
1

Pointers: Parameter
Passing and Return

2

Passing Pointers to a Function

 Pointers are often passed to a function as
arguments
 Allows data items within the calling function to be

accessed by the called function, altered, and then
returned to the calling function in altered form

 Useful for returning more than one value from a
function

 Still call-by-value, but now the address is copied,
not the content

3

Example: Swapping
int main()
{
 int a, b;
 a = 5; b = 20;
 swap (a, b);
 printf (“\n a=%d, b=%d”, a, b);
 return 0;
}

void swap (int x, int y)
{
 int t;
 t = x;
 x = y;
 y = t;
}

a=5, b=20
Output

Parameters
passed by
value, so
changes done
on copy, not
returned to
calling
function

4

Example: Swapping using pointers
int main()
{
 int a, b;
 a = 5; b = 20;
 swap (&a, &b);
 printf (“\n a=%d, b=%d”, a, b);
 return 0;
}

void swap (int *x, int *y)
{
 int t;
 t = *x;
 *x = *y;
 *y = t;
}

a=20, b=5

Output

Parameters
passed by
address,
changes done
on the value
stored at that
address,
correctly
swapped

5

 While passing a parameter to a function, when
should you pass its address instead of the
value?
 Pass address if both these conditions are satisfied

 The parameter value will be modified inside the function body
 The modified value is needed in the calling function after the

called function returns

 Consider the swap function to see this

6

Passing Arrays as Pointers

int main()
{
 int n;
 float list[100], avg;
 :
 avg = average (n, list);
 :
}

float average (int a, float x[])
{
 :
 sum = sum + x[i];
}

int main()
{
 int n;
 float list[100], avg;
 :
 avg = average (n, list);
 :
}

float average (int a, float *x)
{
 :
 sum = sum + x[i];
}

Both the forms below are fine in the function body, as
arrays are passed by passing the address of the first
element. Calling function calls it the same way

7

Returning multiple values from a
function
 Return statement can return only one value
 What if we want to return more than one value?
 Use pointers

 Return one value as usual with a return statement
 For other return values, pass the address of a

variable in which the value is to be returned

8

Example: Returning max and min
of an array
Both returned through pointers (could have returned one of

them through return value of the function also)
int main()
{
 int n, min, max, i, A[100];
 scanf(“%d”, &n);
 for (i=0; i<n; ++i)
 scanf(“%d”, &A[i]);
 MinMax(A, n, &min, &max);
 printf(“Min and max are %d,
%d”, min, max);
 return 0;
}

void MinMax(int A[], int n, int
*min, int *max)
{
 int i, x, y;
 x = y = A[0];
 for (i=1; i<n; ++i) {
 if (A[i] < x) x = A[i];
 if (A[i] > y) y = A[i];
 }
 *min = x; *max = y;
}

9

Example: Passing structure pointers
struct complex {
 float re;
 float im;
};

int main()
{
 struct complex a, b, c;
 scanf(“%f%f”, &a.re, &a.im);
 scanf(“%f%f”, &b.re, &b.im);
 add(&a, &b, &c) ;
 printf(“\n %f %f”, c.re,
c.im);
 return 0;
}

void add (struct complex
*x, struct complex *y,
struct complex *t)
{
 t->re = x->re + y->re;
 t->im = x->im + y->im;
}

The program will print the
sum of a and b correctly.
Just try passing a, b, c
directly (no pointers in call
or in function declaration)
and see what happens

10

Strings

11

Strings
• 1-d arrays of type char
• By convention, a string in C is terminated by the

end-of-string sentinel ‘\0’ (null character)
• char s[21] - can have variable length string

delimited with \0
• Max length of the string that can be stored is 20 as

the size must include storage needed for the ‘\0’
• String constants : “hello”, “abc”
• “abc” is a character array of size 4

12

String Constant

• A string constant is treated as a pointer
• Its value is the base address of the string

char *p = “abc”;

printf (“%s %s\n”,p,p+1); /* abc bc is printed */

a b c \0 p

13

Differences : array & pointers
char *p = “abcde”;
The compiler allocates

space for p, puts the
string constant “abcde”
in memory somewhere
else, initializes p with
the base address of
the string constant

char s[] = “abcde”;
≡ char s[] = {‘a’,’b’,’c’,’d’,’e’.’\0’};
The compiler allocates 6 bytes

of memory for the array s
which are initialized with the
6 characters

a b c d e \0
a b c d e \0

p
S

14

Library Functions for String
Handling
 You can write your own C code to do different

operations on strings like finding the length of a
string, copying one string to another, appending
one string to the end of another etc.

 C library provides standard functions for these
that you can call, so no need to write your own
code

 To use them, you must do
 #include <string.h>
At the beginning of your program (after #include

<stdio.h>)

15

String functions we will see
 strlen : finds the length of a string
 strcat : concatenates one string at the end of

another
 strcmp : compares two strings lexicographically
 strcpy : copies one string to another

16

strlen()

int strlen(const char *s)
 Takes a null-terminated

strings (we routinely refer
to the char pointer that
points to a null-terminated
char array as a string)

 Returns the length of
the string, not counting
the null (\0) character

int strlen (const char *s) {
 int n;
 for (n=0; *s!=‘\0’; ++s)
 ++n;
 return n;
}

You cannot change contents
 of s in the function

17

strcat()
 char *strcat (char *s1,

const char *s2);
 Takes 2 strings as

arguments,
concatenates them,
and puts the result in
s1. Returns s1.
Programmer must
ensure that s1 points
to enough space to
hold the result.

char *strcat(char *s1, const char
*s2)
{
 char *p = s1;
 while (*p != ‘\0’) /* go to end */
 ++p;
 while(*s2 != ‘\0’)
 *p++ = *s2++; /* copy */
 *p = ‘\0’;
 return s1;
}

You cannot change contents
 of s2 in the function

18

Dissection of the strcat() function
char *p = s1;
p is being initialized, not *p. The pointer p is initialized

to the pointer value s1. Thus p and s1 point to the
same memory location

19

Dissection of the strcat() function

char *p = s1;
p is being initialized, not *p. The pointer p is initialized

to the pointer value s1. Thus p and s1 point to the
same memory location

while (*p != ‘\0’) ++p;
As long as the value pointed to by p is not ‘\0’, p is

incremented, causing it to point at the next
character in the string. When p points to \0, the
control exits the while statement

20

Dissection of the strcat() function
char *p = s1;
p is being initialized, not *p. The pointer p is initialized

to the pointer value s1. Thus p and s1 point to the
same memory location

while (*p != ‘\0’) ++p;
As long as the value pointed to by p is not ‘\0’, p is

incremented, causing it to point at the next
character in the string. When p points to \0, the
control exits the while statement

while(*s2 != ‘\0’) *p++ = *s2++; /* copy */
At the beginning, p points to the null character at the

end of string s1. The characters in s2 get copied
one after another until end of s2

21

Dissection of the strcat() function
char *p = s1;
p is being initialized, not *p. The pointer p is initialized

to the pointer value s1. Thus p and s1 point to the
same memory location

while (*p != ‘\0’) ++p;
As long as the value pointed to by p is not ‘\0’, p is

incremented, causing it to point at the next
character in the string. When p points to \0, the
control exits the while statement

while(*s2 != ‘\0’) *p++ = *s2++; /* copy */
At the beginning, p points to the null character at the

end of string s1. The characters in s2 get copied
one after another until end of s2

*p = ‘\0’; put the ‘\0’ at the end of the string

22

strcmp()
int strcmp (const char

*s1, const char *s2);
Two strings are passed

as arguments. An
integer is returned
that is less than,
equal to, or greater
than 0, depending on
whether s1 is
lexicographically less
than, equal to, or
greater than s2.

23

strcmp()
int strcmp (const char

*s1, const char *s2);
Two strings are passed

as arguments. An
integer is returned
that is less than,
equal to, or greater
than 0, depending on
whether s1 is
lexicographically less
than, equal to, or
greater than s2.

int strcmp(char *s1, const char *s2)
{
 for (;*s1!=‘\0’&&*s2!=‘\0’; s1++,s2++)
 {
 if (*s1>*s2) return 1;
 if (*s2>*s1) return -1;
 }
 if (*s1 != ‘\0’) return 1;
 if (*s2 != ‘\0’) return -1;
 return 0;
}

Important: When you use strcmp() from
the string library, check the return value for
>, < or = 0, not for +1, -1, and 0 (which are
just one possible return value to satisfy the
>, <, and = 0 condition

24

char *strcpy (char *s1, char *s2);
The characters is the string s2 are copied into s1 until

\0 is moved. Whatever exists in s1 is overwritten. It is
assumed that s1 has enough space to hold the
result. The pointer s1 is returned.

strcpy()

25

char *strcpy (char *s1, const char *s2);
The characters is the string s2 are copied into s1 until

‘\0’ is moved. Whatever exists in s1 is overwritten. It
is assumed that s1 has enough space to hold the
result. The pointer s1 is returned.

char * strcpy (char *s1, const char *s2)
{
 char *p = s1;
 while (*p++ = *s2++) ;
 return s1;
}

strcpy()

26

Example: Using string functions

 25
 9
 -1
 big sky country
 beautiful brown cows!

int main()
 {
 char s1[] = "beautiful big sky country",
 s2[] = "how now brown cow";
 printf("%d\n",strlen (s1));
 printf("%d\n",strlen (s2+8));
 printf("%d\n", strcmp(s1,s2));
 printf("%s\n",s1+10);
 strcpy(s1+10,s2+8);
 strcat(s1,"s!");
 printf("%s\n", s1);
 return 0;
 }

Output

27

1. Write a function to search for an element in an array of integers that
returns 1 if the element is found, 0 otherwise. If found, it also returns the
index in the array where found

2. Write a function that returns the number of lowercase letters, uppercase
letters, and digit characters in a string

3. Define a structure POINT to store the coordinates (integer) of a point in 2-
d plane. Write a function that returns the two farthest (largest distance)
points in an array of POINT structures

4. Write a function that takes two arrays of integers A and B and returns the
size of the union set and the size of the intersection set of A and B

5. Write a function that returns the lengths of the largest palindromes formed
by any substring (sequence of consecutive characters) of the string. It
should also return the index in the string from which the palindrome starts.

For all of the above, add suitable main() functions to call the functions. Also,
decide on what parameters you will need; for better practice, for all problems
other than problems 1, assume that the return type of the function is void.

Practice Problems

	Pointers: Parameter Passing and Return
	Passing Pointers to a Function
	Example: Swapping
	Example: Swapping using pointers
	Slide Number 5
	Passing Arrays as Pointers
	Returning multiple values from a function
	Example: Returning max and min of an array
	Example: Passing structure pointers
	Strings
	Strings
	String Constant
	Differences : array & pointers
	Library Functions for String Handling
	String functions we will see
	strlen()
	strcat()
	Dissection of the strcat() function
	Dissection of the strcat() function
	Dissection of the strcat() function
	Dissection of the strcat() function
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Example: Using string functions
	Slide Number 27

