
1

Structures

2

What is a Structure?

 Used for handling a group of logically related data
items
 Examples:

 Student name, roll number, and marks
 Real part and complex part of a complex number

 Helps in organizing complex data in a more
meaningful way

 The individual structure elements are called members

3

Defining a Structure
 struct tag {

 member 1;
 member 2;
 :
 member m;
 };

 struct is the required C keyword
 tag is the name of the structure
member 1, member 2, … are individual member

declarations
Do not forget the ; at the end!

4

Contd.
 The individual members can be ordinary

variables, pointers, arrays, or other structures
(any data type)
The member names within a particular

structure must be distinct from one another
A member name can be the same as the

name of a variable defined outside of the
structure

 Once a structure has been defined, the
individual structure-type variables can be
declared as:

 struct tag var_1, var_2, …, var_n;

5

Example
 A structure definition

 struct student {
 char name[30];
 int roll_number;
 int total_marks;
 char dob[10];
 };

 Defining structure variables:

 struct student a1, a2, a3;

A new data-type

6

A Compact Form
 It is possible to combine the declaration of the

structure with that of the structure variables:

struct tag {
 member 1;
 member 2;
 :
 member m;
 } var_1, var_2,…, var_n;

 Declares three variables of type struct tag
 In this form, tag is optional

7

Accessing a Structure

 The members of a structure are processed
individually, as separate entities
Each member is a separate variable

 A structure member can be accessed by writing
 variable.member

 where variable refers to the name of a structure-type
variable, and member refers to the name of a
member within the structure

 Examples:
 a1.name, a2.name, a1.roll_number, a3.dob

8

Example: Complex number addition
struct complex
 {
 float real;
 float img;
 };
int main()
{
 struct complex a, b, c;
 scanf (“%f %f”, &a.real, &a.img);
 scanf (“%f %f”, &b.real, &b.img);
 c.real = a.real + b.real;
 c.img = a.img + b.img;
 printf (“\n %f + %f j”, c.real, c.img);
 return 0;
}

Defines the structure

Declares 3 variable of type struct complex

Accessing the variables is the same
as any other variable, just have to
follow the syntax to specify which field
of the Structure you want

9

Operations on Structure Variables

 Unlike arrays, a structure variable can be directly
assigned to another structure variable of the
same type

 a1 = a2;
 All the individual members get assigned

 Two structure variables can not be compared for
equality or inequality

 if (a1 == a2)…… this cannot be done

10

Arrays of Structures

 Once a structure has been defined, we can declare
an array of structures
 struct student class[50];

 The individual members can be accessed as:

 class[i].name
 class[5].roll_number

type name

int main()
{
 struct complex A[100];
 int n;
 scanf(“%d”, &n);
 for (i=0; i<n; i++)
 scanf(“%f%f”, &A[i].real, &A[i].img);
 for (i=0; i<n; i++)
 printf(“%f + i%f\n”, A[i].real, A[i].img);
}

11

Example: Reading and Printing Array
of Structures

12

Arrays within Structures

 A structure member can be an array

 The array element within the structure can be
accessed as:
 a1.marks[2], a1.dob[3],…

struct student
{
 char name[30];
 int roll_number;
 int marks[5];
 char dob[10];
} a1, a2, a3;

13

Structure Initialization
 Structure variables may be initialized following similar

rules of an array. The values are provided within the
second braces separated by commas

 An example:
 struct complex a={1.0,2.0}, b={-3.0,4.0};

a.real=1.0; a.img=2.0;
b.real=-3.0; b.img=4.0;

14

Parameter Passing in a Function

 Structure variables can be passed as parameters like
any other variables. Only the values will be copied
during function invocation

 int chkEqual(struct complex a, struct complex b)
 {
 if ((a.real==b.real) && (a.img==b.img))
 return 1;
 else return 0;
 }

15

Returning structures
 It is also possible to return structure values from a

function. The return data type of the function should
be as same as the data type of the structure itself

 struct complex add(struct complex a, struct complex b)
 {
 struct complex tmp;

 tmp.real = a.real + b.real;
 tmp.img = a.img + b.img;
 return(tmp);
 }

Direct arithmetic operations are not possible with structure variables

16

Defining data type: using typedef
 One may define a structure data-type with a single

name
 typedef struct newtype {
 member-variable1;
 member-variable2;
 .
 member-variableN;
 } mytype;

 mytype is the name of the new data-type
 Also called an alias for struct newtype
 Writing the tag name newtype is optional, can be

skipped
 Naming follows rules of variable naming

17

typedef : An example

 typedef struct {
 float real;
 float imag;
 } _COMPLEX;

 Defined a new data type named _COMPLEX. Now

can declare and use variables of this type

 _COMPLEX a, b, c;

18

 Note: typedef is not restricted to just structures,
can define new types from any existing type

 Example:
 typedef int INTEGER
Defines a new type named INTEGER from the

known type int
Can now define variables of type INTEGER which

will have all properties of the int type

 INTEGER a, b, c;

19

The earlier program using typedef
typedef struct{
 float real;
 float img;
 } _COMPLEX;

_COMPLEX add(_COMPLEX a, _COMPLEX b)
 {
 _COMPLEX tmp;

 tmp.real = a.real + b.real;
 tmp.img = a.img + b.img;
 return(tmp);
 }

20

Contd.
 void print (_COMPLEX a)
 {
 printf("(%f, %f) \n",a.real,a.img);
 }

 int main()
 {
 _COMPLEX x={4.0,5.0}, y={10.0,15.0}, z;

 print(x);
 print(y);
 z = add(x,y);
 print(z);
 return 0;
 }

swap.c

(4.000000, 5.000000)
(10.000000, 15.000000)
(14.000000, 20.000000)

Output

21

Practice Problems
1. Extend the complex number program to include functions for

addition, subtraction, multiplication, and division
2. Define a structure for representing a point in two-dimensional

Cartesian co-ordinate system. Using this structure for a point
1. Write a function to return the distance between two given

points
2. Write a function to return the middle point of the line

segment joining two given points
3. Write a function to compute the area of a triangle formed

by three given points
4. Write a main function and call the functions from there

after reading in appropriate inputs (the points) from the
keyboard

3. Define a structure STUDENT to store the following data for a
student: name (null-terminated string of length at most 20
chars), roll no. (integer), CGPA (float). Then
1. In main, declare an array of 100 STUDENT structures.

Read an integer n and then read in the details of n students
in this array

2. Write a function to search the array for a student by name.
Returns the structure for the student if found. If not found,
return a special structure with the name field set to empty
string (just a ‘\0’)

3. Write a function to search the array for a student by roll no.
4. Write a function to print the details of all students with

CGPA > x for a given x
5. Call the functions from the main after reading in name/roll

no/CGPA to search
 22

	Structures
	What is a Structure?
	Defining a Structure
	Contd.
	Example
	A Compact Form
	Accessing a Structure
	Example: Complex number addition
	Operations on Structure Variables
	Arrays of Structures
	Example: Reading and Printing Array of Structures
	Arrays within Structures
	Structure Initialization
	Parameter Passing in a Function
	Returning structures
	Defining data type: using typedef
	typedef : An example
	Slide Number 18
	The earlier program using typedef
	Contd.
	Practice Problems
	Slide Number 22

