 ) return 0;
       scanf(“%d”, &data);
       sum = sum + data;
       printf(“%d\n”, sum);
       foo( k – 1, sum ) ;
 }
 main ( ) {     
       int k = 5;
       foo ( k, 0 );
 } 



Paying with fewest coins

• A country has coins of denomination 3, 5 and 10, respectively. 
• We are to write a function canchange( k ) that returns –1 if it is not possible to pay a value of k using these 

coins. 
• Otherwise it returns the minimum number of coins needed to make the payment.

• For example, canchange(7) will return –1. 
• On the other hand, canchange(14) will return 4 because 14 can be paid as 3+3+3+5 and there is no other way 

to pay with fewer coins.
• Finally, 15 can be changed as 3+3+3+3+3, 5+5+5, 5+10, so canchange(15) will return 2.
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Paying with fewest coins

int canchange( int k )
{

int a;
if (k==0) return 0;
if ( ______________ ) return 1;
if (k < 3)  ____________________ ;

a = canchange( _______________ ); if (a > 0) return _______________ ;
a = canchange(k – 5); if (a > 0) return _____________________ ;
a = canchange( _______________ ); if (a > 0) return ________________ ;
return –1;

 }
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Paying with fewest coins
int canchange( int k )
{

int a;
if (k==0) return 0;
if ( (k ==3) || (k == 5) || (k == 10) ) return 1;
if (k < 3)  return –1  ;

a = canchange( k – 10 ); if (a > 0) return a+1 ;
a = canchange( k – 5 ); if (a > 0) return a+1 ;
a = canchange( k – 3 ); if (a > 0) return a+1 ;
return –1;

 }

Exercise: Rewrite this code if the denominations are 3, 8, and 10. Do you see a problem? Repair it.
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Practice Problems

3
4

1. Write a recursive function to search for an element in an array
2. Write a recursive function to count the digits of a positive integer (do also for sum of digits)
3. Write a recursive function to reverse a null-terminated string
4. Write a recursive function to convert a decimal number to binary
5. Write a recursive function to check if a string is a palindrome or not
6. Write a recursive function to copy one array to another

Note:
• For each of the above, write the main functions to call the recursive function also
• Practice problems are just for practicing recursion, recursion is not necessarily the most efficient way 

of doing them
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Advanced topic
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How are recursive calls implemented?

What we have seen ….
• Activation record gets pushed into the stack when a function call is made.
• Activation record is popped off the stack when the function returns.

In recursion, a function calls itself.
• Several function calls going on, with none of the function calls returning back.

• Activation records are pushed onto the stack continuously.
• Large stack space required.
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• Activation records keep popping off, when the termination condition of recursion is reached.

     We shall illustrate the process by an example of computing factorial.
• Activation record looks like:

Return Value
Local Variables

Actual Parameters

. . .

Return Address
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Example:: main( ) calls fact(3)

int  fact (n)
int  n;
{
    if   (n = = 0)
        return (1);
    else
        return  (n * fact(n-1));
} 

main()
{
   int  n;
   n = 3;
   printf (“%d \n”, fact(n) );
}
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RA .. main
-

n = 3

RA .. main
-

n = 3
RA .. fact

-
n = 2

RA .. main
-

n = 3
RA .. fact

-
n = 2

RA .. fact
-

n = 1

RA .. main
-

n = 3
RA .. fact

-
n = 2

RA .. fact
-

n = 1
RA .. fact

1
n = 0

RA .. main
-

n = 3
RA .. fact

-
n = 2

RA .. fact
1*1 = 1
n = 1

RA .. main
-

n = 3
RA .. fact
2*1 = 2
n = 2

RA .. main
3*2 = 6
n = 3

TRACE OF THE STACK DURING EXECUTION

main( ) 
calls 
fact( )

fact( ) 
returns 
to main( )
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Do Yourself
Trace the activation records for the following version of Fibonacci sequence.

#include <stdio.h>
int   f (int n)
{
     int a, b;
     if  (n  < 2)   return (n);
     else  {
       a = f(n-1);
       b = f(n-2);
       return (a+b);  }
}

main( ) {
    printf(“Fib(4) is: %d \n”, f(4));
}

Return Address
(either main or f)

Return Value

Local  Variables
(a, b)   X

   Y

Actual Parameters
(n)


