
INDIAN INSTITUTE OF TECHNOLOGY
KHARAGPUR

Stamp / Signature of the Invigilator

EXAMINATION ( End Semester ) SEMESTER ( Spring )

Roll Number Section Name

Subject Number C S 1 0 0 0 3 Subject Name Programming and Data Structures

Department / Center of the Student Additional sheets

Important Instructions and Guidelines for Students

1. You must occupy your seat as per the Examination Schedule/Sitting Plan.

2. Do not keep mobile phones or any similar electronic gadgets with you even in the switched off mode.

3. Loose papers, class notes, books or any such materials must not be in your possession, even if they are irrelevant to the

subject you are taking examination.

4. Data book, codes, graph papers, relevant standard tables/charts or any other materials are allowed only when instructed

by the paper-setter.

5. Use of instrument box, pencil box and non-programmable calculator is allowed during the examination. However,

exchange of these items or any other papers (including question papers) is not permitted.

6. Write on both sides of the answer script and do not tear off any page. Use last page(s) of the answer script for rough

work. Report to the invigilator if the answer script has torn or distorted page(s).

7. It is your responsibility to ensure that you have signed the Attendance Sheet. Keep your Admit Card/Identity Card on the

desk for checking by the invigilator.

8. You may leave the examination hall for wash room or for drinking water for a very short period. Record your absence

from the Examination Hall in the register provided. Smoking and the consumption of any kind of beverages are strictly

prohibited inside the Examination Hall.

9. Do not leave the Examination Hall without submitting your answer script to the invigilator. In any case, you are not

allowed to take away the answer script with you. After the completion of the examination, do not leave the seat until

the invigilators collect all the answer scripts.

10. During the examination, either inside or outside the Examination Hall, gathering information from any kind of sources or

exchanging information with others or any such attempt will be treated as ‘unfair means’. Do not adopt unfair means and

do not indulge in unseemly behavior.

Violation of any of the above instructions may lead to severe punishment.

Signature of the Student

To be filled in by the examiner

Question Number 1 2 3 4 5 6 7 8 9 10 Total

Marks Obtained

Marks obtained (in words) Signature of the Examiner Signature of the Scrutineer



CS10003 Programming and Data Structures, Spring 2022–2023

13-June-2023 End-Semester Test Maximum marks: 75

Instructions to students

• Write your answers in the question paper itself. Be brief and precise. Answer all questions.

• Write the answers only in the respective spaces provided.

• The questions appear on the next eight pages.

• Space is provided for doing rough work. Please do not write the answers in the rough-work spaces.

Ask for supplementary sheets during the test if you need more space for rough work.

• All the questions use the programming language C.

• Not all blanks carry equal marks. Evaluation will depend on overall correctness.

• In the fill-in-the-blanks type questions, do not change the logical structures of the codes. Do not use

any variables other than those already supplied to you.

Do not write anything on this page.

Questions start from the next page.



1. (a) Suppose that we want to generate a list of all prime powers up to some n 6 100 supplied by the user.

The prime powers are to be stored in a 10×100 array A declared in the main function as:

int A[10][100];

The main function initializes all the entries of A to 0. The primes 6 n are themselves stored in the first row

(index 0) of A in the ascending order. The columns store the powers 6 n of each prime in the first row. For

example, if n = 40, then only the following entries of A are to be assigned values (the row and the column

indices are shown as row and column headers). All other entries of A will continue to remain 0.

0 1 2 3 4 5 6 7 8 9 10 11

0 2 3 5 7 11 13 17 19 23 29 31 37

1 4 9 25

2 8 27

3 16

4 32

To do this, we write three functions. Fill in the blanks in the code of each function so that the function works

properly. Assume that 2 6 n 6 100. Do not use any math library function anywhere in this exercise.

We first write a recursive function isprime(A,n,i) which checks whether or not n is divisible by any of

the primes stored in the first row (index 0) of A. In the function, i is the index of a prime stored in A[0].
Assume that n is larger than all the primes stored in A[0]. If n is not divisible by any of these primes, then n

itself is a prime, and 1 is returned. Otherwise, 0 is returned. (3)

int isprime ( int A[][100], int n, int i )

{

/* Base case: No more primes to divide n with */

if (i < 0) return 1;

if (n % A[0][i] == 0) return 0 ;

return isprime ( A, n , i - 1 );

}

Next, we write a function genprimes(A,n) to populate the first row A[0] with primes 6 n. This function

returns the index of the last prime (not the number of primes) stored in A[0]. Assume that 2 6 n 6 100. (7)

int genprimes ( int A[][100], int n )

{

/* Base case */

if (n == 2) {

A[0][0] = 2 ;

return 0 ;

}

/* Recursively generate all primes < n */

int i = genprimes( A, n - 1 );

/* Now check for the primality of n and proceed accordingly */

if ( isprime ( A, n, i ) ) {

A[0][ i + 1 ] = n;

return i + 1 ;

} else {

return i ;

}

}

— Page 1 of 8 —



Finally, we write the desired function genprimepowers(A,n) to populate the two-dimensional array A, as

described in the first paragraph. The function returns the index of the last column of A with at least one

non-zero element (recall that all the elements of A were initialized to 0 before this function is called). (2)

int genprimepowers ( int A[][100], int n )

{

int i, j, k, ppwr;

i = genprimes(A,n); /* First generate all the primes <= n */

for (j=0; j<=i; ++j) { /* For the prime at index j */

k = 1;

while (1) {

ppwr = A[k-1][j] * A[0][j] ;

if (ppwr > n) break;

A[k][j] = ppwr;

++k; /* Write a single statement */

}

}

return i;

}

(b) Consider the following program.

#include <stdio.h>

int main ()

{

char A[4][4] = { "tis", "hie", "shn", "ted" };

char B[25];

int i,j,m;

for (m = 0; m <= 24; m++) B[m] = ’\0’;

for (i = 0; i <= 3; i++)

for (j = 0; j <= 3; j++)

B[(i+j)*(i+j+1)/2 + j] = A[i][j];

for (m = 0; m <= 24; m++)

if (B[m] != ’\0’) printf("%c", B[m]);

printf("\n%s\n", B);

return 0;

}

What will be the output of this program? (3)

thisistheend

thisisthe

— Page 2 of 8 —



2. (a) Fill in the blanks in the code below. The code should work as per the comments provided. Also write

the output of the program.

#include <stdio.h>

typedef struct {

int x;

float *y;

} myStruct;

/* The function fun takes two parameters t1 and t2 of the above structure type */

void fun ( myStruct t1 , myStruct t2 ) (1)
{

int temp;

float tempf;

temp = t1.x; t1.x = t2.x; t2.x = temp;

/* The code below swaps the values at locations pointed to by t1.y and t2.y */

tempf = *t1.y; *t1.y = *t2.y; *t2.y = tempf; (2)
}

int main()

{

float a = 2.34, b = -9.39;

/* Declare two variables s1 and s2 of the above structure type */

myStruct s1 = {10, &a}, s2 = {20, &b}; (1)

fun(s1,s2);

/* Print the value of x in structure s1, the value at location y in s1,

the value of x in s2, and the value at location y in s2, in that order. */

printf("%d, %.1f, %d, %.1f", s1.x, *s1.y, s2.x, *s2.y ); (4)

return 0;

}

Output of the program: 10, -9.4, 20, 2.3 (4)

(b) What will be the output of the following program?

#include <stdio.h>

struct myStruct {

int x;

char y[5];

struct myStruct *ptr;

};

int main()

{

struct myStruct s1 = {10, {’a’,’b’,’\0’,’c’,’\0’}, NULL}, s2;

s2 = s1;

s2.x = 20;

s1.ptr = &s2; s2.ptr = &s1;

s1.y[0] = ’d’; s2.y[1] = ’e’; s2.y[2] = ’z’; s1.ptr->x = 30;

printf("%d, %s, %s", s2.x, s1.ptr->y, s2.ptr->y);

return 0;

}

Output of the program: 30, aezc, db (3)

— Page 3 of 8 —



3. (a) You have two linked lists which (may) intersect at some node. The head pointers of the lists are

supplied. You need to find the intersecting node. If the lists do not intersect, you return NULL. The numbers

of nodes in the lists may be different, and are not known beforehand. The following picture illustrates this

concept. The data values stored in the nodes are irrelevant for this exercise, and are not shown.

L1

L2

n1 = 5

n2 = 7

To return a pointer to this node

The function findIntersection() returns a pointer to the intersecting node. Fill in the blanks to complete

the code of the function. You must use the algorithm specified as comments inside the code. (7)

typedef struct _node {

int data;

struct _node *next;

} node;

node* findIntersection ( node *L1, node *L2 )

{

int n1, n2, diff, i;

node *p1, *p2;

/* Compute the number of nodes (n1) in L1 */

n1 = 0; p1 = L1;

while (p1 != NULL) { ++n1; p1 = p1 -> next ; }

/* Compute the number of nodes (n2) in L2 */

n2 = 0; p2 = L2;

while (p2 != NULL) { ++n2; p2 = p2 -> next ; }

/* Let p1 point to the larger list, and p2 to the smaller list */

/* Also compute the absolute difference (diff) of the list sizes */

if (n1 >= n2) {

p1 = L1;

p2 = L2;

diff = n1 - n2;

} else {

p1 = L2 ;

p2 = L1 ;

diff = n2 - n1;

}

/* Skip first diff nodes from larger list (shaded nodes in the above figure) */

for (i=0; i<diff; i++) p1 = p1 -> next ;

/* Now the intersecting node is at the same distance from p1 and p2 */

/* Locate the intersecting node by advancing p1 and p2 simultaneously */

while ( p1 != p2 ) {

p1 = p1 -> next; p2 = p2 -> next;

}

return p1 ;

}

— Page 4 of 8 —



(b) The function mergelists() given below merges two linked lists by alternately taking nodes from the

two lists, with the first node taken from the first list (this has nothing to do with merge sort). If both the

lists are not of the same size, the extra elements from the longer list are added to the end of the merged list.

Examples of three cases are given in the top half of the figure below. Here, n1 and n2 are the sizes of the two

lists (we do not need to compute them), and the NULL pointers are shown as solid black rectangles. The

algorithm used in mergelists() is indicated in the bottom half of the figure. The pointers p1 and p2 run

over the two lists. The pointers q1 and q2 point to the next nodes in the respective lists. Fill in the blanks

properly as per the comments specified in the code, to complete the function mergelists(). (8)

5

5

Case 1:  n1 = n2

p1 q1

p2 q2

p1

p2

List 1

List 2

Merged List

Explaining an iteration of the loop

. . .

. . .

. . .

. . .

Case 2:  n1 > n2 Case 3:  n1 < n2

3

3

8

8

7

7

9

1 4

1 4 8

9

5

5

7

7

2

2

1

3

46

8

3 8

6 1 4

85

2

5

2

struct listNode {

int data;

struct listNode *next;

};

struct listNode *mergelists ( struct listNode *list1, struct listNode *list2 )

{

struct listNode *p1, *p2, *q1, *q2;

/* First handle the pathological cases */

if (list1 == NULL) return list2 ;

if (list2 == NULL) return list1 ;

p1 = list1; p2 = list2; /* Initialize the loop */

/* Repeat so long as there are nodes remaining in both the lists */

while ( ( p1 != NULL ) && ( p2 != NULL ) ) {

q1 = p1 -> next; q2 = p2 -> next; /* Save the next pointers */

/* Include a node from the second list */

p1 -> next = p2;

/* Conditionally include a node from the first list */

if ( q1 != NULL ) p2 -> next = q1; ;

/* Prepare for the next iteration: Write two statements */

p1 = q1; p2 = q2;

}

return list1 ;

}

— Page 5 of 8 —



4. An implementation of the stack ADT supplies only the following functions. The stack data type is designed

to store stacks of int variables. Write below what the return types of the ADT calls should be. (5)

stack newstack ( int maxsize ); Create a new stack (empty) capable of storing a

maximum of maxsize int variables. You are not

allowed to change the stack capacity afterwards.

int isempty ( stack S ); Return whether the stack S is empty or not.

int top ( stack S ); Return the top element stored in the stack S. You

should not call this function if S is empty.

stack push ( stack S, int x ); Insert a new element x to the stack S. It is your duty

to ensure that you do not exceed the stack capacity

that you specified during the newstack() call.

stack pop ( stack S ); Remove the top of the stack. You must make sure

that you do not try to pop from an empty stack.

Do not write/change the codes of these ADT calls. Use the ADT implementation given to you for solving the

following problem. You have no idea how the stack is implemented (using static arrays, or dynamic arrays,

or linked lists, or whatever). You work with your int stack(s) using only the above five ADT functions.

Let R[ ] be a float array storing the rainfall amounts r0,r1,r2, . . . ,rn−1 for n consecutive days. Take i in the

range 0 6 i 6 n− 1. The rainfall ri is said to dominate for di days if ri,ri+1,ri+2, . . . ,ri+di−1 6 ri, whereas

ri+di
> ri. If we take rn = ∞, then di is defined for all i in the range 0 6 i 6 n−1. An example of the rainfall

amounts and the domination-day-counts is given below for n = 12.

i 0 1 2 3 4 5 6 7 8 9 10 11 12

ri 31.39 51.58 40.90 27.43 47.07 19.82 20.26 53.92 43.32 33.19 20.42 37.40 ∞

di 1 6 2 1 3 1 1 5 4 2 1 1 −

The basic task is to determine, for each i, the first j > i for which r j > ri, and set di = j− i. We can start the

search at every index i to find the index j and subsequently compute di. But this requires multiple passes

through the array. We use a stack S in order to compute di for all i, using a single pass of the array R[ ].
Inside a loop over j (not over i), the stack stores all i < j for which di is not yet determined. The stack is

sorted in the decreasing order of i from top to bottom. Since S is a stack of int variables, we cannot store

ri in the stack. We store i, and get ri from the array R as R[i]. Because the domination-day-counts are not

determined at every index stored in S, the ri values corresponding to the indices i stored in S must be in the

non-decreasing order from top to bottom of S.

We start with an empty stack. Then, we read r j for j = 0,1,2, . . . ,n in that sequence. For each j, zero or

more indices i < j reside in the stack. We determine which of these ri values are smaller than r j. For each

such i, the nearest larger member of ri is r j. We set their di values, and pop them from the stack (one by one).

The process stops when the stack becomes empty or the top stores an i for which r j 6 ri. In the second case,

if there are one or more indices i′ in the stack below the top, then ri′ > ri > r j, so di′ cannot be determined

by this j. Finally, for the current j, the value d j cannot be determined without looking into the elements that

follow r j in R, so we push j to S, and proceed to the next iteration.

As an example, consider j = 4 in the above table (also see the figure on the next page, where the stack S is

shown vertically, and the di values are shown in the horizontal array; the uncomputed di values are shown as

blank entries in the array). Before the beginning of the iteration, only d0 is computed. The stack stores 3,2,1

from top to bottom. Now, the element r j = r4 = 47.07 is considered. Since r4 > r3, we set d3 = 4−3 = 1,

and pop 3 from S. We then observe that r4 > r2 as well, so we set d2 = 4−2 = 2, and pop 2 from the stack.

After this, we see that r4 6 r1, so d1 cannot be determined now. We push 4 (so the stack now contains 4,1

from top to bottom), and the iteration for j = 4 finishes.

In the next iteration with j = 5, no di value can be set for i = 4,1. Moreover, 5 is pushed to S. Then, for

j = 6, only d5 = 6− 5 = 1 is set, and 6 is pushed to S. The next iteration with j = 7 sets d6 = 7− 6 = 1,

— Page 6 of 8 —



19.82 < 47.07
No pop.
Push 5.

3

2

1

2

1

47.07 < 51.5847.07 > 27.43 47.07 > 40.90

1

No more pops.Set D[3] and pop. Set D[2] and pop.

. . .1 . . .1 1 1 2 1 . . .

0 1 2 3 40 1 2 3 40 1 2 3 4

Iteration for j = 4

1 2 1

0 1 2 3

. . .

1

4

5

4 5

1

4

5

1 2 1

0 1 2 3 4 5

. . .

6

1

4

1 2 1

0 1 2 3 4 5

. . .

6

1 1 2 1

0 1 2 3 4 5

. . .

6

1

1

6

4

Iteration for j = 6Iteration for j = 5

20.26 > 19.82

Set D[5] and pop.

20.26 < 47.07

No more pops.
Push 6.

Push 4.
1

4

1 2 1 . . .

0 1 2 3 4

d4 = 7−4 = 3, and d1 = 7−1 = 6, and the stack becomes empty. After this, 7 is pushed to S. Eventually,

the loop encounters r12 = ∞, and sets di = 12− i for all i that are still residing in the stack.

Fill in the blanks in the following code snippet that implements this algorithm. The di values are to be stored

in an int array D[ ]. Assume that R[ ] and D[ ] (declared earlier) have sufficient space to handle n days. The

number n of days and the daily rainfall amounts r0,r1,r2, . . . ,rn−1 (the entries of R[ ]) are read from the user

(or from a weather-data file) before the snippet. The snippet uses the additional variables j and S. Use no

other variables. Whenever needed, use the stack ADT calls from the given implementation.

int j;

stack S;

/* Get ready for the algorithm */

R[n] = INFINITY; /* INFINITY is defined in math.h */

S = newstack( n ) ; /* S should not overflow */ (1)

for (j = 0; j <= n ; ++j) { (1)
/* Consider r j */

/* Repeat the loop so long as some di value can be set */

while ( (!isempty(S)) && (R[j] > R[top(S)]) ) { (3)

D[ top(S) ] = j - top(S) ; (2)

S = pop(S); /* Single statement */ (1)
}

S = push(S,j); /* Single statement */ (1)
}

for (j = 0; j <= n-1 ; ++j) (1)
printf("Domination-day-count for %f is %d\n", R[j], D[j]);

— Page 7 of 8 —



5. (a) The following C function takes an integer array A[] and its number of elements n as parameters, and

rearranges the elements such that all negative numbers in A[] precede the non-negative ones. Fill in the

blanks appropriately. (5)

void rearrange ( int A[], int n )

{

int k, i, p, t;

k = -1 ;

p = 0 ;

for (i=0; i<=n-1; ++i) {

if (A[i] < p ) {

++k;

t = A[k]; A[k] = A[i]; A[i] = t;

}

}

}

(b) Answer the following questions. No need to show your calculations. Write only your final answers in

the blanks/boxes provided. (2 × 5)

(i) What is the hexadecimal equivalent of the decimal number 6752.953125?

1A60.F4

(ii) What are the smallest and largest numbers that can be represented in 32-bit 2’s-complement notation?

Smallest: −231. Largest: +(231
−1).

(iii) What will be the result of performing 65−113 using 8-bit 2’s-complement arithmetic? Write the bits

of the result.

1 1 0 1 0 0 0 0

(iv) Consider the following 32-bit single-precision floating-point number representation in the IEEE-754

format.

0 00100111 0100110 00000000 00000000

What is the value of this number in decimal?

1.296875×2−88
≈ 4.190429×10−27

(v) Write the 32 bits of the single-precision floating-point representation of the decimal number −2.75 in

the IEEE-754 format.

1

sign

10000000

exponent

0110000 00000000 00000000

mantissa

— Page 8 of 8 —



For rough work only



For rough work only


