Number

Representation

Part I

Basics of Number System

- We are accustomed to using the so-called decimal number system
\square Ten digits :: 0,1,2,3,4,5,6,7,8,9
\square Every digit position has a weight which is a power of 10
\square Base or radix is 10
Example:

$$
\begin{aligned}
& 234=2 \times 10^{2}+3 \times 10^{1}+4 \times 10^{0} \\
& 250.67=2 \times 10^{2}+5 \times 10^{1}+0 \times 10^{0}+6 \times 10^{-1} \\
& \quad+7 \times 10^{-2}
\end{aligned}
$$

Binary Number System

- Two digits:
$\square 0$ and 1
\square Every digit position has a weight which is a power of 2
\square Base or radix is 2
- Example:
$110=1 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0}$
$101.01=1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}+0 \times 2^{-1}+1$ $\times 2^{-2}$

Positional Number Systems (General)

Decimal Numbers:

10 Symbols $\{0,1,2,3,4,5,6,7,8,9\}$, Base or Radix is 10
$136.25=1 \times 10^{2}+3 \times 10^{1}+6 \times 10^{0}+2 \times 10^{-1}+3 \times 10^{-2}$

Positional Number Systems (General)

Decimal Numbers:

10 Symbols $\{0,1,2,3,4,5,6,7,8,9\}$, Base or Radix is 10
$136.25=1 \times 10^{2}+3 \times 10^{1}+6 \times 10^{0}+2 \times 10^{-1}+3 \times 10^{-2}$
Binary Numbers:

* 2 Symbols $\{0,1\}$, Base or Radix is 2
$101.01=1 \times 2^{2}+0 \times 2^{1}+1 \times \mathbf{2}^{0}+0 \times 2^{-1}+\mathbf{1} \times \mathbf{2}^{-2}$

Positional Number Systems (General)

Decimal Numbers:
10 Symbols $\{0,1,2,3,4,5,6,7,8,9\}$, Base or Radix is 10
$136.25=1 \times 10^{2}+3 \times 10^{1}+6 \times 10^{0}+2 \times 10^{-1}+5 \times 10^{-2}$
Binary Numbers:

* 2 Symbols $\{0,1\}$, Base or Radix is 2
$101.01=1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}+0 \times 2^{-1}+1 \times 2^{-2}$
Octal Numbers:
8 Symbols $\{0,1,2,3,4,5,6,7\}$, Base or Radix is 8
$621.03=6 \times 8^{2}+2 \times 8^{1}+1 \times 8^{0}+0 \times 8^{-1}+3 \times 8^{-2}$

Positional Number Systems (General)

Decimal Numbers:

* 10 Symbols $\{0,1,2,3,4,5,6,7,8,9\}$, Base or Radix is 10
* $136.25=1 \times 10^{2}+3 \times 10^{1}+6 \times 10^{0}+2 \times 10^{-1}+3 \times 10^{-2}$

Binary Numbers:

- 2 Symbols $\{0,1\}$, Base or Radix is 2
$101.01=1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}+0 \times 2^{-1}+1 \times 2^{-2}$
Octal Numbers:
8 Symbols $\{0,1,2,3,4,5,6,7\}$, Base or Radix is 8
$621.03=6 \times 8^{2}+2 \times 8^{1}+1 \times 8^{0}+0 \times 8^{-1}+3 \times 8^{-2}$
Hexadecimal Numbers:
* 16 Symbols $\{0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F\}$, Base is 16
$\not \approx \mathrm{AF} 3 \mathrm{C}=.6 \times 16^{2}+10 \times 16^{1}+15 \times 16^{0}+3 \times 16^{-1}+12 \times 16^{-2}$

Binary-to-Decimal Conversion

- Each digit position of a binary number has a weight
\square Some power of 2
- A binary number:

$$
B=b_{n-1} b_{n-2} \ldots . b_{1} b_{0} \cdot b_{-1} b_{-2} \ldots \ldots b_{-m}
$$

Corresponding value in decimal:

$$
D=\sum_{i=-m}^{n-1} b_{i} 2^{i}
$$

Examples

$$
\left.\left.\begin{array}{c}
101011 \rightarrow 1 \times 2^{5}+0 \times 2^{4}+1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0} \\
=43 \\
\begin{array}{rl}
(101011)_{2}=(43)_{10}
\end{array} \\
.0101 \rightarrow 0 \times 2^{-1}+1 \times 2^{-2}+0 \times 2^{-3}+1 \times 2^{-4} \\
=.3125
\end{array}\right] \begin{array}{c}
(.0101)_{2}=(.3125)_{10} \\
101.11 \rightarrow 1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}+1 \times 2^{-1}+1 \times 2^{-2} \\
=5.75
\end{array}\right] \begin{aligned}
& (101.11)_{2}=(5.75)_{10}
\end{aligned}
$$

Decimal to Binary: Integer Part

Consider the integer and fractional parts separately. For the integer part:
-Repeatedly divide the given number by 2 , and go on accumulating the remainders, until the number becomes zero. -Arrange the remainders in reverse order.

Base Numb Rem

2	89	
2	44	1
2	22	0
2	11	0
2	5	1
2	2	1
2	1	0
	0	1

$$
(89)_{10}=(1011001)_{2}
$$

Decimal to Binary: Integer Part

Consider the integer and fractional parts separately. For the integer part:
-Repeatedly divide the given number by 2 , and go on accumulating the remainders, until the number becomes zero.
-Arrange the remainders in reverse order.

Base Numb|Rem

2	89	
2	44	1
2	22	0
2	11	0
2	5	1
2	2	1
2	1	0
	0	1

2	66	
2	33	0
2	16	1
2	8	0
2	4	0
2	2	0
2	1	0
	0	1

$$
(89)_{10}=(1011001)_{2}
$$

$$
(66)_{10}=(1000010)_{2}
$$

Decimal to Binary: Integer Part

Consider the integer and fractional parts separately. For the integer part:
-Repeatedly divide the given number by 2 , and go on accumulating the remainders, until the number becomes zero. -Arrange the remainders in reverse order.
Base NumbRem

2	89	
2	44	1
2	22	0
2	11	0
2	5	1
2	2	1
2	1	0
	0	1

2	66	
2	33	0
2	16	1
2	8	0
2	4	0
2	2	0
2	1	0
	0	1

2	239	
2	119	1
2	59	1
2	29	1
2	14	1
2	7	0
2	3	1
2	1	1
	0	1

$(66)_{10}=(1000010)_{2}$

Decimal to Binary: Fraction Part

-Repeatedly multiply the given fraction by 2.
Accumulate the integer part (0 or 1).
If the integer part is 1 , chop it off.
-Arrange the integer parts in the order they are obtained.
Example: 0.634
$.634 \times 2=1.268$
$.268 \times 2=0.536$
$.536 \times 2=1.072$
$.072 \times 2=0.144$
$.144 \times 2=0.288$
$:$
$:$
$(.634)_{10}=(.10100 \ldots \ldots)_{2}$

Decimal to Binary: Fraction Part

-Repeatedly multiply the given fraction by 2.
Accumulate the integer part (0 or 1).
If the integer part is 1 , chop it off.
-Arrange the integer parts in the order they are obtained.

Example: 0.634
$.634 \times 2=1.268$
$.268 \times 2=$
$.536 \times 2=1.072$
$.072 \times 2=$
$.144 \times 2=0.144$
$\times 288$
$:$
$(.634)_{10}=(.10100 \ldots \ldots)_{2}$

$$
\begin{aligned}
& \text { Example: } 0.0625 \\
& .0625 \times 2=0.125 \\
& .1250 \times 2=0.250 \\
& .2500 \times 2=0.500 \\
& .5000 \times 2=1.000 \\
& (.0625)_{10}=(.0001)_{2}
\end{aligned}
$$

Decimal to Binary: Fraction Part

-Repeatedly multiply the given fraction by 2.
Accumulate the integer part (0 or 1).
If the integer part is 1 , chop it off.
-Arrange the integer parts in the order they are obtained.

Example: 0.634
$.634 \times 2=1.268$
$.268 \times 2=0.536$
$.536 \times 2=1.072$
$.072 \times 2=0.144$
$.144 \times 2=0.288$
$:$
$:$
$(.634)_{10}=(.10100 \ldots . .)_{2}$

$$
\begin{gathered}
\text { Example: } 0.0625 \\
.0625 \times 2=0.125 \\
.1250 \times 2=0.250 \\
.2500 \times 2=0.500 \\
.5000 \times 2=1.000 \\
(.0625)_{10}=(.0001)_{2} \\
\hline(37)_{10}=(100101)_{2} \\
(.0625)_{10}=(.0001)_{2} \\
(37.0625)_{10}=(100101.0001)_{2}
\end{gathered}
$$

Hexadecimal Number System

- A compact way of representing binary numbers
- 16 different symbols (radix = 16)

$0 \rightarrow 0000$	8
$1 \rightarrow 000$	$9 \rightarrow 1$
$2 \rightarrow 0010$	A \rightarrow
$3 \rightarrow 0011$	$B \rightarrow 1011$
$\rightarrow 0100$	$\mathrm{C} \rightarrow$
$5 \rightarrow 010$	D $\rightarrow 1101$
$6 \rightarrow 01$	$\mathrm{E} \rightarrow$
0111	$\mathrm{F} \rightarrow 11$

Binary-to-Hexadecimal Conversion

- For the integer part,
\square Scan the binary number from right to left
\square Translate each group of four bits into the corresponding hexadecimal digit
- Add leading zeros if necessary
- For the fractional part,
\square Scan the binary number from left to right
\square Translate each group of four bits into the corresponding hexadecimal digit
- Add trailing zeros if necessary

Example

1. $(\underline{1011} \underline{0100} \underline{0011})_{2}=(\mathrm{B} 43)_{16}$
2. $(\underline{10} \underline{1010} \underline{0001})_{2}=(2 \mathrm{~A} 1)_{16}$
3. $(.1000 \underline{010})_{2}$
$=(.84)_{16}$
4. $(\underline{101} \cdot \underline{0101} \underline{111})_{2}=(5.5 \mathrm{E})_{16}$

Hexadecimal-to-Binary Conversion

- Translate every hexadecimal digit into its 4-bit binary equivalent
- Examples:
$(3 A 5)_{16}=(001110100101)_{2}$
$(12.3 D)_{16}=(00010010.00111101)_{2}$
$(1.8)_{16}=(0001.1000)_{2}$

Number

Representation

Part II

Unsigned Binary Numbers

- An n-bit binary number

$$
B=b_{n-1} b_{n-2} \ldots . b_{2} b_{1} b_{0}
$$

- 2^{n} distinct combinations are possible, 0 to $2^{\mathrm{n}}-1$.
- For example, for $\mathrm{n}=3$, there are 8 distinct combinations
$\square 000,001,010,011,100,101,110,111$
- Range of numbers that can be represented

$$
\begin{array}{lll}
\mathrm{n}=8 & \rightarrow & \text { to } 2^{8}-1(255) \\
\mathrm{n}=16 & \rightarrow & 0 \text { to } 2^{16}-1(65535) \\
\mathrm{n}=32 & \rightarrow & 0 \text { to } 2^{32}-1(4294967295)
\end{array}
$$

Signed Integer Representation

- Many of the numerical data items that are used in a program are signed (positive or negative)
\square Question:: How to represent sign?
- Three possible approaches:
\square Sign-magnitude representation
\square One's complement representation
\square Two's complement representation

Sign-magnitude Representation

- For an n-bit number representation
\square The most significant bit (MSB) indicates sign $0 \rightarrow$ positive
$1 \rightarrow$ negative
\square The remaining $\mathrm{n}-1$ bits represent magnitude

Contd.

- Range of numbers that can be represented:

Maximum :: + (2n-1 -1$)$
Minimum :: $-\left(2^{n-1}-1\right)$

- A problem:

Two different representations of zero

$$
\begin{array}{lll}
+0 & \rightarrow & 000 \ldots . \\
-0 & \rightarrow & 1000 \ldots .
\end{array}
$$

One's Complement Representation

- Basic idea:
\square Positive numbers are represented exactly as in sign-magnitude form
\square Negative numbers are represented in 1's complement form
■ How to compute the 1's complement of a number?
\square Complement every bit of the number ($1 \rightarrow 0$ and $0 \rightarrow 1$)
\square MSB will indicate the sign of the number
$0 \rightarrow$ positive
$1 \rightarrow$ negative

Example: n=4

$$
\begin{aligned}
& 0000 \rightarrow+0 \\
& 0001 \rightarrow+1 \\
& 0010 \rightarrow+2 \\
& 0011 \rightarrow+3 \\
& 0100 \rightarrow+4 \\
& 0101 \rightarrow+5 \\
& 0110 \rightarrow+6 \\
& 0111 \rightarrow+7
\end{aligned}
$$

To find the representation of, say, -4 , first note that

$$
\begin{aligned}
& +4=0100 \\
& -4=1 \text { 's complement of } 0100=1011
\end{aligned}
$$

Contd.

- Range of numbers that can be represented:

$$
\begin{aligned}
& \text { Maximum }::+\left(2^{n-1}-1\right) \\
& \text { Minimum }::-\left(2^{n-1}-1\right)
\end{aligned}
$$

- A problem:

Two different representations of zero.

$$
\begin{aligned}
& +0 \rightarrow 0000 \ldots .0 \\
& -0 \rightarrow 1111 \ldots .1
\end{aligned}
$$

- Advantage of 1's complement representation
\square Subtraction can be done using addition
\square Leads to substantial saving in circuitry

Two's Complement Representation

- Basic idea:
\square Positive numbers are represented exactly as in sign-magnitude form
\square Negative numbers are represented in 2's complement form
- How to compute the 2's complement of a number?
\square Complement every bit of the number ($1 \rightarrow 0$ and $0 \rightarrow 1$), and then add one to the resulting number
\square MSB will indicate the sign of the number
$0 \rightarrow$ positive
$1 \rightarrow$ negative

Example: n=4

$0000 \rightarrow+0$
$0001 \rightarrow+1$
$0010 \rightarrow+2$
$0011 \rightarrow+3$
$0100 \rightarrow+4$
$0101 \rightarrow+5$
$0110 \rightarrow+6$
$0111 \rightarrow+7$
To find the representation of, say, -4 , first note that

```
+4 = 0100
-4 = 2's complement of 0100 = 1011+1 = 1100
```

Rule : Value $=-$ msb $^{*} 2^{(n-1)}+[$ unsigned value of rest] Example: $0110=0+6=6$

$$
1110=-8+6=-2
$$

Contd.

- Range of numbers that can be represented:

$$
\begin{aligned}
& \text { Maximum }::+\left(2^{n-1}-1\right) \\
& \text { Minimum } \quad::-2^{n-1}
\end{aligned}
$$

- Advantage:
\square Unique representation of zero
\square Subtraction can be done using addition
\square Leads to substantial saving in circuitry
- Almost all computers today use the 2's complement representation for storing negative numbers

Adding Binary Numbers

- Basic Rules:
$\square 0+0=0$
$\square 0+1=1$
$\square 1+0=1$
$\square 1+1=0$ (carry 1)

Example:

01101001 00110100
10011101

Subtraction Using Addition: 1's Complement

- How to compute $\mathrm{A}-\mathrm{B}$?
\square Compute the 1's complement of B (say, B_{1}).
\square Compute $\mathrm{R}=\mathrm{A}+\mathrm{B}_{1}$
\square If the carry obtained after addition is ' 1 '
- Add the carry back to R (called end-around carry)
- That is, $\mathrm{R}=\mathrm{R}+1$
- The result is a positive number

Else

- The result is negative, and is in 1's complement form

Example 1: 6-2

1's complement of $2=1101$

Example 2: 3-5

1's complement of $5=1010$

3 :: 0011 A
$-5:: \frac{1010}{1101} \mathbf{B}_{1}$
\downarrow

Assume 4-bit representations
Since there is no carry, the result is negative

1101 is the 1's complement of 0010, that is, it represents -2

Subtraction Using Addition: 2's Complement

- How to compute $\mathrm{A}-\mathrm{B}$?
\square Compute the 2's complement of B (say, B_{2})
\square Compute $\mathrm{R}=\mathrm{A}+\mathrm{B}_{2}$
\square If the carry obtained after addition is ' 1 '
- Ignore the carry
- The result is a positive number

Else

- The result is negative, and is in 2's complement form

Example 1: 6-2

2's complement of $2=1101+1=1110$

Example 2: 3-5

2's complement of $5=1010+1=1011$

$$
\begin{array}{rlll}
3 & :: & 0011 & \mathbf{A} \\
-5 & :: & 1011 & \mathbf{B}_{\mathbf{2}} \\
& & 1110 & \mathbf{R} \\
& & & \\
& & & \\
& & & \\
\hline
\end{array}
$$

Assume 4-bit representations
Since there is no carry, the result is negative

1110 is the 2's complement of 0010, that is, it represents -2

2's complement arithmetic: More Examples

- Example 1: 18-11 = ?
- 18 is represented as 00010010
- 11 is represented as 00001011
- 1 's complement of 11 is 11110100
- 2's complement of 11 is 11110101
- Add 18 to 2's complement of 11

```
00010010
+ 11110101
```


00000111 is 7

00000111 (with a carry of 1 which is ignored)

- Example 2: 7-9 = ?
- 7 is represented as 00000111
- 9 is represented as 00001001
- 1's complement of 9 is 11110110
- 2 's complement of 9 is 11110111
- Add 7 to 2 's complement of 9

```
00000111
+ 11110111
11111110 (with a carry of 0 which is ignored)
```

$$
11111110 \text { is }-2
$$

Number

Representation

Part III

Overflow/Underflow:

Adding two +ve (-ve) numbers should not produce a -ve (+ve) number. If it does, overflow (underflow) occurs

Overflow/Underflow:

Adding two +ve (-ve) numbers should not produce a -ve (+ve) number. If it does, overflow (underflow) occurs

Another equivalent condition : carry in and carry out from Most Significant Bit (MSB) differ.

Overflow/Underflow:

Adding two +ve (-ve) numbers should not produce a -ve (+ve) number. If it does, overflow (underflow) occurs

Another equivalent condition : carry in and carry out from Most Significant Bit (MSB) differ.
(64) 01000000
(4) 00000100
(68) 01000100
carry (out)(in)
00

Overflow/Underflow:

Adding two +ve (-ve) numbers should not produce a -ve (+ve) number. If it does, overflow (underflow) occurs

Another equivalent condition : carry in and carry out from Most Significant Bit (MSB) differ.

carry (out)(in)
00

(64)	01000000
(96)	01100000
----------96$)$	10100000

carry out in	$\begin{array}{l}\text { differ: } \\ 0\end{array}$	1
overflow		

Floating-point Numbers

- The representations discussed so far applies only to integers
\square Cannot represent numbers with fractional parts
- We can assume a decimal point before a signed number
\square In that case, pure fractions (without integer parts) can be represented
- We can also assume the decimal point somewhere in between
\square This lacks flexibility
\square Very large and very small numbers cannot be represented

Representation of Floating-Point Numbers

- A floating-point number F is represented by a doublet <M,E>:
$F=M \times B^{E}$
- $B \rightarrow$ exponent base (usually 2)
- $\mathrm{M} \rightarrow$ mantissa
- E \rightarrow exponent
$\square \mathrm{M}$ is usually represented in 2's complement form, with an implied binary point before it
- For example,

In decimal, 0.235×10^{6}
In binary, $\quad 0.101011 \times 20110$

Example :: 32-bit representation

$\square \mathrm{M}$ represents a 2's complement fraction

$$
1>M>-1
$$

$\square E$ represents the exponent (in 2's complement form) $127>E>-128$

- Points to note:
\square The number of significant digits depends on the number of bits in M
- 6 significant digits for 24-bit mantissa
\square The range of the number depends on the number of bits in E
- 10^{38} to 10^{-38} for 8 -bit exponent.
- Sign bit is added in front to represent both +ve and -ve numbers
- The representation shown for floating-point numbers as shown is just for illustration
- The actual representation is a little more complex, we will not do here
\square Example: IEEE 754 Floating Point format

