
1

Expressions

2

Expressions

 Variables and constants linked with operators
Arithmetic expressions

 Uses arithmetic operators
 Can evaluate to any value

 Logical expressions
 Uses relational and logical operators
 Evaluates to 1 or 0 (true or false) only

Assignment expression
 Uses assignment operators
 Evaluates to value depending on assignment

3

Arithmetic Operators

 Binary operators
Addition: +
Subtraction: –
Division: /
Multiplication: *
Modulus: %

 Unary operators
Plus: +
Minus: –

2*3 + 5 – 10/3
–1 + 3*25/5 – 7
distance / time
3.14* radius * radius
a * x * x + b*x + c
dividend / divisor
37 % 10

Examples

4

Contd.

 Suppose x and y are two integer variables, whose
values are 13 and 5 respectively

 We will see why x / y is 2 and not 2.6 a little later

x + y 18
x – y 8
x * y 65
x / y 2

x % y 3

5

 All operators except % can be used with operands of
all of the data types int, float, double, char (yes! char
also! We will see what it means later)

 % can be used only with integer operands

6

Operator Precedence

 In decreasing order of priority
1. Parentheses :: ()
2. Unary minus :: –5
3. Multiplication, Division, and Modulus
4. Addition and Subtraction

 For operators of the same priority, evaluation is from
left to right as they appear

 Parenthesis may be used to change the precedence
of operator evaluation

7

Examples:
Arithmetic Expressions

a + b * c – d / e  a + (b * c) – (d / e)

a * – 10 + d % e – f  a * (– 10) + (d % e) – f

a – b + c + 5  (((a – b) + c) + 5)

x * y * z  ((x * y) * z)

a + 2.34 + c * d * e  (a + 2.34) + ((c * d) * e)

8

Example: Centigrade to Fahrenheit
#include <stdio.h>
int main()
{

float cent, fahr;
printf(“Enter Centigrade: “);
scanf(“%f”,¢);
fahr = cent*(9.0/5.0) + 32;
printf(“%f C equals %f F\n”, cent, fahr);
return 0;

}

Enter centigrade: 36.5
36.500000 C equals 97.699997 F

Output

9

 Caution: Since floating-point values are rounded to the
maximum number of significant digits permissible, the
final value is an approximation of the final result. This
can cause strange results sometimes in comparisons.

#include <stdio.h>
int main()
{

float f1;
printf("Enter a no: ");
scanf("%f", &f1);
printf("No. entered is %f\n", f1);
if(f1 == 23.56) printf("True\n");
else printf("False\n");

}

Enter a no: 23.56
No. entered is 23.559999
False

10

 Can be handled in many cases by using double instead
of float (as it allows more number of digits)

 See the same program below, just with double. Now
you get correct result

#include <stdio.h>
int main()
{

double f1;
printf("Enter a no: ");
scanf("%lf", &f1);
printf("No. entered is %lf\n", f1);
if(f1 == 23.56) printf("True\n");
else printf("False\n");

}

Enter a no: 23.56
No. entered is 23.560000
True

11

Type of Value of an Arithmetic
Expression
 If all operands of an operator are integer (int variables

or integer constants), the value is always integer
 Example: 9/5 will be printed as 1, not 1.8

 But if at least one operand is real, the value is real
 So 9/5.0 will be correctly printed as 1.8

#include <stdio.h>
int main()
{

int a, b;
float c;
a = 9; b = 5;
printf ("a/b is %d\n", a/b) ;
c = 5.0;
printf ("a/c is %f\n", a/c) ;
return 0;

}
12

a/b is 1
a/c is 1.800000

Output

13

This is a problem!!
int a=10, b=4, c;
float x;
c = a / b;
x = a / b;

The value of c will be 2
The value of x will be 2.0
But we want 2.5 to be stored in x

We will take care of this a little later

14

Assignment Expression
 Uses the assignment operator (=)
 General syntax:

variable_name = expression
 Left of = is called l-value, must be a modifiable

variable
 Right of = is called r-value, can be any expression
 Examples:

velocity = 20
b = 15; temp = 12.5
A = A + 10
v = u + f * t
s = u * t + 0.5 * f * t * t

15

Contd.
 An assignment expression evaluates to a value same

as any other expression
 Value of an assignment expression is the value

assigned to the l-value
 Example: value of

 a = 3 is 3
 b = 2*4 – 6 is 2
 n = 2*u + 3*v – w is whatever the arithmetic

expression 2*u + 3*v – w evaluates to given the
current values stored in variables u, v, w

16

Contd.
 Several variables can be assigned the same value

using multiple assignment operators
a = b = c = 5;
flag1 = flag2 = ‘y’;
speed = flow = 0.0;

 Easy to understand if you remember that
 The assignment expression has a value
Multiple assignment operators are right-to-left

associative

17

Example
 Consider a = b = c = 5

 Three assignment operators
Rightmost assignment expression is c=5, evaluates

to value 5
Now you have a = b = 5
Rightmost assignment expression is b=5, evaluates

to value 5
Now you have a = 5
 Evaluates to value 5
 So all three variables store 5, the final value the

assignment expression evaluates to is 5

18

Types of l-value and r-value
 Usually should be the same
 If not, the type of the r-value will be internally

converted to the type of the l-value, and then
assigned to it

 Example:
double a;
a = 2*3;

Type of r-value is int and the value is 6
Type of l-value is double, so stores 6.0

19

This can cause strange problems
int a;
a = 2*3.2;

 Type of r-value is float/double and the value is 6.4
 Type of l-value is int, so internally converted to 6
 So a stores 6, not the correct result
 But an int cannot store fractional part anyway
 So just badly written program
 Be careful about the types on both sides

20

More Assignment Operators
 +=, -=, *=, /=, %=
 Operators for special type of assignments
 a += b is the same as a = a + b
 Same for -=, *=, /=, and %=
 Exact same rules apply for multiple assignment

operators

21

Contd.

 Suppose x and y are two integer variables,
whose values are 5 and 10 respectively.

x += y Stores 15 in x
Evaluates to 15

x –= y Stores -5 in x
Evaluates to -5

x *= y Stores 50 in x
Evaluates to 50

x /= y Stores 0 in x
Evaluates to 0

22

Logical Expressions

 Uses relational and logical operators in addition
 Informally, specifies a condition which can be true or

false
 Evaluates to value 0 if the condition is false
 Evaluates to some non-zero value if the condition is

true

23

Relational Operators

 Used to compare two quantities

< is less than

> is greater than

<= is less than or equal to

>= is greater than or equal to

== is equal to

!= is not equal to

24

Examples
10 > 20 is false, so value is 0
25 < 35.5 is true, so value is non-zero
12 > (7 + 5) is false, so value is 0
32 != 21 is true, so value is non-zero

 When arithmetic expressions are used on either side
of a relational operator, the arithmetic expressions will
be evaluated first and then the results compared

a + b > c – d is the same as (a + b) > (c – d)
 Note: The value corresponding to true can be any

non-zero value, not necessarily 1
 Will print 1 in most cases, but should not assume it will

25

Logical Operators

 Logical AND (&&)
 Evaluates to true (1) if both the operands are

non-zero
 Logical OR (||)

 Evaluates to true (1) if at least one of the
operands is non-zero

X Y X && Y X | | Y
0 0 false false
0 non-0 false true

non-0 0 false true
non-0 non-0 true true

26

Contd.

 Unary negation operator (!)
 Single operand
 Value is 0 if operand is non-zero
 Value is 1 if operand is 0

27

Examples of Logical Expressions

 (count <= 100)

 ((math+phys+chem)/3 >= 60)

 ((sex == ’M’) && (age >= 21))

 ((marks >= 80) && (marks < 90))

 ((balance > 5000) | | (no_of_trans > 25))

 (! (grade == ’A’))

28

 a = 3 && (b = 4)
 b = 4 is an assignment expression, evaluates to 4
 && has higher precedence than =
 3 && (b = 4) evaluates to true as both operands of &&

are non-0, so final value of the logical expression is true
 a = 3 && (b = 4) is an assignment expression, evaluates

to 1 (true)
 Note that changing to b = 0 would have made the final

value 0

29

Example: AND and OR

#include <stdio.h>
int main ()
{

int i, j;
scanf(“%d%d”,&i,&j);
printf (“%d AND %d = %d, %d OR %d=%d\n”, i, j, i&&j, i, j, i||j) ;
return 0;

}

3 0
3 AND 0 = 0, 3 OR 0 = 1

Output

 Logical expressions are used in control statements
 We will see more examples of logical expressions

when we study control statements next

30

31

More on Arithmetic Expressions

32

Recall the earlier problem
int a=10, b=4, c;
float x;
c = a / b;
x = a / b;

The value of c will be 2
The value of x will be 2.0
But we want 2.5 to be stored in x

33

Solution: Typecasting
 Changing the type of a variable during its use
 General form

(type_name) variable_name
 Example

x = ((float) a)/ b;

Now x will store 2.5 (type of a is considered to be float
for this operation only, now it is a mixed-mode
expression, so real values are generated)

34

 Not everything can be typecast to anything
 float/double should not be typecast to int (as an int

cannot store everything a float/double can store)
 int should not be typecast to char (same reason)

 General rule: make sure the final type can store any
value of the initial type

35

Example: Finding Average of 2
Integers

int a, b;
float avg;
scanf(“%d%d”, &a, &b);
avg = (a + b)/2;
printf(“%f\n”, avg);

int a, b;
float avg;
scanf(“%d%d”, &a, &b);
avg = ((float) (a + b))/2;
printf(“%f\n”, avg);

int a, b;
float avg;
scanf(“%d%d”, &a, &b);
avg = (a + b)/2.0;
printf(“%f\n”, avg);

Wrong program

Correct programs

average-1.c

average-2.c

36

More Operators: Increment (++)
and Decrement (--)
 Both of these are unary operators; they

operate on a single operand
 The increment operator causes its operand

to be increased by 1
 Example: a++, ++count

 The decrement operator causes its operand
to be decreased by 1.
 Example: i--, --distance

37

Pre-increment versus post-
increment
 Operator written before the operand (++i, --i))
Called pre-increment operator (also sometimes

called prefix ++ and prefix --)
Operand will be altered in value before it is utilized

in the program
 Operator written after the operand (i++, i--)
Called post-increment operator (also sometimes

called postfix ++ and postfix --)
Operand will be altered in value after it is utilized in

the program

38

Examples
Initial values :: a = 10; b = 20;

x = 50 + ++a; a = 11, x = 61
x = 50 + a++; x = 60, a = 11
x = a++ + --b; b = 19, x = 29, a = 11
x = a++ – ++a; ??

Called side effects (while calculating some values,
something else gets changed)

39

Precedence
among different
operators (there
are many other
operators in C,
some of which we
will see later)

Operator Class Operators Associativity
Unary postfix++, -- Left to Right

Unary prefix ++, --
─ ! & Right to Left

Binary * / % Left to Right
Binary + ─ Left to Right

Binary < <= > >= Left to Right

Binary == != Left to Right
Binary && Left to Right
Binary || Left to Right

Assignment = += ─ =
*= /= %= Right to Left

40

Doing More Complex Mathematical
Operations
 C provides some mathematical functions to use
 perform common mathematical calculations
Must include a special header file

#include <math.h>
 Example
 printf ("%f", sqrt(900.0));

 Calls function sqrt, which returns the square
root of its argument

 Return values of math functions are of type double
 Arguments may be constants, variables, or

expressions
 Similar to functions you have seen in school maths

41

Math Library Functions
double acos(double x) – Compute arc cosine of x.
double asin(double x) – Compute arc sine of x.
double atan(double x) – Compute arc tangent of x.
double atan2(double y, double x) – Compute arc tangent of y/x.
double cos(double x) – Compute cosine of angle in radians.
double cosh(double x) – Compute the hyperbolic cosine of x.
double sin(double x) – Compute sine of angle in radians.
double sinh(double x) – Compute the hyperbolic sine of x.
double tan(double x) – Compute tangent of angle in radians.
double tanh(double x) – Compute the hyperbolic tangent of x.

42

Math Library Functions

double ceil(double x) – Get smallest integral value that exceeds x.
double floor(double x) – Get largest integral value less than x.
double exp(double x) – Compute exponential of x.
double fabs (double x) – Compute absolute value of x.
double log(double x) – Compute log to the base e of x.
double log10 (double x) – Compute log to the base 10 of x.
double pow (double x, double y) – Compute x raised to the power y.
double sqrt(double x) – Compute the square root of x.

Computing distance between two points

#include <stdio.h>
#include <math.h>
int main()
{

int x1, y1, x2, y2;
double dist;
printf(“Enter coordinates of first point: “);
scanf(“%d%d”, &x1, &y1);
printf(“Enter coordinates of second point: “);
scanf(“%d%d”, &x2, &y2);
dist = sqrt(pow(x1 – x2, 2) + pow(y1 – y2, 2));
printf(“Distance = %lf\n”, dist);
return 0;

} 43

Enter coordinates of first point: 3 4
Enter coordinates of second point: 2 7
Distance = 3.162278

Output

Practice Problems
1. Read in three integers and print their average
2. Read in four integers a, b, c, d. Compute and print the value of the

expression
a+b/c/d*10*5-b+20*d/c

 Explain to yourself the value printed based on precedence of operators
taught

 Repeat by putting parenthesis around different parts (you choose) and
first do by hand what should be printed, and then run the program to
verify if you got it right

 Repeat similar thing for the expression a&&b||c&&d>a||c<=b
3. Read in the coordinates (real numbers) of three points in 2-d plane, and

print the area of the triangle formed by them
4. Read in the principal amount P, interest rate I, and number of years N, and

print the compound interest (compounded annually) earned by P after N
years

44

	Expressions
	Expressions
	Arithmetic Operators
	Contd.
	Slide Number 5
	Operator Precedence
	Examples: �Arithmetic Expressions
	Example: Centigrade to Fahrenheit
	Slide Number 9
	Slide Number 10
	Type of Value of an Arithmetic Expression
	Slide Number 12
	This is a problem!!
	Assignment Expression
	Contd.
	Contd.
	Example
	Types of l-value and r-value
	This can cause strange problems
	More Assignment Operators
	Contd.
	Logical Expressions
	Relational Operators
	Examples
	Logical Operators
	Contd.
	Examples of Logical Expressions
	Slide Number 28
	Example: AND and OR
	Slide Number 30
	More on Arithmetic Expressions
	Recall the earlier problem
	Solution: Typecasting
	Slide Number 34
	Example: Finding Average of 2 Integers
	More Operators: Increment (++) and Decrement (--)
	Pre-increment versus post-increment
	Examples
	Precedence among different operators (there are many other operators in C, some of which we will see later)
	Doing More Complex Mathematical Operations
	Math Library Functions
	Math Library Functions
	Computing distance between two points
	Practice Problems

