
Pointers: Basics

Lecture 24

2

What is a pointer?
 First of all, it is a variable, just like other

variables you studied
 So it has type, storage etc.

 Difference: it can only store the address
(rather than the value) of a data item

 Type of a pointer variable – pointer to the type
of the data whose address it will store
 Example: int pointer, float pointer,…
 Can be pointer to any user-defined types also like

structure types

Usage of Pointers

 They have a number of useful applications
 Enables us to access a variable that is defined

outside the function
 Can be used to pass information back and forth

between a function and its reference point
More efficient in handling data tables
 Reduces the length and complexity of a program
 Sometimes also increases the execution speed

4

Basic Concept
 As seen before, in memory, every stored data item

occupies one or more contiguous memory cells
 The number of memory cells required to store a

data item depends on its type (char, int, double,
etc.).

 Whenever we declare a variable, the system
allocates memory location(s) to hold the value of the
variable.
 Since every byte in memory has a unique

address, this location will also have its own
(unique) address.

5

Contd.
 Consider the statement

int xyz = 50;
This statement instructs the compiler to

allocate a location for the integer variable xyz,
and put the value 50 in that location

Suppose that the address location chosen is
1380 xyz  variable

50  value

1380  address

6

Contd.
 During execution of the program, the system always

associates the name xyz with the address 1380
 The value 50 can be accessed by using either the

name xyz or the address 1380
 Since memory addresses are simply numbers, they

can be assigned to some variables which can be
stored in memory
 Such variables that hold memory addresses are

called pointers
 Since a pointer is a variable, its value is also

stored in some memory location

7

Contd.

 Suppose we assign the address of xyz to a
variable p
 p is said to point to the variable xyz

Variable Value Address

xyz 50 1380

p 1380 2545

p = &xyz;

8

Address vs. Value

 Each memory cell has an address
associated with it

...... 101 102 103 104 105 ...

9

Address vs. Value

 Each memory cell has an address
associated with it
 Each cell also stores some value

23 42 101 102 103 104 105 ...

10

Address vs. Value

 Each memory cell has an address
associated with it
 Each cell also stores some value
 Don’t confuse the address referring to a

memory location with the value stored in that
location

23 42 101 102 103 104 105 ...

11

Values vs Locations

 Variables name memory locations, which hold
values

32
x

1024:

address name

value

12

Pointers in C
A pointer is just a C variable whose value can

contain the address of another variable
Needs to be declared before use just like any other

variable
General form:

data_type *pointer_name;

Three things are specified in the above declaration:
 The asterisk (*) tells that the variable

pointer_name is a pointer variable
 pointer_name needs a memory location
 pointer_name points to a variable of type

data_type

13

Example

int *count;
float *speed;
char *c;

 Once a pointer variable has been declared, it can be made
to point to a variable using an assignment statement like

int *p, xyz;
:

p = &xyz;

Structure Pointer
 Pointers can be defined for any type, including

user defined types
 Example

struct name {
char first[20];
char last[20];

};
struct name *p;

 p is a pointer which can store the address of a struct
name type variable

15

Accessing the Address of a
Variable
 The address of a variable is given by the & operator

 The operator & immediately preceding a variable
returns the address of the variable

 Example:
p = &xyz;

 The address of xyz (1380) is assigned to p

 The & operator can be used only with a simple variable
(of any type, including user-defined types) or an array
element

&distance
&x[0]
&x[i-2]

16

Illegal Use of &
 &235

 Pointing at constant

 int arr[20];
:

&arr;
 Pointing at array name

 &(a+b)
 Pointing at expression

In all these cases, there is no storage,
so no address either

17

Example
#include <stdio.h>
int main()
{

int a;
float b, c;
double d;
char ch;

a = 10; b = 2.5; c = 12.36; d = 12345.66; ch = ‘A’;
printf (“%d is stored in location %u \n”, a, &a) ;
printf (“%f is stored in location %u \n”, b, &b) ;
printf (“%f is stored in location %u \n”, c, &c) ;
printf (“%lf is stored in location %u \n”, d, &d) ;
printf (“%c is stored in location %u \n”, ch, &ch) ;
return 0;

}

18

10 is stored in location 3221224908
2.500000 is stored in location 3221224904
12.360000 is stored in location 3221224900
12345.660000 is stored in location 3221224892
A is stored in location 3221224891

Output

19

int a, b;
int *p;
p = &a;
b = *p;

Accessing a Variable Through
its Pointer
 Once a pointer has been assigned the address

of a variable, the value of the variable can be
accessed using the indirection operator (*).

Equivalent to b = a;

20

Example
#include <stdio.h>
int main()
{

int a, b;
int c = 5;
int *p;

a = 4 * (c + 5) ;

p = &c;
b = 4 * (*p + 5) ;
printf (“a=%d b=%d \n”, a, b);
return 0;

}

Equivalent

a=40 b=40

21

Example
int main()
{

int x, y;
int *ptr;

x = 10 ;
ptr = &x ;
y = *ptr ;
printf (“%d is stored in location %u \n”, x, &x);
printf (“%d is stored in location %u \n”, *&x, &x);
printf (“%d is stored in location %u \n”, *ptr, ptr);
printf (“%d is stored in location %u \n”, y, &*ptr);
printf (“%u is stored in location %u \n”, ptr, &ptr);
printf (“%d is stored in location %u \n”, y, &y);

*ptr = 25;
printf (“\nNow x = %d \n”, x);
return 0;

}

22

10 is stored in location 3221224908
10 is stored in location 3221224908
10 is stored in location 3221224908
10 is stored in location 3221224908
3221224908 is stored in location 3221224900
10 is stored in location 3221224904

Now x = 25

Address of x: 3221224908

Address of y: 3221224904

Address of ptr: 3221224900

Suppose that

Then output is

23

Example

32
x

1024:
int x;

int  xp ;

1024
xp

xp = &x ;

address of x

pointer to int

xp = 0; /* Assign 0 to x */
xp = xp + 1; /* Add 1 to x */

24

Value of the pointer
Declaring a pointer just allocates space to hold the

pointer – it does not allocate something to be
pointed to!
Local variables in C are not initialized, they may contain

anything

After declaring a pointer:
int *ptr;

ptr doesn’t actually point to anything yet. We can
either:
make it point to something that already exists, or
allocate room in memory for something new that

it will point to… (dynamic allocation, to be done
later)

25

Example

Memory and Pointers:

0

1500

2300

26

Memory and Pointers:
int *p, v;

arbitrary value

0

arbitrary value 2300p:

v: 1500

27

Memory and Pointers:
int v, *p;
p = &v;arbitrary value

0

1500

1500 2300p:

v:

28

Memory and Pointers:
int v, *p;
p = &v;
v = 17;

17

0

1500

1500 2300p:

v:

29

Memory and Pointers:
int v, *p;
p = &v;
v = 17;
*p = *p + 4;
v = *p + 4

25

0

1500

1500 2300p:

v:

Pointers: More ...

Lecture 25

31

More Examples of Using Pointers
in Expressions
 If p1 and p2 are two pointers, the following

statements are valid:

sum = *p1 + *p2;
prod = *p1 * *p2;
prod = (*p1) * (*p2);
*p1 = *p1 + 2;
x = *p1 / *p2 + 5;

 Note that this unary * has higher precedence
than all arithmetic/relational/logical operators

*p1 can appear on
the left hand side

32

Important Things to Remember
 Pointer variables must always point to a data item of

the same type
float x;
int *p;

:
p = &x;

will result in wrong output
 Never assign an absolute address to a pointer

variable

int *count;
count = 1268;

33

 Whenever you use *p to access the value of the location
pointed to by a pointer variable p, always check that p
has been assigned a valid value before by an assignment
statement (p = …..)
 Very common mistake while writing programs with pointers

int main()
{

int *p;
*p = 4;
printf(“*p = %d\n”, *p);

}

Run it and see what happens. p is not
assigned anything. So whatever the content of
p is, when *p is done, it tries to write to that
location. So if p contained 1325 (say), it will try
to write at memory location with address 1325.
This may cause an error (OS does not allow
writes to some addresses) or will overwrite
whatever that location contained, which may
corrupt other variable values. Second case is
very hard to debug, as to the compiler 1325 is
a free location and can be given to other
variables later, which will then overwrite again.

34

Pointer Expressions

 Like other variables, pointer variables can
appear in expressions

 What are allowed in C?
Add an integer to a pointer
Subtract an integer from a pointer
Subtract one pointer from another (related)

 If p1 and p2 are both pointers to the same array,
then p2 – p1 gives the number of elements
between p1 and p2

35

Contd.

 What are not allowed?
Adding two pointers.

p1 = p1 + p2;
Multiply / divide a pointer in an expression

p1 = p2 / 5;
p1 = p1 – p2 * 10;

36

Scale Factor
 We have seen that an integer value can be

added to or subtracted from a pointer variable
int *p1, *p2;
int i, j;

:
p1 = p1 + 1;
p2 = p1 + j;
p2++;
p2 = p2 – (i + j);

 In reality, it is not the integer value which is
added/subtracted, but rather the scale factor times
the value

37

Contd.

Data Type Scale Factor
char 1
int 4
float 4
double 8

 If p1 is an integer pointer, then
p1++

will increment the value of p1 by 4

38

 The scale factor indicates the number of bytes
used to store a value of that type
 So the address of the next element of that type can

only be at the (current pointer value + size of data)
 The exact scale factor may vary from one

machine to another
 Can be found out using the sizeof function

Gives the size of that data type
 Syntax:

sizeof (data_type)

39

Exampleint main()
{
printf (“No. of bytes in int is %u \n”, sizeof(int));
printf (“No. of bytes in float is %u \n”, sizeof(float));
printf (“No. of bytes in double is %u \n”, sizeof(double));
printf (“No. of bytes in char is %u \n”, sizeof(char));

printf (“No. of bytes in int * is %u \n”, sizeof(int *));
printf (“No. of bytes in float * is %u \n”, sizeof(float *));
printf (“No. of bytes in double * is %u \n”, sizeof(double *));
printf (“No. of bytes in char * is %u \n”, sizeof(char *));
return 0;

} No. of bytes in int is 4
No. of bytes in float is 4
No. of bytes in double is 8
No. of bytes in char is 1
No. of bytes in int * is 4
No. of bytes in float * is 4
No. of bytes in double * is 4
No. of bytes in char * is 4

Output on a PC

 Note that pointer takes 4 bytes to store,
independent of the type it points to

 However, this can vary between machines
Output of the same program on a server

 Always use sizeof() to get the correct size`
 Should also print pointers using %p (instead of %u

as we have used so far for easy comparison)

No. of bytes in int is 4
No. of bytes in float is 4
No. of bytes in double is 8
No. of bytes in char is 1
No. of bytes in int * is 8
No. of bytes in float * is 8
No. of bytes in double * is 8
No. of bytes in char * is 8

41

Example
int main()
{
int A[5], i;

printf(“The addresses of the array elements are:\n”);
for (i=0; i<5; i++)

printf(“&A[%d]: Using \%p = %p, Using \%u = %u”, i, &A[i], &A[i]);
return 0;

}

&A[0]: Using %p = 0x7fffb2ad5930, Using %u = 2997705008
&A[1]: Using %p = 0x7fffb2ad5934, Using %u = 2997705012
&A[2]: Using %p = 0x7fffb2ad5938, Using %u = 2997705016
&A[3]: Using %p = 0x7fffb2ad593c, Using %u = 2997705020
&A[4]: Using %p = 0x7fffb2ad5940, Using %u = 2997705024

Output on a server machine

0x7fffb2ad5930 = 140736191093040 in decimal (NOT 2997705008)
so print with %u prints a wrong value (4 bytes of unsigned int cannot
hold 8 bytes for the pointer value)

42

Pointers: Parameter
Passing and Return

43

Passing Pointers to a Function

 Pointers are often passed to a function as
arguments
 Allows data items within the calling function to be

accessed by the called function, altered, and then
returned to the calling function in altered form

 Useful for returning more than one value from a
function

 Still call-by-value, but now the address is copied,
not the content

44

Example: Swapping
int main()
{

int a, b;
a = 5; b = 20;
swap (a, b);
printf (“\n a=%d, b=%d”, a, b);
return 0;

}

void swap (int x, int y)
{

int t;
t = x;
x = y;
y = t;

}

a=5, b=20
Output

Parameters
passed by
value, so
changes done
on copy, not
returned to
calling
function

45

Example: Swapping using pointers
int main()
{

int a, b;
a = 5; b = 20;
swap (&a, &b);
printf (“\n a=%d, b=%d”, a, b);
return 0;

}

void swap (int *x, int *y)
{

int t;
t = *x;
*x = *y;
*y = t;

}

a=20, b=5

Output

Parameters
passed by
address,
changes done
on the value
stored at that
address,
correctly
swapped

46

 While passing a parameter to a function, when
should you pass its address instead of the
value?
 Pass address if both these conditions are satisfied

 The parameter value will be modified inside the function body
 The modified value is needed in the calling function after the

called function returns

 Consider the swap function to see this

47

Passing Arrays as Pointers

int main()
{

int n;
float list[100], avg;
:
avg = average (n, list);
:

}

float average (int a, float x[])
{

:
sum = sum + x[i];

}

int main()
{

int n;
float list[100], avg;
:
avg = average (n, list);
:

}

float average (int a, float *x)
{

:
sum = sum + x[i];

}

Both the forms below are fine in the function body, as
arrays are passed by passing the address of the first
element. Calling function calls it the same way

48

Returning multiple values from a
function
 Return statement can return only one value
 What if we want to return more than one value?
 Use pointers

 Return one value as usual with a return statement
 For other return values, pass the address of a

variable in which the value is to be returned

49

Example: Returning max and min
of an array
Both returned through pointers (could have returned one of

them through return value of the function also)
int main()
{

int n, min, max, i, A[100];
scanf(“%d”, &n);
for (i=0; i<n; ++i)
scanf(“%d”, &A[i]);

MinMax(A, n, &min, &max);
printf(“Min and max are %d,

%d”, min, max);
return 0;

}

void MinMax(int A[], int n, int
*min, int *max)
{

int i, x, y;
x = y = A[0];
for (i=1; i<n; ++i) {
if (A[i] < x) x = A[i];
if (A[i] > y) y = A[i];

}
*min = x; *max = y;

}

50

Example: Passing structure pointers
struct complex {

float re;
float im;

};

int main()
{

struct complex a, b, c;
scanf(“%f%f”, &a.re, &a.im);
scanf(“%f%f”, &b.re, &b.im);
add(&a, &b, &c) ;
printf(“\n %f %f”, c.re,

c.im);
return 0;

}

void add (struct complex
*x, struct complex *y,
struct complex *t)
{

t->re = x->re + y->re;
t->im = x->im + y->im;

}

The program will print the
sum of a and b correctly.
Just try passing a, b, c
directly (no pointers in call
or in function declaration)
and see what happens

51

Strings

Lecture 26

52

Strings
• 1-d arrays of type char
• By convention, a string in C is terminated by the

end-of-string sentinel ‘\0’ (null character)
• char s[21] - can have variable length string

delimited with \0
• Max length of the string that can be stored is 20 as

the size must include storage needed for the ‘\0’
• String constants : “hello”, “abc”
• “abc” is a character array of size 4

53

String Constant

• A string constant is treated as a pointer
• Its value is the base address of the string

char *p = “abc”;

printf (“%s %s\n”,p,p+1); /* abc bc is printed */

a b c \0p

54

Differences : array & pointers
char *p = “abcde”;
The compiler allocates

space for p, puts the
string constant “abcde”
in memory somewhere
else, initializes p with
the base address of
the string constant

char s[] = “abcde”;
 char s[] = {‘a’,’b’,’c’,’d’,’e’.’\0’};
The compiler allocates 6 bytes

of memory for the array s
which are initialized with the
6 characters

a b c d e \0
a b c d e \0

p
S

55

Library Functions for String
Handling
 You can write your own C code to do different

operations on strings like finding the length of a
string, copying one string to another, appending
one string to the end of another etc.

 C library provides standard functions for these
that you can call, so no need to write your own
code

 To use them, you must do
#include <string.h>

At the beginning of your program (after #include
<stdio.h>)

56

String functions we will see
 strlen : finds the length of a string
 strcat : concatenates one string at the end of

another
 strcmp : compares two strings lexicographically
 strcpy : copies one string to another

57

strlen()

int strlen(const char *s)
 Takes a null-terminated

strings (we routinely refer
to the char pointer that
points to a null-terminated
char array as a string)

 Returns the length of
the string, not counting
the null (\0) character

int strlen (const char *s) {
int n;
for (n=0; *s!=‘\0’; ++s)

++n;
return n;

}

You cannot change contents
of s in the function

58

strcat()
 char *strcat (char *s1,

const char *s2);
 Takes 2 strings as

arguments,
concatenates them,
and puts the result in
s1. Returns s1.
Programmer must
ensure that s1 points
to enough space to
hold the result.

char *strcat(char *s1, const char
*s2)
{

char *p = s1;
while (*p != ‘\0’) /* go to end */

++p;
while(*s2 != ‘\0’)

*p++ = *s2++; /* copy */
*p = ‘\0’;
return s1;

}

You cannot change contents
of s2 in the function

59

Dissection of the strcat() function
char *p = s1;
p is being initialized, not *p. The pointer p is initialized

to the pointer value s1. Thus p and s1 point to the
same memory location

60

Dissection of the strcat() function

char *p = s1;
p is being initialized, not *p. The pointer p is initialized

to the pointer value s1. Thus p and s1 point to the
same memory location

while (*p != ‘\0’) ++p;
As long as the value pointed to by p is not ‘\0’, p is

incremented, causing it to point at the next
character in the string. When p points to \0, the
control exits the while statement

61

Dissection of the strcat() function
char *p = s1;
p is being initialized, not *p. The pointer p is initialized

to the pointer value s1. Thus p and s1 point to the
same memory location

while (*p != ‘\0’) ++p;
As long as the value pointed to by p is not ‘\0’, p is

incremented, causing it to point at the next
character in the string. When p points to \0, the
control exits the while statement

while(*s2 != ‘\0’) *p++ = *s2++; /* copy */
At the beginning, p points to the null character at the

end of string s1. The characters in s2 get copied
one after another until end of s2

62

Dissection of the strcat() function
char *p = s1;
p is being initialized, not *p. The pointer p is initialized

to the pointer value s1. Thus p and s1 point to the
same memory location

while (*p != ‘\0’) ++p;
As long as the value pointed to by p is not ‘\0’, p is

incremented, causing it to point at the next
character in the string. When p points to \0, the
control exits the while statement

while(*s2 != ‘\0’) *p++ = *s2++; /* copy */
At the beginning, p points to the null character at the

end of string s1. The characters in s2 get copied
one after another until end of s2

*p = ‘\0’; put the ‘\0’ at the end of the string

63

strcmp()
int strcmp (const char

*s1, const char *s2);
Two strings are passed

as arguments. An
integer is returned
that is less than,
equal to, or greater
than 0, depending on
whether s1 is
lexicographically less
than, equal to, or
greater than s2.

64

strcmp()
int strcmp (const char

*s1, const char *s2);
Two strings are passed

as arguments. An
integer is returned
that is less than,
equal to, or greater
than 0, depending on
whether s1 is
lexicographically less
than, equal to, or
greater than s2.

int strcmp(char *s1, const char *s2)
{

for (;*s1!=‘\0’&&*s2!=‘\0’; s1++,s2++)
{

if (*s1>*s2) return 1;
if (*s2>*s1) return -1;

}
if (*s1 != ‘\0’) return 1;
if (*s2 != ‘\0’) return -1;
return 0;

}

Important: When you use strcmp() from
the string library, check the return value for
>, < or = 0, not for +1, -1, and 0 (which are
just one possible return value to satisfy the
>, <, and = 0 condition

65

char *strcpy (char *s1, char *s2);
The characters is the string s2 are copied into s1 until

\0 is moved. Whatever exists in s1 is overwritten. It is
assumed that s1 has enough space to hold the
result. The pointer s1 is returned.

strcpy()

66

char *strcpy (char *s1, const char *s2);
The characters is the string s2 are copied into s1 until

‘\0’ is moved. Whatever exists in s1 is overwritten. It
is assumed that s1 has enough space to hold the
result. The pointer s1 is returned.

char * strcpy (char *s1, const char *s2)
{

char *p = s1;
while (*p++ = *s2++) ;
return s1;

}

strcpy()

67

Example: Using string functions

25
9
-1
big sky country
beautiful brown cows!

int main()
{
char s1[] = "beautiful big sky country",

s2[] = "how now brown cow";
printf("%d\n",strlen (s1));
printf("%d\n",strlen (s2+8));
printf("%d\n", strcmp(s1,s2));
printf("%s\n",s1+10);
strcpy(s1+10,s2+8);
strcat(s1,"s!");
printf("%s\n", s1);
return 0;
}

Output

68

1. Write a function to search for an element in an array of integers that
returns 1 if the element is found, 0 otherwise. If found, it also returns the
index in the array where found

2. Write a function that returns the number of lowercase letters, uppercase
letters, and digit characters in a string

3. Define a structure POINT to store the coordinates (integer) of a point in 2-
d plane. Write a function that returns the two farthest (largest distance)
points in an array of POINT structures

4. Write a function that takes two arrays of integers A and B and returns the
size of the union set and the size of the intersection set of A and B

5. Write a function that returns the lengths of the largest palindromes formed
by any substring (sequence of consecutive characters) of the string. It
should also return the index in the string from which the palindrome starts.

For all of the above, add suitable main() functions to call the functions. Also,
decide on what parameters you will need; for better practice, for all problems
other than problems 1, assume that the return type of the function is void.

Practice Problems

